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Topological nonmagnetic impurity states in topological Kondo insulators
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We examine the presence of nonmagnetic impurities in a hybridization gap model of a Kondo insulator which
has band inversion. The model has been used to predict that SmB6 is a topological insulator. We show that there
are two types of nonmagnetic impurity states in a Kondo insulator. The type of states can be categorized as deep
impurity states, similar to the impurity states in an ordinary metal, and impurity states which have energies within
the hybridization gap. Unlike the deep impurity states which only form if the impurity potential exceeds a critical
value of the order of the conduction bandwidth, the in-gap impurity states form for exceptionally small values
of the impurity potential comparable to the hybridization gap. This result may explain why Kondo insulators are
found to be exceptionally sensitive to impurities. We show that these in-gap states are caused by band inversion
and have properties similar to those expected for impurities in a topological insulator.
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I. INTRODUCTION

Kondo insulators are semiconductors that have extremely
narrow gaps of the order of 10s–100s of meV which are
thought to be hybridization gaps produced by the mixing
of localized f and itinerant conduction band states [1,2].
The smallness of the gap is generally attributed to a renor-
malization of the hybridization process by strong Coulomb
interactions between the f electrons [3]. It has been predicted
that the cubic material SmB6 is a time-reversal inversion
symmetric topological Kondo insulator [4,5]. There are five
different classifications of three-dimensional (3D) topological
insulators, as shown in Ref. [6]. An insulator with cubic
symmetry falls into the topologically nontrivial (Z2) class if
it is time-reversal invariant and has inversion symmetry, and
if an odd numbers of bands, with different parities, invert
at an odd number of the four time-reversal invariant points
�, R, X , and M of the Brillouin zone. The prediction of
a nontrivial topological character of SmB6 has motivated
extensive investigation of the properties of SmB6 and is
consistent with the long-known finding [7–9] that that the
resistivity shows thermally activated behavior which plateaus
and saturates at temperatures below 4 K. The plateauing of
the resistivity is consistent with the existence of surface states
[10–13]. Transport measurements, using a Corbino geometry
[14], have separated out the bulk resistivity from the surface
contribution [15]. The bulk component of the resistivity is
thermally activated and increases by ten orders of magnitude
[15], indicating that the bulk is an exceptionally good insulator
and that the surface is metallic. Surface states have also been
observed in ARPES [16–18] and tunneling spectroscopies
[19–24], which provides further evidence that is consistent
with SmB6 being topological. However, despite a number of
experimental efforts by various groups, no direct evidence has
been obtained which conclusively proves that SmB6 has a
nontrivial gauge topological.

The properties of SmB6 are not well understood, prob-
ably partially due to the strong electronic correlations

[19,21,25–29] and probably due to the presence of impuri-
ties [30–35]. For example, the Fermi velocities of the sur-
face states that were inferred from different measurement
techniques [16,36,37] differ by three orders of magnitude.
Magnetotransport measurements show a puzzling hysteretic
behavior [38]. The material shows a linear T term in the
specific heat which has a coefficient that varies between 2
and 25 mJ/mol K−2, depending upon the sample preparation
[32–35]. Doping with 5% of magnetic impurities can lead
to an order of magnitude increase in the heat capacity [39].
Likewise, large linear T terms in the thermal conductivity
have been reported in some samples [40,41], but are absent
in other well-characterized samples [42,43]. Despite the very
high resistance of the bulk, optical conductivity in the THz
frequency range measured in transmission mode [44] shows
an extremely large conductivity indicating the existence of
localized in-gap states, but was unable to determine whether
the AC conductivity was due to surface or bulk states. It has
been shown theoretically that f vacancies in Kondo insula-
tors produce in-gap bound states [45] and that only a small
concentration of about 4% of vacancies is sufficient to close
the hybridization gap [46]. Raman scattering experiments [47]
show that as few as 1% vacancies may close the gap. There are
reports of unusual high-frequency quantum oscillations found
in some samples that have been claimed to have their origin in
the bulk [40]. These results have not been reproduced by other
groups [37,48,49], and it has been suggested [50] that the
oscillations may have an extrinsic origin. This suggestion that
the unusual oscillations have an extrinsic origin is consistent
with the large values of the linear-T coefficient in the specific
heat and thermal conductivity that were reported along with
the oscillations [40,41]. The question has arisen whether the
in-gap states are intrinsic or extrinsic.

Here we shall consider the effects of nonmagnetic impu-
rities in Kondo insulators and show that they can support
two types of nonmagnetic impurity states, and that the in-
gap states may be topologically nontrivial. The other types
of impurity states are topologically trivial. Our calculations
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are restricted to nonmagnetic impurities, though experimental
suggests that magnetic impurities [39,51] may lead to a novel
type of Kondo effect. In our calculations, when a f vacancy
is created, the on-site f level energy is removed to higher
energies and no longer participates in a coherent hybridization
process. Since the categorization of SmB6 as having nontrivial
topology depends on the relative energies of the E f level and
the three time-reversal invariant X points in the conduction
band [4], a shift of E f in a finite volume of space may result
in a change of topology and the formation of topologically
protected surface states.

A rationalization of our finding is given by consideration of
an isolated vacancy as being adiabatically connected to a void
in a topological insulator. As shown in Appendix A, a void in
a topological insulator can be modeled by the Dirac equation
with a spatially dependent mass [52–54] which changes sign.
Changing the sign of the mass in the Dirac equation produces
a change in parity of the eigenfunctions and results in a change
in the winding number. Voids with sufficiently large ratios
of the magnitudes of the masses and sufficiently large radii
have their own surface states that have topological characters
similar to those of topological surface states on the exterior
of the crystal. The surface states of a spherical void are
characterized by their total angular momentum ( j, jz ) and
the parity eigenvalue of the upper components of the Dirac
equation. The void surface states are in-gap surface states and
have only half the degrees of freedom of the bulk states. This
is analogous to the reduction of the degrees of freedom in
the bulk of a three-dimensional bulk topological insulator that
occurs at a planar surface, which leads to spin-momentum
locking. Also shown in Appendix A, for a thin film of a
topological insulator, tunneling between the front surface
and the back surface can produce an exponentially small
gap in the surface state dispersion relation [55,56] and can
destroy spin-momentum locking. We argue that an impurity
can be modeled by adiabatically continuing the void radii to
arbitrarily small values, but also continuing the mass ratios
to arbitrarily large values which suppresses tunneling across
the vacancy. Hence, in this limit, the in-gap impurity states
produced by a vacancy in a TI are expected to be similar to
the surface states on the exterior of a topological insulator. In
fact, as has been previously shown by Sollie and Schlottmann
[45], an isolated vacancy does produce an in-gap state of f
character, but instead of being localized at the vacancy site is
spread equally over the surrounding nearest neighbor shell of
atoms. Here we reexamine the model in more detail and show
that the formation of an in-gap impurity state involves the
same ingredients, namely band inversion by hybridization and
strong spin-orbit coupling, that are required for the creation
of the topologically nontrivial surface states in a topological
Kondo insulator [4].

II. THE HAMILTONIAN

We shall consider the effects of nonmagnetic impurities
within a quasiparticle picture. Using a slave boson mean-field
theory [3], one finds renormalized bands with an effective
hybridization matrix element V → V

√
1 − n f that mixes the

bands with different orbital characters, an effective f level en-
ergy E f + λ which is shifted towards the chemical potential,

and a renormalized indirect hybridization gap V 2/W (1 − n f )
in which n f is the f occupancy. For SmB6, the indirect hy-
bridization gap is estimated to be of the order of 20 meV. The
renormalization of the quasiparticle bands is accompanied
by a reduction in the f quasiparticle weight, as has also
been found in other models of strongly correlated topological
insulators using DMFT [57]. Furthermore, an investigation
using an inhomogeneous version of the slave boson method
that models a surface layer of a Kondo insulator by setting
the slave boson amplitude to zero [58], finds that at T = 0 the
hybridization on the layer next to the surface is only reduced
by about 30%. The authors of Ref. [58] posit that the the in-
tervention of magnetism or other instabilities may prevent the
establishment of the Kondo effect at T = 0. Similar calcula-
tions presented in Appendix B are in complete accord with the
findings of Alexandrov et al. [58] since they indicate that the
T = 0 Fermi liquid and topological characters of the material
are preserved in the presence of Coulomb correlations, in the
absence of intervening phase transitions.

