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Higher-order topological phases in a spring-mass model on a breathing kagome lattice
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We propose a realization of higher-order topological phases in a spring-mass model with a breathing kagome
structure. To demonstrate the existence of the higher-order topological phases, we characterize the topological
properties and show that the corner states appear under the fixed boundary condition. To characterize the
topological properties, we introduce a formula for the Z3 Berry phases in the Brillouin zone. From the numerical
result of this Z3 Berry phase, we have elucidated that coupling between the longitudinal and transverse modes
yields a state characterized by the Berry phase 2π

3 for our mechanical breathing kagome model. In addition, we
suggest that the corner states can be detected experimentally through a forced vibration.
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I. INTRODUCTION

Topological insulators (TIs) [1,2] are a distinctive class of
insulators where topologically nontrivial structures of Bloch
wave functions give rise to characteristic boundary states.
Various unique phenomena are caused by these boundary
states, such as quantization of Hall [3] and spin-Hall con-
ductivities [4] and electromagnetic responses [5,6]. In TIs,
bulk topological invariants which characterize the nontrivial
topology of Bloch wave functions are known to be related
to the (d − 1)-dimensional boundary states (with d being the
spatial dimension of the bulk Hamiltonian); this relation is
nowadays established as bulk-boundary correspondence [7,8].

Recently, a novel class of TIs, called higher-order topo-
logical insulators (HOTIs), was introduced [9–16]. In HO-
TIs, d − 2 or fewer dimensional boundary states appear in
d-dimensional models, which is predicted by topological in-
variants in the bulk. Examples of such topological invariants
include the multipole moment [10,17], the nested Wilson
loops [11,15], the quantized Wannier centers [12], the entan-
glement polarization [18], and the ZQ Berry phase [19–21].
In that sense, a novel kind of bulk-boundary correspondence
emerges in HOTIs.

In parallel with the theoretical developments, realization
of HOTIs in solids has actively been pursued [22–27]. In addi-
tion, higher-order topological phases in artificial systems have
also been studied intensively. These systems are advantageous
compared with solids from the viewpoints of simplicity of
experimental setup and high tunability of parameters, which
enable us to implement desirable structures to realize higher-
order topological phases. Indeed, the higher-order topological
phases were realized in mechanical systems [28,29], photonic
crystals [30,31], phononic crystals [32–34], electrical cir-
cuits [35,36], and carbon monoxide molecules on a Cu(111)
surface [37].
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In this paper, we propose a realization of higher-order topo-
logical phases in a spring-mass model. Spring-mass models,
composed of a periodic alignment of springs and mass points,
serve as a simple platform to realize topological phenomena
governed by Newton’s equation of motion [38–43]. Indeed,
topological phases accompanied by characteristic boundary
states, such as Chern insulators [39,40], nodal-line semimet-
als [41], and Weyl semimetals [42], were proposed. These
results motivated us to study the higher-order topological
phase in a spring-mass model.

As a concrete example, we study the spring-mass model
on a breathing kagome lattice and demonstrate the realization
of the higher-order topological phase in our model. Specifi-
cally, we characterize the topological phases by introducing
a formula for the Z3 Berry phase in the Brillouin zone and
the existence of the corner states. In addition, from this
numerical result for these bulk properties, we have elucidated
that coupling between the longitudinal and the transverse
modes yields a state characterized by the Berry phase 2π

3 for
our mechanical breathing kagome model. We further propose
how to observe the corner states experimentally. To this aim,
we study the dynamics under the external force and show
the characteristic behavior of corner states distinct from the
bulk states.

The rest of this paper is organized as follows. In Sec. II,
we introduce the spring-mass model on a breathing kagome
lattice and explain how to describe the motion of mass points
in this model. In Sec. III, we first explain the definition of
the Z3 Berry phases in momentum space. We then show
the numerical results for the bulk properties such as band
structures and Z3 Berry phases. In Sec. IV, we elucidate the
existence of the corner states in this model under the fixed
boundary conditions with a triangle arrangement. In Sec. V,
we demonstrate that the corner states can be observed by
the forced vibration. In Sec. VI, we present a summary of
this paper. In Appendix A, we see the Z3 Berry phase for
the lower five bands, which accounts for the corner states
under the weak tension. In Appendix B, we show the band
structure on the cylinder geometry. In Appendix C, we show
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FIG. 1. A spring-mass model in a breathing kagome structure.

the numerical result of the inverse participation ratio (IPR)
to see the corner states from the bulk or edge continuum.
In Appendix D, we show the existence of the corner state
under the fixed boundary conditions within a parallelogram
arrangement.

II. A SPRING-MASS MODEL ON A BREATHING
KAGOME LATTICE

We consider a system consists of the mass points aligned
on a breathing kagome lattice and springs connecting the
masses (Fig. 1). The spring constants of red springs on upward
triangles are ta, and those of blue springs on downward
triangles are tb. We label a red spring (a blue spring) as α = a
(b). Henceforth, we set the mass as unity for simplicity.

We set unit vectors �a1 and �a2 as

�a1 = (Ra + Rb)

(
1
0

)
(1a)

and

�a2 = (Ra + Rb)

(
− 1

2√
3

2

)
, (1b)

where Ra and Rb denote lengths of red springs and blue
springs in equilibrium, respectively. To make the model be in
equilibrium, we have to take into account a balances of forces,
which is satisfied for

ta(Ra − la) = tb(Rb − lb), (2)

where lα is the natural length of a spring. In the following, we
set la = lb = 1.

Let us see how to describe the motion of mass points.
Dynamical variables are �x �R,p, which are displacements of the
mass points from the position in equilibrium. Here, a pair
of indices �R and p specifies the lattice points; �R denotes the
position of the unit cell, and p = 1, 2, 3 denotes a sublattice.
For later use, we introduce �rp, which denotes the position of
sublattice p within the unit cell. The Lagrangian describing
the motion of masses is written as [40]

L = 1

2

∑
�R

∑
p

(
ẋμ

�R,p

)2 − 1

2

∑
〈 �R,p; �R′,q〉

(
xμ

�R,p
− xμ

�R′,q

)

× γ
μν

�R+�rp− �R′−�rq

(
xν

�R,p
− xν

�R′,q

)
, (3)

where 〈 �R, p; �R′, q〉 means nearest-neighbor pairs of the
mass points, μ, ν = x, y are directions in a two-dimensional
space, and the explicit form of γ

μν

�R+�rp− �R′−�rq
is γ

μν

�R+�rp− �R′−�rq
=

tα{(1 − ηα )δμν + ηαX̂ μX̂ ν}. Here, �X = �R + �rp − �R′ − �rq, and
X̂ μ = X μ/| �X |. The parameter ηα is defined as

ηα = lα
Rα

, (4)

which denotes the strength of tensions of springs. Notice that
the index α in γ

μν

�R+�rp− �R′−�rq
is naturally determined once we

specify the nearest-neighbor pair 〈 �R, p; �R′, q〉. The first term
in Eq. (3) is the kinetic energy, while the second term is the
potential energy of the springs.

Then, the Euler-Lagrange equation for xμ

�R,p
,

d

dt

(
∂L

∂ ẋμ

�R,p

)
− ∂L

∂xμ

�R,p

= 0, (5)

can be written as a coupled differential equation,

�̈x + D�x = 0, (6)

where �x is the column vector obtained by aligned xμ

�R,p
. The

matrix D,

(D) �R,p,μ; �R′,q,ν =
⎛
⎝ ∑

〈 �R,p; �R′′o〉
γ

μν

�R+�rp− �R′′−�ro

⎞
⎠δ �R, �R′δp,q

− γ
μν

�R+�rp− �R′−�rq
, (7)

is a real-space dynamical matrix. Assuming the mass points
oscillate with a frequency ω, we can write xμ

�R,p
= eiωtξ

μ

�R,p
.

Substituting this into Eq. (6), we obtain

−ω2�ξ + D�ξ = 0. (8)

Equation (8) is an eigenvalue equation of the matrix D whose
basis is ξ

μ

�R,p
and eigenvalue is ω2. This equation describes the

motion of masses in a spring-mass model in real space.
Under the periodic boundary condition, the translational

invariance of the system results in the eigenvalue equation in
the momentum space. First, we apply the Fourier transforma-
tion

xμ

�R,p
= 1

N

∑
�k

ei�k· �Ruμ

�k,p
. (9)