The quasiparticle picture maps onto the noninteracting
Hamiltonian introduced by Sollie and Schlottmann [45],

Ĥ = Ĥ0 + ĤI , (1)

where Ĥ0 describes a homogeneous electronic system de-
scribed by the Anderson lattice model

Ĥ0 =
∑
k,α

(ε(k)d†
k,α

dk,α + E f ,α f †
k,α

fk,α )

+
∑
k,α

( V (k) f †
k,α

dk,α + V ∗(k)d†
k,α

fk,α ), (2)

where the degeneracy index α takes on Dα values. The term
ĤI describes the potential due to an impurity nucleus located
at the origin R = 0,

ĤI = 1

N

∑
k,k′,α

�U f †
k,α

fk′,α, (3)

in which N is the number of lattice sites. The energy ε(k)
is the energy eigenvalue for a conduction band Bloch state
of wave vector k. The unhybridized conduction band density
of states per site ρ0,d (ω) has a width denoted by 2W . The
energy E f ,α is the binding energy of the f orbital labeled by
α and V (k) is the strength of the bulk hybridization energy.
The bulk hybridization strength V (k) is an odd function of
k, since we assume that the f and conduction bands have
opposite parities. In general, the hybridization has a form
V (k) = d (k) · σ [4] and, so, is only expected to vanish at
isolated points. The density of states of the pure system is
expected to exhibit an indirect hybridization gap of order
|V |2/W . The energy �U is the strength of the potential of
the impurity on the f site. As will be shown later, �U is to be
identified with the differences of binding energy of the f state
on the impurity and the host f orbital.

A. The f -electron Green’s functions

The time-dependent single-electron f f Green’s function is
defined as

G f f
k,α;k′,α′ (t ) = − i

h̄
〈T̂ fk,α (t ) f †

k′,α′ (0)〉, (4)
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where T̂ is Wick’s time-ordering operator. The equations of
motion are evaluated from

ih̄
∂

∂t
G f f

k,α;k′,α′ (t ) = δ(t ) δk,k′ δα,α′

− i

h̄
〈T̂ [ fk,α (t ), Ĥ (t )] f †

k′,α′ (0)〉, (5)

where the commutators can be evaluated in term of the df
Green’s function:

Gdf
k,α;k′,α′ (t ) = − i

h̄
〈T̂ dk,α (t ) f †

k′,α′ (0)〉, (6)

which satisfies a similar equation of motion. The Fourier
transform of the f f -electron Green’s function is defined as

G f f
k,α;k′,α′ (ω) =

∫ ∞

−∞
dt exp[iωt]G f f

k,α;k′,α′ (t ). (7)

The poles of the Fourier transformed Green’s functions repre-
sent the excitation energies of the system. The Fourier trans-
formed Green’s equations of motion form a closed algebraic
set of equations of motion that consist of

(ω − E f ,α )G f f
k,α;k′,α′ (ω) = δk,k′δα,α′ + V (k)Gdf

k,α;k′,α′ (ω)

+ 1

N

∑
k′′

�U G f f
k′′,α;k′,α′ (ω) (8)

and

(ω − ε(k))Gdf
k,α;k′,α′ (ω) = V ∗(k)G f f

k,α;k′,α′ (ω). (9)

The above equations can be combined to yield(
ω − E f ,α − | V (k)|2

ω − ε(k)

)
G f f

k,α;k′,α′ (ω)

= δk,k′δα,α′ + 1

N

∑
k′′

�UG f f
k′′,α;k′,α′ (ω). (10)

On defining the f f Green’s function for the solid in the
absence of the impurity, via

G f ,0
k,α

(ω) = [ω − ε(k)]

(ω − E f ,α )[ω − ε(k)] − |V (k)|2 , (11)

one can solve for the f f Green’s function in terms of the T
matrix

G f f
k,α;k′,α (ω) = G f ,0

k,α
(ω)δk,k′ + G f ,0

k,α
(ω)Tα (ω)G f ,0

k′,α (ω), (12)

where the T matrix is calculated as

Tα (ω) = 1

N

�U

1 − �U 1
N

∑
k′′ G f ,0

k′′,α (ω)
. (13)

B. The d-electron Green’s functions

The time-dependent single-electron dd Green’s function is
defined as

Gdd
k,α;k′,α′ (t ) = − i

h̄
〈T̂ dk,α (t )d†

k′,α′ (0)〉. (14)

Likewise, the f d Green’s function is defined as

G f d
k,α;k′,α′ (t ) = − i

h̄
〈T̂ fk,α (t )d†

k′,α′ (0)〉. (15)

The Fourier transformed dd-electron and f d Green’s func-
tions satisfy the coupled equations of motion

[ω − ε(k)]Gdd
k,α;k′,α′ (ω) = δk,k′δα,α′ + V ∗(k)G f d

k,α;k′,α′ (ω),

(ω − E f ,α )G f d
k,α;k′,α′ (ω) = V (k)Gdd

k,α;k′,α′ (ω)

+ 1

N

∑
k′′

�UG f d
k′′,α;k′,α′ (ω). (16)

On defining the unperturbed dd-electron Green’s function by

Gdd,0
k,α

(ω) = (ω − E f ,α )

(ω − E f ,α )[ω − ε(k)] − |V (k)|2 (17)

and the hybrid Green’s function

G f d,0
k,α

(ω) = V (k)

(ω − E f ,α )[ω − ε(k)] − |V (k)|2 (18)

one finds that the dd-electron Green’s function can be ex-
pressed in terms of the T matrix as

Gdd
k,α;k′,α (ω) = δk,k′Gdd,0

k,α
(ω) + G f d,0

k,α
(ω)∗Tα (ω)G f d,0

k′,α (ω).

(19)

In the absence of the impurity potential �U and with E f =
0, the model exhibits particle-hole symmetry. As will be
seen below, this symmetry is broken for finite �U but the
symmetry in the low-energy spectrum is restored for large
|�U |.
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V/W=1/4
Ef/W=1/5

FIG. 1. The unperturbed f , ρ0, f (ω) (blue), and d , ρ0,d (ω) (red),
hybridized density of states as a function of energy. The f -binding
energy is Ef ,α = W/5 and hybridization matrix elements V = W/4.
These values are not representative of SmB6 but were chosen simply
for clarity of illustration.
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III. THE DENSITY OF STATES

The total density of states ρT (ω) can be expressed in terms
of the trace of the Green’s functions

ρT (ω) = − lim
η→0

1

π

∑
k,α

Imm
(
G f f

k,α;k′,α (ω + iη)

+ Gdd
k,α;k,α (ω + iη)

)
, (20)

where η → 0+. The density of states can be separated into
the term ρ0

T (ω) which represents the continuous density of
states of states of the homogeneous system and �ρT (ω) which
represents the change in the density of states due to the
presence of the impurity potential at the origin:

ρT (ω) = ρ0
T (ω) + �ρT (ω). (21)

The total density of states for the homogeneous system ρ0
T (ω)

can be expressed as

ρ0
T (ω) = N

∑
α

[
1 + |V |2

(ω − E f ,α )2

]
ρ0,d

(
ω − |V |2

(ω − E f ,α )

)
,

(22)

where ρ0(ω) is the bulk conduction band density of states,
per site, in the absence of hybridization. This density of
states has the form of two hybridized bands, separated by a
hybridization gap as is seen in Fig. 1. The change in the total
density of states caused by the presence of the impurity is
given by

�ρT (ω) = 1

π

∑
α

Im m

( �U ∂
∂ω

1
N

∑
k′ G f ,0

k′,α (ω + iη)

1 − �U 1
N

∑
k′′ G f ,0

k′′,α (ω + iη)

)

= − 1

π

∑
α

∂

∂ω
Im m ln Tα (ω + iη)

= − 1

π

∑
α

∂δα (ω)

∂ω
, (23)

where δ(ω) is the phase shift of the T matrix

Tα (ω) = |Tα (ω)| exp[iδα (ω)]. (24)

This result is in accordance with Friedel’s theorem [59]. The
change in the density of states is shown in Fig. 2. The ω

integral over �ρT (ω) is zero since the total number of states
in Hilbert space is conserved. The phase shift jumps by π at
the position of the bound state, indicating that the impurity
state has a total spectral weight of unity.

A. Bound state formation

In the limit of zero hybridization, the unperturbed f -electron Green’s function reduces to

G f ,0
k,α

(ω) = 1

ω + iη − E f ,α
. (25)

Hence, the expression for �ρT (ω) simplifies to

lim
V →0

�ρT (ω) = − 1

π
lim
η→0

∑
α

Im m

[
�U

(ω + iη − E f ,α − �U )(ω + iη − E f ,α )

]

= lim
η→0

∑
α

1

π

η

(ω − E f ,α − �U )2 + η2
− lim

η→0

∑
α

1

π

η

(ω − E f ,α )2 + η2
. (26)

This result corresponds to the production of a series of delta functions with weights plus or minus unity located at the energies

ω = E f ,α + �U,

ω = E f ,α. (27)

The first corresponds to impurity bound states and the second to the removal of the localized f levels at the impurity site.
The total number of states is preserved, in accordance with the conservation of the dimensionality of Hilbert space. The
above analysis identifies �U with the difference of the f -binding energies of the f state of the impurity and the host f
state.