Substituting Eq. (9) into Eq. (3), the Lagrangian is written as

L = 1

N

∑
�k

{
1

2

∑
p

u̇μ

�k,p
u̇μ

−�k,p
− 1

2

∑
pq

�μν
pq (�k)uμ

�k,p
uν

−�k,q

}
,

(10a)

with

�μν
pq (�k) =

∑
�R

(D)�0,p,μ; �R,q,νei�k· �R. (10b)

The matrix � is called a momentum-space dynamical
matrix. The dimension of the momentum-space dynam-
ical matrix in this model is six since there are three
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sublattices and two spatial coordinates. Under the basis
(ux

�k,1
, uy

�k,1
, ux

�k,2
, uy

�k,2
, ux

�k,3
, uy

�k,3
)T, the explicit form of �(�k) is

� =

⎛
⎜⎝

D1 −γ12(�k) −γ13(�k)

−γ
†
12(�k) D2 −γ23(�k)

−γ
†
13(�k) −γ

†
23(�k) D3

⎞
⎟⎠, (11a)

with

γ12(�k) = γ12a + e−i(�a1+�a2 )·�kγ12b, (11b)

γ13(�k) = γ13a + e−i�a1·�kγ13b, (11c)

γ23(�k) = γ23a + e−i�a2·�kγ23b (11d)

and

D1 = γ12a + γ13a + γ12b + γ13b, (11e)

D2 = γ12a + γ23a + γ12b + γ23b, (11f)

D3 = γ23a + γ13a + γ23b + γ13b. (11g)

Here, γ12α , γ13α , and γ23α are defined as

γ12α = tα

{
(1 − ηα )

(
1 0
0 1

)
+ ηα

(
1
4

√
3

4√
3

4
3
4

)}
, (11h)

γ13α = tα

{
(1 − ηα )

(
1 0
0 1

)
+ ηα

(
1 0
0 0

)}
, (11i)

γ23α = tα

{
(1 − ηα )

(
1 0
0 1

)
+ ηα

(
1
4 −

√
3

4

−
√

3
4

3
4

)}
. (11j)

The Euler-Lagrange equation for uμ

�k,p
is written as

d

dt

(
∂L

∂ u̇μ

�k,p

)
− ∂L

∂uμ

�k,p

= 0. (12)

This leads to an equation of motion under the periodic bound-
ary condition,

üμ

�k,p
+

∑
q

�μν
pq (�k)uμ

�k,p
= 0. (13)

Writing the time independence of uμ

�k,p
as

uμ

�k,p
= e−iωtφμ

p (�k), (14)

we obtain the Euler-Lagrange equation reduced to the eigen-
value equation

−ω2φμ
p (�k) +

∑
q

�μν
pq (�k)φν

q (�k) = 0. (15)

By solving the eigenvalue equation (15), we obtain the disper-
sion relation, which we will discuss in the next section.

Before closing this section, we address the correspondence
between the spring-mass model and the tight-binding model.
In fact, the spring-mass model is reduced to two copies of the
tight-binding model if we set ηa = 0, ηb = 0, i.e., the tension
is infinitely strong [44], since the off-diagonal parts of the
matrix γi jα vanish [see Eqs. (11h)–(11j)].

III. Z3 BERRY PHASE

A. Z3 Berry phase in momentum space

In this section, we introduce the Z3 Berry phase defined in
momentum space. The key idea originates from the quantized
Berry phase with respect to the local twists of the Hamilto-
nian [19–21,45–54]. Such a Berry phase has been used as a
topological order parameter for various topological phases,
especially in correlated systems such as spin systems [45–53].
The Berry phase is quantized due to symmetries, e.g., time-
reversal symmetry, inversion symmetry, and discrete rota-
tional symmetry. Recently, it was also used to characterize the
HOTI phases [20,21,54].

Here, we show that such a Berry phase can also be defined
in the momentum-space representation for the breathing-
kagome-lattice spring-mass model. Extension of the Z3 Berry
phase in momentum space is important from the viewpoint of
computational costs. Namely, to calculate the quantized Berry
phase with respect to the local twists of the Hamiltonian, one
has to calculate the many-body ground state under the local
twist. On the other hand, the single-particle eigenfunctions
are enough to calculate the Z3 Berry phase in momentum
space; thus, we can save computational costs when dealing
with noninteracting quantum systems and classical systems.

The Z3 Berry phase for the lowest νth bands γ ν is defined
as follows. First, we define the ν × ν Berry connection matrix:

�Aν (�k) = iν†(�k)
∂

∂�k ν (�k), (16)

FIG. 2. (a) The paths in momentum space. The coordinates of �1, �2, and �3 are (0,0), 2π

Ra+Rb
(1, 1√

3
), and 2π

Ra+Rb
(0, 2√

3
), respectively. The

G point is 2π

Ra+Rb
( 1

3 , 1√
3

). The path Li is �i → G → �i+1 (�4 = �1). (b) The triangle area whose vertices are �1, �2, �3. (c) and (d) Schematic
figures for the operations which keep the Hamiltonian invariant. (c) The 120◦ rotation of the triangle area in momentum space. (d) The
translation of the triangle area in momentum space. Combining these two operations, the �i point is transformed to �i+1 with �4 := �1.
Consequently, the path Li is transformed to Li+1 with L4 = L1.
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FIG. 3. Bulk properties of the spring-mass model. (a) The first Brillouin zone of the spring-mass model. The �, K , and M points are located
at (kx, ky ) = (0, 0), 2π

Ra+Rb
( 2

3 , 0), and 2π

Ra+Rb
( 1

2 , 1
2
√

3
), respectively. (b)–(e) The band structure along the line shown in (a) for several parameter

sets (ηα, ta/tb). (b), (c), (d), and (e) show the data for (ηα, ta/tb) = (0, 0.4), (0.1,0.4), (0.1,1), and (0.1,1.5), respectively.

where

ν (�k) = [ �φ1(�k), . . . , �φν (�k)]

=

⎛
⎜⎝

(φ1)1 (φ2)1 · · · (φν )1
...

...
. . .

...
(φ1)6 (φ2)6 · · · (φν )6

⎞
⎟⎠ (17)

is the 6 × ν matrix composed of the eigenvectors of a
momentum-space dynamical matrix in the spring-mass model
on the breathing kagome lattice, represented by �φn(�k). Then,
the Berry phase for the lowest ν bands is expressed as

γ ν (Li ) =
∫

Li

Tr [ �Aν (�k)] · d�k, (18)

where Li (i = 1, 2, 3) is a path in momentum space, Li : �i →
G → �i+1(�4 = �1) [Fig. 2(a)].

In the spring-mass model on a breathing kagome lattice,
the momentum-space dynamical matrix is invariant under the
threefold rotation in momentum space (Fig. 2). We define this
operator as U . The momentum-space dynamical matrix has a
symmetry which is expressed as

U�(ki )U
−1 = �(C3ki ), (19)

with ki ∈ Li and Li being a path in momentum space, Li :
�i → G → �i+1. Here, we have supposed that the momentum
ki is mapped to C3ki ∈ Li+1 by applying C3 rotation. This
relation indicates that the Berry phases γ ν (Li ) computed along
each path take the same value,

γ ν (L1) = γ ν (L2) = γ ν (L3). (20)

In addition, the integral along the path L1 + L2 + L3 is equal
to zero,

3∑
i=1

γ ν (Li ) = 0 mod 2π. (21)

From Eqs. (20) and (21),

γ ν ≡ γ ν (Li ) = 2πk

3
mod 2π, (22)

where k is 0, 1, or 2. The same argument can be applied
to a tight-binding model on a breathing kagome lattice by
replacing the momentum-space dynamical matrix � with the
Hamiltonian H since H preserves threefold rotational symme-
try and translational symmetry. Note that, in the spring-mass
models, the rotation is applied not only to the momentum

and sublattice degrees of freedom but also to directions of the
displacement (μ = x, y).

In fact, the Z3 Berry phase in momentum space is equiv-
alent to the local-twist Berry phase discussed in Ref. [19].
To see this, we consider the Z3 Berry phase in momentum
space, where the upward triangle is a unit cell. In this case,
there is the phase factor from the Bloch wave vector for
hoppings from a site in the upward triangle to a site in
the downward triangle. By replacing the factors e−i�k·�a1 and
e−i�k·�a2 with the twisting parameters eiθ1 and eiθ2 respectively,
we find that the Z3 Berry phase in momentum space is the
same as the local-twist Berry phase for the 1 × 1 unit cell of
the downward triangle. A similar correspondence also holds
for the Su-Schrieffer-Heeger model [55] and the breathing
pyrochlore model.