The presence of hybridization drastically changes the above result. The hybridization introduces band inversion in the total
density of states and produces an indirect hybridization gap. In general, the change in the total density of states caused by the
impurity �ρT (ω) can be written as

�ρT (ω) = 1

π

∑
α

⎡
⎣ �U

N

∑
k

∂
∂ω

Im mG f ,0
k,α

(ω)
[
1 − �U

N

∑
k′ Re eG f ,0

k′,α (ω)
]

[1 − �U
N

∑
k′′ Re eG f ,0

k′′,α (ω)]2 + [
�U
N

∑
k′′ Im mG f ,0

k′′,α (ω)
]2

⎤
⎦

+ 1

π

∑
α

⎡
⎣ �U

N

∑
k

∂
∂ω

Re eG f ,0
k,α

(ω)
[

�U
N

∑
k′ Im mG f ,0

k′,α (ω)
]

[1 − �U
N

∑
k′′ Re eG f ,0

k′′,α (ω)]2 + [
�U
N

∑
k′′ Im mG f ,0

k′′,α (ω)
]2

⎤
⎦. (28)
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FIG. 2. The change in the total density of states �ρT (ω) due to
the presence of the impurity potential. The change in the density of
states is shown for the same choice of parameters used in Fig. 1.
The value of �U was chosen as −W/2. It is seen that impurity
potential removed spectral weight from the edges of the hybridiza-
tion gap and formed an in-gap impurity state of weight unity [as
is described by Eq. (34)]. The ω-integrated total spectral weight
(2N

∑
α Dα ) is conserved. The in-gap state has the form of a delta

function. Although �U is not sufficiently strong to produce a bound
state below the lower hybridized band, it is seen that the impurity
potential has moved spectral weight of the lower hybridized band to
lower energies, thereby forming a virtual bound state with a Fano
antiresonance.

The above expression for the density of states involves the real
and imaginary parts of the unperturbed f f -electron Green’s
function

1

N

∑
k

Re eG f ,0
k,α

(ω) = 1

ω − E f ,α
+ |V |2

(ω − E f ,α )2

×
∫ ∞

−∞
dε

ρ0,d (ε)

ω − |V |2
ω−E f ,α

− ε
(29)

and

lim
η→0

1

N

∑
k

Im mG f ,0
k,α

(ω + iη) = − |V |2
(ω − E f ,α )2

πρ0,d

×
(

ω − |V |2
(ω − E f ,α )

)
(30)

and their derivatives. The unhybridized d-electron density of
states ρ0,d (ε) is nonzero in the energy width W > ε > −W .
However, the nonmonotonic variation of the argument ε =
ω − |V |2

ω−E f ,α
with ω also forces the imaginary part, shown in

Eq. (30), to fall to zero within a hybridization gap of full width

� = 2
|V |2
W

(31)

located around E f ,α . The real and imaginary parts of the
unperturbed f f Green’s function are sketched in Fig. 3. One

-20

-15

-10

-5

0

5

10

-2 -1 0 1 2

W
/N

 
k

G
k(

)

/W

Re
Im
W/ U

V/W=1/2
Ef/W=1/5

FIG. 3. A plot of the real (blue) and imaginary part (red) of the k-
averaged homogeneous f -electron Green’s function Gf ,0

k (ω), in units
of the inverse d-bandwidth W −1. The values of Ef /W and V/W were
chosen, respectively, as 1/5 and 1/2. Bound states occur at energies
where ( 1

�U ) shown by the horizontal dashed black line intersects with
the blue line whenever the imaginary part (shown in red) is zero.

sees that the imaginary part (shown in red) has a continuous
spectrum which becomes an infinitesimal constant outside the
f bandwidth and within the hybridization gap. Bound states
may be formed in these energy windows.

Within the hybridization gap at ω = E f ,α ,

1

N

∑
k

Im mG f ,0
k,α

(ω + iη) ∼ − η

N

∑
k

|V |2 + [E f ,α − ε(k)]2

|V |4 ,

(32)

so the imaginary parts of the unperturbed f f Green’s func-
tions are infinitesimal and their derivatives are zero. One may
reach this same conclusion by means of an alternate argument.
Note that the imaginary part of the f f Green’s function can
be generated by the replacement ω → ω + iη in the purely
real part of the Green’s function f (ω), which is analytic and
smoothly varying within the hybridization gap. To first order
in η, one may Taylor expand

f (ω + iη) = f (ω) + iη
∂ f (ω)

∂ω
+ · · · . (33)

As seen in Fig. 3, the function is approximately linear, there-
fore, one expects that the derivative of f (ω) will not only
be infinitesimal but also approximately constant. Thus, the
derivative of the imaginary part of the f f Green’s function is
expected to be negligibly small. Both arguments imply that,
for the energies for which the host’s hybridized density of
states is zero, the impurity contribution to the density of states
is given solely by the second term of Eq. (28) which reduces
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to

�ρT (ω) = −�U

N

∑
k,α

∂

∂ω
Re eG f ,0

k,α
(ω)δ

×
⎛
⎝1 − �U

N

∑
k′′

Re eG f ,0
k′′,α (ω)

⎞
⎠. (34)

Likewise, for ω equal to E f ,α , one finds that

1

N

∑
k

Re eG f ,0
k,α

(ω + iη) ∼ −ω − ∫
dερ0,d (ε)ε

|V |2 , (35)

where the contributions from the simple poles at ω = E f ,α

have canceled. Therefore, due to the small magnitude of the
hybridization gap and the asymmetry in the electron density
of states, the real part of the f f Green’s function is rapidly
varying within the hybridization gap. Its slope at E f ,α is
approximately given by

− 1

N

∑
k

∂

∂ω
Re eG f ,0

k,α
(ω)

∣∣∣∣
ω=E f ,α

∼ 1

|V |2 +E2
f ,α+∫

dερ0,d (ε)ε2

|V |4 .

(36)

As a result, the real part of the k-averaged unperturbed f f
Green’s function dips to a very large negative value below the
upper edge of the hybridization gap and rises to a very large
positive value just above the lower edge of the hybridization
gap (as depicted in Fig. 3). Hence, even exceptionally small
positive or negative values of �U ( |�U | 	 |V |2

E f
) are suffi-

cient to produce a solution of the equation

1

�U
= 1

N

∑
k

Re eG f ,0
k,α

(ω), (37)

thereby producing zeroes in the arguments of delta functions
of Eq. (34). The magnitude of the critical value of �U can be
much smaller than the hybridization gap, which for SmB6 is of
the order of 10–20 meV. Due to band inversion, positive values
of �U slightly greater than a critical value produce in-gap
bound states with energies just above the top of the hybridized
valence band, whereas negative values of �U produce in-gap
bound states just below the top of the hybridized conduction
band. Since spectral weight is conserved, the spectral weight
of the in-gap bound state is primarily removed from the closest
edge of the hybridized band structure. For larger magnitudes
of �U , the in-gap bound states shift away from the edges of
the gap and the spectral weight is shifted to the bound state
from both the upper and lower edges of the hybridization gap
in almost equal proportions, as can be seen in Fig. 2.

In addition to the bound states within the hybridization gap,
sufficiently large values of �U may also produce bound states
either above or below the topmost or lowermost edge of the
hybridized bands. The criterion for the production of a deep-
energy bound state is approximately given by

|�U | > W. (38)

The critical value of �U for the second type of states is ex-
pected to be of the order of eV , in contrast to the small critical
value required to produce in-gap bound states. The spectral

0
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(
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FIG. 4. The energy dependence of the local f -density of states
on the impurity site ρ

f
R=0(ω) for three values of �U , �U = −1.5W

(red), �U = −1.0W (green), and �U = −0.5W (blue). The values
of Ef and V are the same as in Fig. 2. For all values of �U , there is a
bound state within the hybridization gap. The delta function has been
given a small width to make it visible. It is seen that the intensity of
the in-gap bound state is very small and decreases as �U −2 when
�U increases. For �U = −1.5W , a bound state has split off from
the bottom of the band and has removed almost all of the spectral
weight from the continuous spectra. For �U = −0.5W , an external
bound state has not formed, but the on-site impurity potential has
shifted spectral weight towards the bottom of the f band producing
a virtual bound state.

weight associated with the formation of the bound states is
removed from the continuous portion of the spectrum, and
can be expressed in terms of the phase shifts through Levin-
son’s theorem [60]. Positive values of �U that are greater
than the critical value produce bound states with energies
above the top of the conduction band, whereas negative values
produce bound states with energies below the bottom of the
valence band (as shown in Fig. 4).