B. Bulk properties

In this section, we present the properties of this model
under the periodic boundary condition. To be specific, we
investigate the dispersion relation and the bulk topological
invariant. First, we show the band structures obtained by diag-
onalizing the momentum-space dynamical matrix [Figs. 3(b)–
3(e)]. Here, the horizontal axis denotes the high-symmetry
lines in the Brillouin zone, with �, K , and M denoting the
high-symmetry points [Fig. 3(a)].

There are six bands; for ηa = 0, we see three bands, each of
which is doubly degenerate. For ηa �= 0, twofold degeneracy
is lifted because of the coupling between transverse waves and
longitudinal waves [Figs. 3(b) and 3(c)]. Moreover, there are
no flat bands unless ηa = 0. These are the unique characters
of the spring-mass model which are different from the tight-
binding model.

In Fig. 4(a), we show the numerical results for the Z3 Berry
phase with ν = 2. For the numerical calculation, we employ
the method introduced in Ref. [56] to avoid the difficulties

FIG. 4. (a) The Berry phase for the lowest two bands. Schematic
figures for two limits with (b) ta = 0 and (c) tb = 0.
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FIG. 5. Schematic figures for the spring-mass model in a triangle arrangement for (a) ta �= 0, tb �= 0, (b) ta = 0, tb �= 0, and (c) ta �=
0, tb = 0. Black lines represent walls. (d) Eigenfrequencies as a function of ta/tb for ηa = 0.1 with a triangle arrangement. (e) Kinetic-energy
distribution in the real space of the corner states for ta/tb = 0.4. We write the number of small triangles along the edge as L; the total number
of masses is 3L(L + 1)/2.

in the gauge choice. Note that the Z3 Berry phase cannot be
defined for ηa = 1 because the gap between the lowest second
and third bands is closed. To map out the Z3 Berry phase in
the parameter space, we introduce � ∈ [−1, 1], describing the
degrees of breathing. More precisely, � relates ta and tb as

ta = 1 + � (23a)

and

tb = 1 − �. (23b)

For � = 1 (−1), the system is reduced to a set of isolated
triangles of mass points connected by red (blue) springs. We
note that tb = 0 (ta = 0) holds for � = 1 (−1). For � = 0, the
mass points form an isotropic kagome lattice because ta = tb
holds.

We see in Fig. 4(a) that there are three phases where the
Z3 Berry phase takes γ = 0, 2π

3 , and 4π
3 , respectively. Among

them, the phase with γ = 2π
3 is the new phase which does

not have a counterpart in the tight-binding model. In fact, this
phase originates from the interaction between the longitudinal
and transverse waves inherent in the spring-mass model. We
can observe the gap closing between the second and third
bands when the Z3 Berry phase changes [see Figs. 3(c)–3(e)].
In other words, the Z3 Berry phase is the topological invariant,
so its value does not change as long as the band gap is not
closed. This indicates that the system can be adiabatically
deformed to a certain limit that has the same Berry phase.
In the present model, for small ηa, the phase with γ = 4π

3
is connected to the limit of � = −1 (i.e., ta = 0), while the
phase with γ = 0 is connected to the limit of � = 1 (i.e.,
tb = 0). The schematic figures for the former and the latter are
illustrated in Figs. 4(b) and 4(c), respectively. This physical
picture of the adiabatic connection to the decoupled triangles
is essential to understand the bulk-corner correspondence in
this system, as we will explain in the next section.

IV. CORNER STATES UNDER THE FIXED
BOUNDARY CONDITION

In this section, we demonstrate that system hosts corner
states due to topological properties in the bulk. This bulk-
corner correspondence serves as direct evidence of the higher-
order topological phase. Specifically, considering a triangle
arrangement [12] (Fig. 5), we numerically show that the

corner states emerge for γ 2 = 4π/3 while they do not for
γ 2 = 0.

Before going to the numerical results, we consider two
limits, i.e., ta = 0 [Fig. 5(b)] and tb = 0 [Fig. 5(c)], to gain
insight into the boundary states. Note that, in these limits, the
equilibrium condition of Eq. (2) is inevitably broken. Never-
theless, it is helpful to consider these limits, as we explain
below. For ta = 0, tb �= 0 [Fig. 5(b)], there exist three isolated
mass points connected only to the wall at three corners of the
triangle. This configuration supports the eigenmodes localized
at the corners. In contrast to this, there are no isolated mass
points for ta �= 0, tb = 0 [Fig. 5(c)]. From these insights, we
expect that three corner states exist for ta � tb, while they do
not for tb � ta.

Keeping this observation in mind, let us move on to the
numerical results. In Fig. 5(d), we plot the energy spectra as
a function of ta/tb for ηa = 0.1 and L = 20 (see Appendix A
for the result for large ηa). We see the existence of the in-
gap states for a certain region of ta/tb < 1, encircled by a
red ellipse in Fig. 5(d). Note that these corner states have
quasithreefold degeneracy for ηa �= 0. We also note that, even
for ta/tb < 1, the corner states may be energetically buried in
the bulk or edge states; thus, they cannot be seen in the energy
spectra of Fig. 5(d); for the edge state of the present model,
see Appendix B. To avoid this problem, we calculate the IPR
and show the corner states in the bulk or edge continuum
(see Appendix C). Figure 5(e) indicates that the in-gap states
observed above correspond to the corner states. This figure
shows the kinetic-energy distribution

Ē �R,p = 1

4Nc

Nc∑
�=1

(
ω�I�

�R,p

)2
(24)

for these quasidegenerate in-gap states. Here, I�
�R,p

=√
(ξ�,x

�R,p
)2 + (ξ�,y

�R,p
)2 is the amplitude of the displacement of the

mass point ( �R, p) of the mode �. The summation in Eq. (24) is
taken over the Nc-fold (quasi)degenerate states. In Fig. 5(e),
we can clearly see that the kinetic-energy distribution is
localized at the corners, manifesting the existence of the
higher-order topological phase in the present model.

Combining the above results and the fact that the Z3

Berry phase γ 2 takes 4π/3 for ta/tb < 1 (see Fig. 4), we
can confirm that the bulk-corner correspondence holds for our
spring-mass model. This is a direct consequence of the adia-
batic connection argument we presented in Sec. III.
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FIG. 6. (a) Schematic figure for the experimental setup for the
forced vibration. The force f (t ) is added to the mass point of the top
corner of the triangle (encircled by a green circle). (b) ω0 is near a
corner mode, and (c) ω0 is away from a corner mode. In (b) and (c),
the amplitudes A �R,p at t = 1000 are plotted.

In the above we have focused on the case where ηa is
small (ηa = 0.1). We can also observe the bulk-corner corre-
spondence for ηa = 0.9, where the in-gap states are between
the third and the fourth bands (see Appendix A). We also
note that the corner states are also found in a parallelogram
arrangement [14,15], which can also be understood in the
same adiabatic connection argument (see Appendix D).

V. FORCED VIBRATION

In this section, we point out that corner states emerging
from our spring-mass model can be experimentally observed
by analyzing a forced vibration. The forced vibration is caused
by an external force f (t ). The equation of motion with an
external force is

�̈x + D�x = �f (t ), (25)

where ( f ) �R,p,μ(t ) = f μ

�R,p
(t ) is an external force which is added

to the mass at �R + �rp along the μ direction.
Consider the case where the external force is given by

f μ

�R,p
(t ) = Fμ

�R,p
cos(ω0t ); that is, it oscillates in time with the

frequency ω0. We further set Fμ

�R,p
such that it has amplitudes

only at the top corner [Fig. 6(a)]. Then, as a particular solution
of the equation of motion of Eq. (25), ξ ′

i , which governs the
behaviors of the long time scale, we get

ξ ′
i =

⎧⎨
⎩

∑
j Ui j Fj

ω2
i −ω2

0
cos ω0t for ωi �= ω0,∑

j Ui j Fj

2ω0
t sin ω0t for ωi = ω0,

(26)

where U is a matrix obtained by aligning the eigenvectors of
the equation of motion in the absence of f (t ) [i.e., Eq. (8)],
i specifies the eigenmode, j is the abbreviation of the position
of the mass point �R + �rp and the direction of the motion μ,

and ωi is the eigenfrequency of the ith mode. From Eq. (26),
we see the resonance occurs at ωi = ω0. This indicates that for
ω0 close to the eigenfrequency of the corner state, one obtains
the large vibration amplitude only at the corner; in contrast,
when it is close to the eigenfrequency of the bulk state, the
vibration spreads over the bulk. Thus, by looking at the time
evolution of the forced vibration upon changing ω0, one can
determine whether the corner states exist or not.