B. The local density of states

The number of f electrons at the site R can be expressed as

〈 f †
R,α fR,α〉 = 1

N

∑
k,k′

exp[i(k − k′) · R]〈 f †
k,α

fk′,α〉. (39)

From which one finds that the f -density of states at site R is
given by the η → 0 limit

ρ
f
R (ω) = − 1

π

1

N

∑
k,k′,α

exp[i(k − k′) · R]Im mG f f
k,α;k′,α (ω + iη).

(40)
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The d-density of states at site R is given by the analogous limit

ρd
R (ω) = − 1

π

1

N

∑
k,k′,α

exp[i(k − k′) · R]Im mGdd
k,α;k′,α (ω + iη).

(41)

On using the expressions for the f f and dd Green’s functions,
one finds

ρ
f
R (ω) = − 1

π
Im m

∑
α

[
1

N

∑
k,α

G f ,0
k,α

(ω)

+ 1

N

∑
k

exp[ik · R]G f ,0
k,α

(ω)Tα (ω)

× 1

N

∑
k′

exp[−ik′ · R]G f ,0
k′,α (ω)

]
(42)

and

ρd
R (ω) = − 1

π
Im m

∑
α

[
1

N

∑
k,α

Gd,0
k,α

(ω)

+ 1

N

∑
k

exp[ik · R]G f d,0
k,α

(ω)∗Tα (ω)

× 1

N

∑
k′

exp[−ik′ · R ]G f d,0
k′,α (ω)

]
. (43)

1. The local f -density of states

The expression for the f -density of states at the impu-
rity site R = 0 can be simplified, since the phase factors
in the term proportional to the T matrix reduce to unity.
On using the expression for T matrix, and putting the first and
second term over the denominator of the T matrix, one finds
that the terms in the numerator proportional to �U cancel.
Due to the cancellation, the f -density of states at the impurity
site ρ

f
R=0(ω) reduces to

ρ
f
R=0(ω) = − 1

π

∑
α

Im m

⎛
⎝ 1

N

∑
k G f ,0

k,α
(ω)

1 − �U 1
N

∑
k′′ G f ,0

k′′,α (ω)

⎞
⎠

= − 1

π

∑
α

1
N

∑
k Im mG f ,0

k,α
(ω)[

1 − �U
N

∑
k′′ Re eG f ,0

k′′,α (ω)
]2 + [

�U
N

∑
k′′ Im mG f ,0

k′′,α (ω)
]2 . (44)

Hence, within the hybridization gap, the f -density of states at

the impurity site can be simplified as

ρ
f
R=0(ω) =

∑
α

1

�U
δ

⎛
⎝1 − �U

N

∑
k′′

Re eG f ,0
k′′,α (ω)

⎞
⎠, (45)

which has an explicit factor of �U −1. Therefore, the in-
gap bound state has a negligibly small ω-integrated spectral
weight on the impurity site which is given by

⎡
⎣−�U 2 ∂

∂ω

1

N

∑
k′′

Re eG f ,0
k′′,α (ω)

⎤
⎦

−1

∼ |V |4
W 2�U 2

. (46)

The small weight is due to the factor of �U −1 originating
from the cancellation of the phase factors and also a factor
involving the derivative that quantifies the wave function or
quasiparticle renormalization. Hence, in the limit �U → ∞,
the amplitude of the bound state at the impurity site vanishes,
in accord with the findings of Sollie and Schlottmann. The
f -density of states at the impurity site is shown in Fig. 4
for negative values of �U . In addition to the in-gap bound
state, spectral weight from the continuum is seen to be shifted
to lower energies. For �U with magnitude smaller than W ,

a virtual bound state [61–63] is seen to form at ω ∼ E f +
�U with a width given by π V 2ρ0,d (ω) which, as |�U | is
increased, moves to lower energies, sharpens up, and then
splits off the bottom of the valence band forming a deep
energy bound state.

The f -density of states on the nearest neighbor site R =
(1, 0, 0) is shown in Fig. 5. As the energy of the bound
state approaches E f , the spectral weight increases towards a
maximum value estimated as

W 2

36

V 2 + E2
f + W 2

6

. (47)

Hence, in the wide-band limit, 1
6 of the in-gap bound state

spectral weight is of f character which is equally distributed
on the shell of nearest neighboring atoms, in accord with
the calculations of Sollie and Schlottmann in the particle-
hole symmetric case where E f = 0 and �U → ∞. It is seen
that the spectral weight in the continuous portion of the
R = (1, 0, 0) spectrum is larger than for R = 0. Furthermore,
as seen in Fig. 6, there is little change in ρ

f
(1,0,0)(ω) at the

bottom of the valence band, even when the deep energy
bound state forms. This indicates that both the virtual bound
state and the deep-energy bound states are well localized on
the scale of a lattice spacing. For R = (2, 0, 0), the f spec-
trum is almost indistinguishable from the bulk f -density of
states.
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2. The local d-density of states

The d-density of states at the site of the impurity R = 0 is given by the expression

ρd
R=0(ω) = − 1

π

∑
α

Im m

⎛
⎝

(
1 − �U

ω−E f ,α

)
1
N

∑
k Gd,0

k,α
(ω)

1 − �U 1
N

∑
k′′ G f ,0

k′′,α (ω)

⎞
⎠

= − 1

π

∑
α

Re e
[ (

1 − �U
ω−E f ,α

)
1
N

∑
k Gd,0

k,α
(ω)

]
�U
N

∑
k Im mG f ,0

k,α
(ω)[

1 − �U
N

∑
k′′ Re eG f ,0

k′′,α (ω)
]2 + [

�U
N

∑
k′′ Im mG f ,0

k′′,α (ω)
]2

− 1

π

∑
α

Im m
[(

1 − �U
ω−E f ,α

)
1
N

∑
k Gd,0

k,α
(ω)

][
1 − �U

N

∑
k Re eG f ,0

k,α
(ω)

]
[
1 − �U

N

∑
k′′ Re eG f ,0

k′′,α (ω)
]2 + [

�U
N

∑
k′′ Im mG f ,0

k′′,α (ω)
]2 . (48)

The on-site d spectral weight of the in-gap bound state is
evaluated to be

V 2

V 2 + E2
f + W 2

6

(49)

for moderately small values of �U . The sum rule for the
in-gap state’s spectral weight is saturated by the on-site d

0
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FIG. 5. The local f -density of states on the site R = (1, 0, 0)
neighboring the impurity ρ

f
(1,0,0)(ω) as a function of ω, for three

values of �U , �U = −1.5W (red), �U = −1.0W (green), and
�U = −0.5W (blue). The values of Ef and V are the same as in
Fig. 2. For all values of �U , there is a bound state within the
hybridization gap. The delta function has been given a small width
to make it visible. The intensity of the in-gap bound state on the
nearest neighbor site is seen to decrease as the magnitude of �U is
increased. For �U = −1.5W , a bound state has split off from the
bottom of the valence band, however, there is no visible vestige of
the external bound state on the neighboring site, indicating that it has
a localization length less than the lattice spacing.

and nearest neighbor f weights, in the limit of particle-
hole symmetry E f → 0. As seen in Fig. 7, the continuous
portion of the on-site d spectral density exhibits a strong Fano
antiresonance [64] at ω ∼ E f + �U . The local d-density of
states on the nearest neighbor site R = (1, 0, 0) is shown in
Fig. 8. When compared with the on-site d-density of states, it
is seen that the strength of the antiresonance is diminished on
the nearest neighbor sites. The Fano asymmetry parameter qR

does depend on R and varies rapidly with energy but increases
when the energy of the virtual bound state decreases towards
the bottom of the valence band.

0

2

4

6

-1 -0.5 0 0.5 1

W
f R

(
)

/W

R=(0,0,0)
R=(1,0,0)
R=(1,1,0)
R=(1,1,1)
R=(2,0,0)

FIG. 6. The energy dependence of the local f -density of states
ρ

f
R (ω) at site R from the impurity, for �U = −0.5W . The values of

Ef and V are the same as in Fig. 2. For small �U , the local f -density
of states on the impurity site exhibits a virtual bound state and has
a small amplitude of the in-gap bound state. The f weight of the
in-gap bound state is primarily located on the sites which are nearest
neighbor to the impurity, i.e., R = (1, 0, 0). The delta function has
been given a small width to make it visible. The amplitude of the
in-gap bound decreases with increasing separation from the impurity
site.
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0

2

4

6

-1.5 -1 -0.5 0 0.5 11 .5

W
d R

(
) 

/W

-0.5
-1.0

R=(0,0,0)U/W

FIG. 7. The local d-density of states on the impurity site R =
(0, 0, 0) for �U = −0.5W (blue) and for �U = −1.0W (green) and
the bulk d-density of states where |R| → ∞ (red). The values of Ef

and V are the same as in Fig. 3. There is a bound state on the impurity
site within the hybridization gap. The delta function has been given a
small width to make it visible. The d-density of states on the impurity
site shows a Fano antiresonance near the energy Ef + �U where the
f -density of sates exhibits a virtual bound state.

IV. SUMMARY

As proposed by Fu, Kane, and Mele [65], an insulator
with an odd number of time-reversal invariant (TRI) points
in the Brillouin zone is expected to have a nontrivial topology
if the parities of the occupied states are reversed at an odd
number of TRI points. A continuum of nondegenerate zero-
energy surface states is then expected to form at the inter-
face between topologically trivial and topologically nontrivial
insulators. As illustrated in Appendix A, this expectation is
severely modified if either the topological or nontopological
regions have finite spatial extents, in which case, the interface
states have finite excitation energies due to the discretization
caused by the finite length scale. However, when tunneling
across the finite region is suppressed, the lowest excitation
energy collapses onto zero. For the half-filled Anderson lattice
model, the topological characterization of the insulating state
as trivial or nontrivial depends on band inversion [4] since
the parities of the TRI points km are defined by δ(km) =
sgn[εα (km) − E f ]. If the unperturbed system has a nontrivial
topological character, then a uniform relative shift of E f by
|�U | (<W ) over a finite region could result in the parities
of the occupied states changing. Therefore, an in-gap state
may form at the interface between the two regions. For a
material with electron-hole symmetry, i.e., E f = 0, the in-gap
states are at zero energy, when tunneling across the region
is suppressed by a large |�U |. Thus, even if the region in
which band inversion occurs is restricted to one site, |�U |
may suppress tunneling and lead to low-energy surface states
that may have nontrivial topologically characters.

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 11 .5

W
d R

(
) 

/W

-0.5
-1.0

R=(1,0,0)

U/W

FIG. 8. The energy dependence of the local d-density of states
on the site R = (1, 0, 0) neighboring the impurity for �U = −0.5W
(blue) and for �U = −1.0W (green). The values of Ef and V are
the same as in Fig. 3. The delta function representing the in-gap state
has been given a small width to make it visible. A residual small Fano
antiresonance occurs on the nearest neighbor site around the energy
Ef + �U .

We have shown using the hybridization gap model of a
Kondo insulator that nonmagnetic impurities may produce
two types of bound states. One set of bound states only form
if the impurity potential exceeds a critical value which is
comparable to the bandwidth. These bound states are split
off from the upper (lower) edge of the conduction (valence)
band and are related to the bound states found in topologically
trivial metals [59]. For values of the impurity potential smaller
than the critical value, the states merge with the continuous
portions of the density of states and form broadened virtual
bound states. The other type of bound states form within
the hybridization gap and occur for extremely small values
of the impurity potential which can be significantly smaller
than the hybridization gap when the density of states is
highly asymmetric. This illustrates the extreme sensitivity of
Kondo insulators to imperfections. The in-gap bound states
gap have the form of surface states that extend over shells
neighboring the impurity. In other words, they form metallic
states on the surface surrounding the defect, much the same
way as the surface of topological insulators supports a metallic
surface states which surrounds the insulating bulk. The ex-
istence of the hybridization gap and the in-gap states is due
to the band inversion present in the model. If the features
of the hybridization gap model are adjusted to accommodate
the conditions necessary for the classification as a topological
insulator [4], the in-gap impurity states are also expected to
have nontrivial topological character.
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APPENDIX A

In this Appendix we consider a model of a topological in-
sulator given by the Dirac equation with a spatially dependent
mass [52,53], for two types of geometries. If the mass changes
sign at a surface separating two regions, the system remains
insulating deep with each region but the parities of the solution
in these regions are reversed. Since the Dirac equation only
has one trivial time-reversal invariant point, a switch in the
mass results in a switch of parity which leads to the interface
being classified as one which joins a topological nontrivial and
a topological trivial region.

1. TI thin film

A thin film of a topological insulator with an energy gap of
2mc2 surrounded by a topologically trivial insulator with the
same magnitude of the gap. We assume that the mass depends
on the spatial coordinate z via

m(z) = m (1 − 2�(z + a) + 2�(z − a)). (A1)

The Dirac equation has surface states [55] with a dispersion
relation given by(

E

c

)2

− (h̄k‖)2 + (m1c )2 = (mc)2, (A2)

where k‖ is the component of the momentum parallel to
the surface and the term proportional to m2

1 represents the
negative kinetic energy due to tunneling. The surface states
exponentially decay over a length scale ξ given by

ξ = h̄

m1c
, (A3)

where the decay length is determined by m1 which is given by
the solution of

exp

[
− 4

m1c

h̄
a

]
= 1 −

(
m1

m

)2

. (A4)

Therefore, in the limit a → ∞, one finds that m1 increased
monotonically m1 → m and the dispersion relation for the sur-
face excitations becomes gapless. The monotonic decrease in
the magnitude of the gap with increasing a has been observed
[56] in photoemission experiments on Bi2Se3. In the limit
a → ∞, the simultaneous energy k‖ eigenstates are twofold
degenerate. One choice of basis consists of a pair of surface
states, one localized at the front surface and one localized
around the back surface of the film. The effective Hamil-
tonian for the upper components of the surface state Dirac
spinor reduces to a Rashba spin-orbit coupling Hamiltonian,
therefore, the pair of orthogonal surface states exhibits spin-
momentum locking, in which the spins are aligned parallel
to the surface with directions perpendicular to the in-plane
momenta. However, a linear superposition of the precisely
degenerate states leads to charge fractionalization [52] and a
net normal component of the thin film’s magnetization.

2. Spherical void in a TI

A spherical void in a topological insulator can be described
by the Dirac equation, in which the mass m(r) is dependent on
the radial distance. The four-component Dirac spinor � can
be represented in terms of two two-component spinors

� = 1

r

⎛
⎝ f (r)�

j± 1
2

j, jz

i g(r)�
j∓ 1

2
j, jz

⎞
⎠ (A5)

in which the orbital angular momentum is given by l = j ± 1
2

and where the two-component spinor-spherical harmonics are
given by

�
j+ 1

2
j, jz

= −
√

j + 1 − jz
2 j + 2

Y
j+ 1

2

jz− 1
2

(θ, ϕ)

(
1
0

)

+
√

j + 1 + jz
2 j + 2

Y
j+ 1

2

jz+ 1
2

(θ, ϕ)

(
0
1

)
,

�
j− 1

2
j, jz

=
√

j + jz
2 j

Y
j− 1

2

jz− 1
2

(θ, ϕ)

(
1
0

)
+

√
j − jz

2 j
Y

j− 1
2

jz+ 1
2

(θ, ϕ)

(
0
1

)
.

(A6)

It should be noted that the upper and lower components of
the energy eigenfunctions of the Dirac equation have different
l values and, therefore, have different parities. The spinor
spherical harmonics are related by the identity(

σ · r

r

)
�

j+ 1
2

j, jz
= −�

j− 1
2

j, jz
, (A7)

in which σ is the vector spin operator with components given
by the Pauli matrices. The radial functions f (r) and g(r)
satisfy the set of coupled equations

[E − U (r) − m(r)c2] f − ch̄

(
∂

∂r
− κ

r

)
g = 0,

[E − U (r) + m(r)c2]g + ch̄

(
∂

∂r
+ κ

r

)
f = 0, (A8)

where κ = ±( j + 1
2 ) and U (r) is a spatially varying elec-

trostatic potential. Generally, the energy eigenstates of the
spherically symmetric Dirac equation are classified by the
three quantum numbers ( j, jz, κ ). We shall consider the mass
to have the form

m(r) = M − (M + m)�(r − a), (A9)

such that the system is topologically nontrivial in the region
where r > a and topologically trivial in the region r < a.
The spherical boundary at r = a separates the void from the
topological insulator [66]. The electrostatic potential is chosen
to be nonzero inside the void

U (r) = �U�(a − r). (A10)

Since the mass and the electrostatic potential U (r) are con-
stant in either region, one may define radial quantum numbers
for each region by

(E − �U )2 − M2c4 = h̄2c2k2
<,

E2 − m2c4 = h̄2c2k2
>. (A11)
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The bulk states correspond to positive values of k, but the in-
gap states are found by analytically continuing k to imaginary
values. When expressed in terms of the dimensionless vari-
ables ρ = kr, one finds that the solutions in the two regions
satisfy the Riccatti-Bessel equation. On setting

f (ρ) = A
√

ρZ|κ+ 1
2 |,

g(ρ) = B
√

ρZ|κ− 1
2 |, (A12)

one finds that the solutions are of the form of Bessel functions
of half-integer order. For r > a, normalizability requires that
the allowed solutions are Bessel functions of the first kind,
Z|κ± 1