To demonstrate this, we numerically solve the equation of
motion using the Euler method on a triangle arrangement. In
the Euler method, the time revolution is described as(�x(t + �t )

�̇x(t + �t )

)
=

{(
0̂ 1̂

−D 0̂

)(�x(t )
�̇x(t )

)
+

( �0
�f (t )

)}
�t

+
(�x(t )

�̇x(t )

)
, (27)

where �t is a small time step. D is given in Eq. (25). For
the numerical simulations, we set ηa = 0.9, ta/tb = 0.1, and
�t = 0.0001. It is worth noting that η is close to 1 for realistic
springs. The initial state is set as xμ

�R,p
(0) = 0 and ẋμ

�R,p
(0) = 0;

that is, the system is in equilibrium. The external force in the x
direction is added to the mass point at the top of the corner; we
could not observe the qualitative difference when the external
force is in the y direction. After running a simulation to t =
tmax = 1000, we observe the amplitudes of vibration,

A �R,p =
√[

xx
�R,p

(tmax)
]2 + [

xy
�R,p

(tmax)
]2

. (28)

The results are shown in Figs. 6(b) and 6(c). As expected,
when ω0 is near the frequency of the corner state [57], the
large vibration is seen only near the corner, while the vibration
propagates in the bulk when ω0 is near the frequency of the
bulk state.

The above results suggest that the corner state induced
by the topological properties in the bulk can be experimen-
tally observed; the resonance frequency corresponds to the
frequency of corner states.

VI. SUMMARY

In summary, we have shown that the higher-order topolog-
ical phase is realized in the spring-mass model on a breathing
kagome lattice. We have introduced the Z3 Berry phase in the
Brillouin zone and found that our bulk topological invariant
characterizes the topologically nontrivial phase. Remarkably,
we have found the topologically nontrivial phase with γ =
2π
3 , in addition to the phase with γ = 4π

3 that corresponds to
the two copies of the topological phase in the tight-binding
model. This is due to the coupling between longitudinal and
transverse modes inherent in the spring-mass model. We have
also found that the characteristic corner states appear under
the fixed boundary condition in both the triangle and parallel-
ogram arrangements. In addition, we have proposed that the
corner states can be detected experimentally through a forced
vibration. By the numerical simulation, we have found that
the corner-selective vibration is observed when the external
frequency is close to that of the corner modes.
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FIG. 7. (a) The bands structure for ηa = 0.9, ta/tb = 0.1. (b) The
energy spectrum for ηa = 0.9. The corner modes are between the
third and fourth bands. (c) The Z3 Berry phase for the lowest fifth
bands.
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APPENDIX A: Z3 BERRY PHASE FOR THE
LOWEST FIVE BANDS

In this appendix, we show the result for γ 5, i.e., the Berry
phase for the lowest five bands. The reason for calculating γ 5

is that there exist corner states that appear between the third
and fourth bands for ηa ∼ 1, contrary to the case of ηa ∼ 0. To
be concrete, we show the bulk band structure and the energy
spectra in a triangle arrangement at ηa = 0.9 in Figs. 7(a)
and 7(b), respectively, and the Z3 Berry phase for the lowest
five bands.

We find that the band gap exists between the third and
fourth bands and between the fifth and sixth bands, in contrast
to the case of ηa ∼ 0. Correspondingly, the corner states
appear for a certain region for ta < tb, while there are no

FIG. 8. The dispersion relations in the cylinder for (a) ηa = 0,
ta/tb = 0.4 and (b) ηa = 0.1, ta/tb = 0.4. There exist edge modes
between the bulk continua (encircled by red ellipses).

FIG. 9. (a) and (b) Color map of IPR in the figure of eigenfre-
quencies. (a) and (b) show the data for ηa = 0.1 and 0.9, respectively.
Kinetic-energy distribution in the real space of the corner states for
(c) ta/tb = 0.2, ηa = 0.9, ω = 1.3954 and (d) ta/tb = 0.2, ηa = 0.9,
ω = 0.854085.

corner states for ta > tb, which is again inferred from the
adiabatic connection argument.