2 | = J|κ± 1
2 |. The Bessel function recursion relations

Jν−1 + Jν+1 = 2ν

ρ
Jν,

Jν−1 − Jν+1 = 2
∂Jν

∂ρ
(A13)

for ν > 0 can be used to yield the relation between the
amplitudes of the upper and lower components:(

E − �U − Mc2

ch̄k<

)
A< = −sgn(κ ) B<, (A14)

Since we are interested in the in-gap states, the solutions in
the exterior region will be restricted to the Hankel functions
H (1)

|κ± 1
2 | which have an asymptotic variation of

H (1)
|κ+ 1

2 |(ρ) ∼ 1√
ρ

exp[+iρ], (A15)

which are exponentially decaying when k> is analytically
continued to imaginary values. The Bessel function recursion
relations lead to the relation between the amplitudes of the
upper and lower components(

E + mc2

ch̄k>

)
A> = −sgn(κ ) B>. (A16)

Continuity of the spinorial wave function at r = a leads to the
energy eigenvalue equation(

E − �U + Mc2

ch̄k<

)(
j|κ+ 1

2 |− 1
2
(k<a)

j|κ− 1
2 |− 1

2
(k<a)

)

=
(

E − mc2

ch̄k>

)⎛
⎝h(1)

|κ+ 1
2 |− 1

2

(k>a)

h(1)
|κ− 1

2 |− 1
2

(k>a)

⎞
⎠ (A17)

expressed in terms of the spherical Bessel functions. There-
fore, the eigenstates are degenerate with respect to jz, so
the energy can only depend on j and possibly on the parity
(−1)|κ+ 1

2 |− 1
2 . The spherical Bessel functions are defined by

jν (ρ) =
√

π

2ρ
Jν+ 1

2
(ρ),

h(1)
ν (ρ) =

√
π

2ρ
H (1)

ν+ 1
2

(ρ). (A18)

The first few analytic continued spherical Bessel functions are
given in Table I.

TABLE I. The first few spherical Bessel functions continued to
imaginary arguments.

ν jν (ix) h(1)
ν (ix)

0 sinh x
x − e−x

x

1 i( x cosh x−sinh x
x2 ) i e−x

x ( 1+x
x )

2 −( (3+x2 ) sinh x−3x cosh x
x3 ) e−x

x ( 3+3x+x2

x2 )

3 −i( (15x+x3 ) cosh x−(15+6x2 ) sinh x
x4 ) −i e−x

x ( 15+15x+6x2+x3

x3 )

4 ( (105+45x2+x4 ) sinh x−(105x+10x3 ) cosh x
x5 ) − e−x

x ( 105+105x+45x2+10x3+x4

x4 )

The in-gap state eigenvalue equation only has positive
energy solutions for positive values of κ , κ = ( j + 1

2 ), as
expected from the band inversion in a topological insulator.
Hence, the surface states can be uniquely characterized by the
sign of their energies and ( j, jz ). As a result, the surface states
have lost half their degrees of freedom, due to the locking
of the spin with orbital angular momentum. The bound state
energies as a function of the radius a and representative
probability distributions for j = 1

2 are shown in Fig. 9. Note
that the surface states have inverted parity.

APPENDIX B

The slave boson Hamiltonian for an inhomogeneous An-
derson lattice model in the mean-field approximation is ex-
pressed as

ĤMF =
∑
i,σ

(E f ,i + λi ) f †
i,σ fi,σ +

∑
k,σ

εkd†
k,σ

dk,σ +
∑

i

λi b∗
i bi

+ 1√
N

∑
i,k.σ

[eik·RiV (k) f †
i,σ dk,σ bi

+ e−ik·RiV ∗(k)b∗
i d†

k,σ
fi,σ ]. (B1)

The impurity is modeled by a shift of the f binding energy on
site R0 = 0 from its uniform value E f by �U ,

E f ,i = E f + �U δi,0. (B2)

For a paramagnetic phase, the complex slave boson fields bi

satisfies the constraints

b∗
i bi = 1 − Dα

∑
i

〈 f †
i fi〉, (B3)

which projects out multiple occupancy on site Ri and the
Lagrange undetermined parameters λi satisfy the extremal
condition

λib
∗
i + Dα√

N

∑
k

eik·RiV (k)〈 f †
i dk〉 = 0, (B4)

where the factor of Dα accounts for the spin degeneracy. The
impurity induces a deviation of the boson condensate, which
is mainly centered on the impurity ion and almost completely
recovers on the sites nearest to the impurity [58]. Therefore,
we shall write

bi = b + �bδi,0,

λi = λ + �λδi,0. (B5)
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red) of the j = 1

2 positive energy bound state for a = 1 (thick), a = 2
(medium), and a = 4 (fine).

The following analysis has been extended to deviations of the
boson amplitudes which extend to the nearest neighbor sites.

1. Green’s functions

The self-consistency equations can be found by solving the
inhomogeneous mean-field equations of motion for the f - f
and d- f Green’s functions. The momentum-dependent f - f
Green’s function is found as

G f f
k,k′ (ω) = G f f

k (ω) δk,k′ + G f f
k (ω) Tk,k′ (ω)G f f

k′ (ω), (B6)

where G f f
k (ω) is the homogeneous Green’s function given by

G f f
k (ω) = (h̄ω − εk )

(h̄ω − E f − λ)(h̄ω − εk ) − |bV (k)|2 , (B7)

and Tk,k′ (ω) is the T matrix. The T matrix can be expressed as

Tk,k′ (ω) = 1

N

(
A0 + A1(k, k′) + A2(k, k′)

�(ω)

)
, (B8)

where the terms in the numerator are expressed as

A0 = �U + �λ + 1

N

∑
k1

�(k1)|�b|2,

A1(k, k′) = �(k)b�b∗ + �bb∗�(k′),

A2(k, k′) = |�b|2|b|2 1

N

∑
k1

G f f
k1

(ω)[�(k1) − �(k)]

× [�(k1) − �(k′)], (B9)

and where the denominator �(ω) is given by

�(ω) = 1 − B1 − B2, (B10)

where the terms are

B1 = 1

N

∑
k1

G f f
k1

(ω)[A0 + �(k1)(b�b∗ + b∗�b)],

B2 = |�b|2|b|2 1

2 N2

∑
k1,k2

G f f
k1

(ω)G f f
k2

(ω)[�(k1) − �(k2)]2,

(B11)

in which

�(k) = |V (k)|2
(h̄ω − εk )

. (B12)

Despite the fact that the denominator depends on products of
spectral functions, due to cancellations Im m �(ω) is zero for
frequencies outside the continua of the homogeneous host. As
seen in Fig. 10, the poles in the T matrix found using slave
boson mean-field calculations are in a one-to-one correspon-
dence with those of the noninteracting model described in the
main text.

The d- f Green’s function is obtained by the same analysis
and is given by

Gdf
k,k′ (ω) =

(
δk,k′b∗ + �b∗

N�(ω)

)
Gdf

k (ω)

+Gdf
k (ω)b∗Sk′ (ω)G f f

k′ (ω), (B13)

where the homogeneous d- f Green’s function is given by

Gdf
k (ω) = V ∗(k)

(h̄ω − E f − λ)(h̄ω − εk ) − |bV (k)|2 (B14)

and Sk′ (ω) is given by

Sk′ (ω) =
(

�U + �λ + [�b∗b + b∗�b + |�b|2]�(k′)
N�(ω)

)
.

(B15)
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Finally, the d-d Green’s function is expressed as

Gdd
k,k′ (ω) = δk,k′Gdd

k (ω) + Gdf
k (ω)R(ω)G f d

k′ (ω), (B16)

where R(ω) is found as

R(ω) =
( |b|2�U + (h̄ω − E f − λ)[�bb∗ + b�b∗+ |�b|2]

N �(ω)

)
.

(B17)

Or, equivalently

Gdd
k,k′ (ω) = δk,k′Gdd

k (ω) + Gdf
k (ω)P(ω)G f d

k′ (ω)

+ V ∗(k)

h̄ω − ε(k)

(
�b∗b + 1

2 |�b|2
N �(ω)

)
G f d

k′ (ω)

+Gdf
k (ω)

(
b∗�b + 1

2 |�b|2
N�(ω)

)
V (k′)

h̄ω − ε(k′)
, (B18)

where P(ω) is given by

P(ω) = |b|2
(

�(k)
[
�b∗b + 1

2 |�b|2] + �U + �λ + [
b∗�b + 1

2 |�b|2]�(k′)
N�(ω)

)
. (B19)

For the case of a uniform Bose condensate, these results
reduce to those given in the main text.

2. Inhomogeneous self-consistency conditions

The f occupation of the central site R = 0 is given by

n f (R = 0) = −Dα

N

∑
k,k′

∫ ∞

−∞

dω

π
f (ω)Im mG f f

k,k′ (ω)

= −Dα

N

∑
k

∫ ∞

−∞

dω

π
f (ω)Im m

[
G f f

k (ω)

�(ω)

]
,

(B20)

which is related to the slave boson amplitude at the impurity
site (b∗ + �b∗). Likewise, the Lagrange parameter at the
origin is found from the equation

(λ + �λ)(b∗ + �b∗) = −Dα

N

∑
k1,k2

V (k1)〈 f †
k2

dk1
〉. (B21)

That inhomogeneous part can be evaluated as

(λ + �λ)(b∗ + �b∗) − λb∗

= −Dα

∫ ∞

−∞

dω

π
f (ω)Im m

⎡
⎣C(ω)

�(ω)

1

N

∑
k1

�(k1)G f f
k1

(ω)

⎤
⎦,

(B22)

where

C(ω) = �b∗ + b∗

N

∑
k2

[
(�U + �λ)G f f

k2
(ω) + (�bb∗

+�b∗b + |�b|2)�(k2)G f f
k2

(ω)
]
. (B23)

Similar to the bulk self-consistency equations, when
the energy of the f -impurity state E f + �U is far
below the gap, the constraint λ leads to a large upward shift
of the effective impurity level towards the Fermi energy and
leads to a further reduction of the weight of the local quasi-
particle density of states. This result is analogous to the Kondo
limit of an impurity model in a metal, in which the width of the
Abrikosov-Suhl resonance above just above the Fermi energy
depends exponentially on the separation between the bare f
level and the Fermi energy. Our result is also in accord with
the results of Alexandrov et al. [58], who found that the T = 0
solutions of the mean-field slave boson consistency equations
remain nontrivial in the presence of inhomogeneity.

The results obtained from our mean-field slave boson
calculations are in accord with those described in the main
text. The main difference is that, when the bare impurity level
lies outside the gap, the on-site f quasiparticle weight is finite
but exponentially small, which leads to the incoherent peak
at (E f + �U ) having the dominant on-site spectral weight.
However, although the poles of the T matrix show the pres-
ence of both an in-gap bound state and the deep-energy bound
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state, the local f density of states

ρ
f
R=0(ω) = − 1

π

∑
k,α

Im m

[
G f f

k (ω)

N�(ω)

]
(B24)

shows no spectral weight at the in-gap pole. This is due to the
entire f spectral weight of the in-gap f state being distributed
on the nearest neighbor atoms, as is discussed in the main
text.

[1] G. Aeppli and Z. Fisk, Kondo insulators, Comm. Condens.
Matter Phys. 16, 155 (1992).

[2] P. S. Riseborough, Heavy fermion semiconductors, Adv. Phys.
49, 257 (2000).

[3] P. S. Riseborough, Theory of the dynamic magnetic response of
Ce3Bi4Pt3—A heavy-fermion semiconductor, Phys. Rev. B 45,
13984 (1992).

[4] M. Dzero, K. Sun, V. Galitski, and P. Coleman, Topological
Kondo Insulators, Phys. Rev. Lett. 104, 106408 (2010).

[5] T. Takimoto, SmB6: A promising candidate for a topological
insulator, J. Phys. Soc. Jpn. 80, 123710 (2011).

[6] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[7] A. Menth, E. Buehler, and T. H. Geballe, Magnetic and Semi-
conducting Properties of SmB6, Phys. Rev. Lett. 22, 295 (1969).

[8] J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H.
Geballe, and G. W. Hull, Physical properties of SmB6, Phys.
Rev. B 3, 2030 (1971).

[9] J. W. Allen, B. Batlogg, and P. Wachter, Large low-temperature
Hall effect and resistivity in mixed valent SmB6, Phys. Rev. B
20, 4807 (1979).

[10] S. Wolgast, C. Kurdak, K. Sun, J. W. Allen, D.-J. Kim, and
Z. Fisk, Low-temperature surface conduction in the Kondo
insulator SmB6, Phys. Rev. B 88, 180405(R) (2013).

[11] D.-J. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and J. Xia,
Surface Hall effect and nonlocal transport in SmB6: Evidence
for surface conduction, Sci. Rep. 3, 3150 (2013).

[12] D.-J. Kim, J. Xia, and Z. Fisk, Topological surface state in
the Kondo insulator samarium-hexaboride, Nat. Mater. 13, 466
(2014).

[13] P. Syers, D. Kim, M. S. Fuhrer, and J. Paglione, Tuning Bulk
and Surface Conduction in the Proposed Topological Kondo
Insulator SmB6, Phys. Rev. Lett. 114, 096601 (2015).

[14] Y.-S. Eo, K. Sun, C. Kurdak, D.-J. Kim, and Z. Fisk, Inverted
Resistance Measurements as a Method for Characterizing the
Bulk and Surface Conductivities of Three-Dimensional
Topological Insulators, Phys. Rev. Appl. 9, 044006
(2018).

[15] Y. S. Eo, A. Rakoski, J. Lucien, D. Mihaliov, Ç. Kurdak, P. F. S.
Rosa, D.-J. Kim, and Z. Fisk, Transport gap in SmB6 protected
against disorder, PNAS 116, 12638 (2019).

[16] M. Neupane, N. Alidoust, S.-Y. Xu, T. Kondo, Y. Ishida,
D. J. Kim, C. Liu, I. Belopolski, Y. J. Cho, T. R. Chang, T.
Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk,
and M. Z. Hasan, Surface electronic structure of the topological
Kondo-insulator candidate correlated electron system SmB6,
Nat. Commun. 4, 2991 (2013).

[17] J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu,
Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li,
X. H. Chen, H. H. Wen, and D. L. Feng, Observation of possible
topological in-gap surface states in the Kondo insulator SmB6

by photoemission, Nat. Commun. 4, 3010 (2013).

[18] N. Xu, X. Shi, P. K. Biswas, C. E. Matt, R. S. Dhaka, Y.
Huang, N. C. Plumb, M. Radovic, J. H. Dil, E. Pomjakushina,
K. Conder, A. Amato, Z. Salman, D. McK. Paul, J. Mesot,
H. Ding, and M. Shi, Surface and bulk electronic structure
of the strongly correlated system SmB6 and implications for
a topological Kondo insulator, Phys. Rev. B 88, 121102(R)
(2013).

[19] W. Ruan, C. Ye, M. Guo, F. Chen, X. Chen, G.-M. Zhang,
and Y. Wang, Emergence of a Coherent In-Gap State in the
SmB6 Kondo Insulator Revealed by Scanning Tunneling Spec-
troscopy, Phys. Rev. Lett. 112, 136401 (2014).

[20] S. Roessler, T.-H. Jang, D.-J. Kim, L. H. Tjeng, Z. Fisk, F.
Steglich, and S. Wirth, Hybridization gap and Fano resonance
in SmB6, Proc. Natl. Acad. Sci. 111, 4798 (2014).

[21] W.-K. Park, L. Sun, A. Noddings, D.-J. Kim. Z. Fisk, and
L. H. Greene, Topological surface states interacting with bulk
excitations in the Kondo insulator SmB6 revealed via pla-
nar tunneling spectroscopy, Proc. Natl. Acad. Sci. 113, 6599
(2016).

[22] J. Jiao, S. Roessler, D.-J. Kim, L. H. Tjeng, Z. Fisk, F.
Steglich, and S. Wirth, Additional energy scale in SmB6 at
low-temperature, Nat. Commun. 7, 13762 (2016).

[23] L. Sun, D.-J. Kim, Z. Fisk, and W. K. Park, Planar tunneling
spectroscopy of the topological Kondo insulator SmB6, Phys.
Rev. B 95, 195129 (2017).

[24] T. Miyamachi, S. Suga, M. Ellguth, C. Tusche, C. M. Schneider,
F. Iga, and F. Komori, Evidence for in-gap surface states
on single phase SmB6 (001) surfaces, Sci. Rep. 7, 12837
(2017).

[25] P. A. Alekseev, J.-M. Mignot, J. Rossatmignod, V. N. Lazukov,
and I. P. Sadikov, Magnetic excitations in SmB6 single crystals,
Physica B Condens. Matter 186-188, 384 (1993).

[26] W. T. Fuhrman, J. Leiner, P. Nikolic, G. E. Granroth, M. B.
Stone, M. D. Lumsden, L. DeBeer-Schmitt, P. A. Alekseev,
J.-M. Mignot, S. M. Koohpayeh, P. Cottingham, W. A. Phelan,
L. Schoop, T. M. McQueen, and C. Broholm, Interaction Driven
Subgap Spin-Exciton in the Kondo Insulator SmB6, Phys. Rev.
Lett. 114, 036401 (2015).