We plot γ 5 in Fig. 7(c), showing that Z3 is independent
of ηa and the phase translation occurs at � = 0, i.e., ta = tb.
Similar to γ 2 discussed in Sec. III, γ 5 = 4π

3 indicates that the
system is adiabatically connected to the decoupled triangles
with blue springs [Fig. 4(b)], while γ 5 = 0 indicates that the
system is adiabatically connected to the decoupled triangles
with red springs [Fig. 4(c)].
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FIG. 10. Schematic figures for the spring-mass model in a parallelogram arrangement with (a) ta �= 0, tb �= 0, (b) ta �= 0, tb = 0, and
(c) ta = 0, tb �= 0. Black lines represent walls. (d) Eigenfrequencies as a function of ta/tb for ηa = 0.1 with a parallelogram arrangement. (e)
Kinetic-energy distribution in the real space of the corner states for ta/tb = 0.4. The corner mode for γ = 0 arises from the fact that we have
cut the unit cells which make the bulk-edge correspondence ubiquitous.

APPENDIX B: THE CYLINDER OF THE
SPRING-MASS MODEL

In this appendix, we show the dispersion relations on
the cylinder geometry, focusing on the features of the edge
states. Here, we set the number of red springs in the axial
direction as 20, and we write the momentum in the azimuth
direction k||.

The results are shown in Fig. 8. We see that there exist edge
modes between bulk continua, whose real-space distributions
are localized at the edge. Importantly, the edge mode is not
energetically connected to the bulk continuum, meaning that
the lower-dimensional boundary states, i.e., the corner states,
are allowed to exist between the edge modes and the bulk
modes.

APPENDIX C: INVERSE PARTICIPATION RATIO

In this section, we show the numerical result of the IPR to
specify the corner states buried in the bulk or edge continuum.
In the literature, the IPR has been used to study Anderson
localization in disordered systems [58,59], and it was recently
used to specify the corner states in the HOTI [60]. The IPR in
the spring-mass model is defined as

I =
∑

�R

∑
p

{∑
μ

(
ξ

μ

�R,p

)2

}2

, (C1)

where �ξ stands for the normalized eigenvector. For the ex-
tended states, the relation

∑
μ(ξμ

�R,p
)2 � 1/N holds, which

results in I � 1/N . Therefore, the IPR for the extended states
vanishes in the large-system-size limit. In contrast, for the
corner states, the relation

∑
μ(ξμ

�R,p
)2 � δ �R, �Rc

δp,pc holds, which

results in I � 1. Here, ( �Rc, pc) denotes the corner site.

The numerical result is shown in Fig. 9. We see that the
corner modes in the bulk or edge continuum are specified by
the large IPR [Fig. 9(c)].

Additionally, we find the “cornerlike” modes, where the
eigenvector has large amplitudes not right at the corners but at
the sites near the corners [Fig. 9(d)]. Such modes appear for
large η (η = 0.9 in this case); thus, they are characteristic of
the spring-mass model.

APPENDIX D: PARALLELOGRAM ARRANGEMENT
UNDER THE FIXED BOUNDARY CONDITION

In this appendix, we show the results for a parallelogram
arrangement [Fig. 10(a)]. Specifically, we show the corner
modes in the parallelogram arrangement and their bulk-corner
correspondence.

In this arrangement, we write the number of small triangles
along the edge as L. Then, the number of total masses is 3L2 +
4L + 1.

In Fig. 10(d), we plot the energy spectra as a function
of ta/tb for L = 20 and ηa = 0.1. As expected, we see the
in-gap states for both ta < tb and ta > tb. Looking at the spatial
distribution of the kinetic energy of the in-gap states for
ta < tb, we find that it is localized at the left-bottom corner
[Fig. 10(e)].

The bulk-corner correspondence in the system is explained
as follows. As we saw in Sec. III, γ 2 = 4π/3 indicates that
the band structure is adiabatically connected to that for ta = 0
[Fig. 4(b)]; similarly, γ 2 = 0 indicates that the band structure
is adiabatically connected to that for tb = 0 [Fig. 4(c)]. This
means that the former case has the corner state at the top right
corner [Fig. 10(b)] and the latter case has the corner state at
the bottom left corner [Fig. 10(c)].
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