[27] P. S. Riseborough, Magnetic bound states in SmB6, Ann. Phys.
9, 813 (2000); Spin-excitons in heavy-fermion semiconductors,
J. Magn. Magn. Mater. 226, 127 (2001).

[28] G. A. Kapilevich, P. S. Riseborough, A. X. Gray, M. Gulacsi,
T. Durakiewicz, and J. L. Smith, Incomplete protection of the
surface Weyl cones of the Kondo insulator SmB6: Spin-exciton
scattering, Phys. Rev. B 92, 085133 (2015).

[29] A. Arab, A. X. Gray, S. Nemšák, D. V. Evtushinsky, C. M.
Schneider, D. J. Kim, Z. Fisk, P. F. S. Rosa, T. Durakiewicz, and
P. S. Riseborough, Effects of spin-excitons on the surface states
of SmB6: A photoemission study, Phys. Rev. B 94, 235125
(2016).

[30] B. Gorshunov, N. Sluchanko, A. Volkov, M. Dressel, G.
Knebel, A. Loidl, and S. Kunii, Low-energy electrodynamics
of SmB6, Phys. Rev. B 59, 1808 (1999).

094101-14

https://doi.org/10.1080/000187300243345
https://doi.org/10.1080/000187300243345
https://doi.org/10.1080/000187300243345
https://doi.org/10.1080/000187300243345
https://doi.org/10.1103/PhysRevB.45.13984
https://doi.org/10.1103/PhysRevB.45.13984
https://doi.org/10.1103/PhysRevB.45.13984
https://doi.org/10.1103/PhysRevB.45.13984
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1103/PhysRevLett.104.106408
https://doi.org/10.1143/JPSJ.80.123710
https://doi.org/10.1143/JPSJ.80.123710
https://doi.org/10.1143/JPSJ.80.123710
https://doi.org/10.1143/JPSJ.80.123710
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevLett.22.295
https://doi.org/10.1103/PhysRevLett.22.295
https://doi.org/10.1103/PhysRevLett.22.295
https://doi.org/10.1103/PhysRevLett.22.295
https://doi.org/10.1103/PhysRevB.3.2030
https://doi.org/10.1103/PhysRevB.3.2030
https://doi.org/10.1103/PhysRevB.3.2030
https://doi.org/10.1103/PhysRevB.3.2030
https://doi.org/10.1103/PhysRevB.20.4807
https://doi.org/10.1103/PhysRevB.20.4807
https://doi.org/10.1103/PhysRevB.20.4807
https://doi.org/10.1103/PhysRevB.20.4807
https://doi.org/10.1103/PhysRevB.88.180405
https://doi.org/10.1103/PhysRevB.88.180405
https://doi.org/10.1103/PhysRevB.88.180405
https://doi.org/10.1103/PhysRevB.88.180405
https://doi.org/10.1038/srep03150
https://doi.org/10.1038/srep03150
https://doi.org/10.1038/srep03150
https://doi.org/10.1038/srep03150
https://doi.org/10.1038/nmat3913
https://doi.org/10.1038/nmat3913
https://doi.org/10.1038/nmat3913
https://doi.org/10.1038/nmat3913
https://doi.org/10.1103/PhysRevLett.114.096601
https://doi.org/10.1103/PhysRevLett.114.096601
https://doi.org/10.1103/PhysRevLett.114.096601
https://doi.org/10.1103/PhysRevLett.114.096601
https://doi.org/10.1103/PhysRevApplied.9.044006
https://doi.org/10.1103/PhysRevApplied.9.044006
https://doi.org/10.1103/PhysRevApplied.9.044006
https://doi.org/10.1103/PhysRevApplied.9.044006
https://doi.org/10.1073/pnas.1901245116
https://doi.org/10.1073/pnas.1901245116
https://doi.org/10.1073/pnas.1901245116
https://doi.org/10.1073/pnas.1901245116
https://doi.org/10.1038/ncomms3991
https://doi.org/10.1038/ncomms3991
https://doi.org/10.1038/ncomms3991
https://doi.org/10.1038/ncomms3991
https://doi.org/10.1038/ncomms4010
https://doi.org/10.1038/ncomms4010
https://doi.org/10.1038/ncomms4010
https://doi.org/10.1038/ncomms4010
https://doi.org/10.1103/PhysRevB.88.121102
https://doi.org/10.1103/PhysRevB.88.121102
https://doi.org/10.1103/PhysRevB.88.121102
https://doi.org/10.1103/PhysRevB.88.121102
https://doi.org/10.1103/PhysRevLett.112.136401
https://doi.org/10.1103/PhysRevLett.112.136401
https://doi.org/10.1103/PhysRevLett.112.136401
https://doi.org/10.1103/PhysRevLett.112.136401
https://doi.org/10.1073/pnas.1402643111
https://doi.org/10.1073/pnas.1402643111
https://doi.org/10.1073/pnas.1402643111
https://doi.org/10.1073/pnas.1402643111
https://doi.org/10.1073/pnas.1606042113
https://doi.org/10.1073/pnas.1606042113
https://doi.org/10.1073/pnas.1606042113
https://doi.org/10.1073/pnas.1606042113
https://doi.org/10.1038/ncomms13762
https://doi.org/10.1038/ncomms13762
https://doi.org/10.1038/ncomms13762
https://doi.org/10.1038/ncomms13762
https://doi.org/10.1103/PhysRevB.95.195129
https://doi.org/10.1103/PhysRevB.95.195129
https://doi.org/10.1103/PhysRevB.95.195129
https://doi.org/10.1103/PhysRevB.95.195129
https://doi.org/10.1038/s41598-017-12887-2
https://doi.org/10.1038/s41598-017-12887-2
https://doi.org/10.1038/s41598-017-12887-2
https://doi.org/10.1038/s41598-017-12887-2
https://doi.org/10.1016/0921-4526(93)90580-Y
https://doi.org/10.1016/0921-4526(93)90580-Y
https://doi.org/10.1016/0921-4526(93)90580-Y
https://doi.org/10.1016/0921-4526(93)90580-Y
https://doi.org/10.1103/PhysRevLett.114.036401
https://doi.org/10.1103/PhysRevLett.114.036401
https://doi.org/10.1103/PhysRevLett.114.036401
https://doi.org/10.1103/PhysRevLett.114.036401
https://doi.org/10.1002/1521-3889(200010)9:9/10<813::AID-ANDP813>3.0.CO;2-E
https://doi.org/10.1002/1521-3889(200010)9:9/10<813::AID-ANDP813>3.0.CO;2-E
https://doi.org/10.1002/1521-3889(200010)9:9/10<813::AID-ANDP813>3.0.CO;2-E
https://doi.org/10.1002/1521-3889(200010)9:9/10<813::AID-ANDP813>3.0.CO;2-E
https://doi.org/10.1016/S0304-8853(01)00088-9
https://doi.org/10.1016/S0304-8853(01)00088-9
https://doi.org/10.1016/S0304-8853(01)00088-9
https://doi.org/10.1016/S0304-8853(01)00088-9
https://doi.org/10.1103/PhysRevB.92.085133
https://doi.org/10.1103/PhysRevB.92.085133
https://doi.org/10.1103/PhysRevB.92.085133
https://doi.org/10.1103/PhysRevB.92.085133
https://doi.org/10.1103/PhysRevB.94.235125
https://doi.org/10.1103/PhysRevB.94.235125
https://doi.org/10.1103/PhysRevB.94.235125
https://doi.org/10.1103/PhysRevB.94.235125
https://doi.org/10.1103/PhysRevB.59.1808
https://doi.org/10.1103/PhysRevB.59.1808
https://doi.org/10.1103/PhysRevB.59.1808
https://doi.org/10.1103/PhysRevB.59.1808


TOPOLOGICAL NONMAGNETIC IMPURITY STATES … PHYSICAL REVIEW B 101, 094101 (2020)

[31] S. Gabani, K. Flachbart, E. Konovalova, M. Orendac, Y.
Paderno, V. Pavlik, and J. Sebek, Properties of the in-gap states
in SmB6, Solid State Commun. 117, 641 (2001).

[32] K. Flachbart, S. Gabani, K. Neumaier, Y. Paderno, V. Pavlik, E.
Schuberth, and N. Shitselova, Specific heat of SmB6 at very low
temperatures, Physica B Condens. Matter 378-380, 610 (2006).

[33] W. A. Phelan, S. M. Koohpayeh, P. Cottingham, J. W. Freeland,
J. C. Leiner, C. L. Broholm, and T. M. McQueen, Correlation
between Bulk Thermodynamic Measurements and the Low-
Temperature-Resistance Plateau in SmB6, Phys. Rev. X 4,
031012 (2014).
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