
PHYSICAL REVIEW B 101, 085423 (2020)

Dispersive Landau levels and valley currents in strained graphene nanoribbons
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We describe a simple setup generating pure valley currents—valley transport without charge transport—in
strained graphene nanoribbons with zigzag edges. The crucial ingredient is a uniaxial strain pattern which
couples to the low-energy Dirac electrons as a uniform pseudomagnetic field. Remarkably, the resulting
pseudo-Landau levels are not flat but disperse linearly from the Dirac points, with an opposite slope in the
two valleys. We show how this is a natural consequence of an inhomogeneous Fermi velocity arising in the
low-energy theory describing the system, which maps to an exactly solvable singular Sturm-Liouville problem.
The velocity of the valley currents can be controlled by tuning the magnitude of strain and by applying bias
voltages across the ribbon. Furthermore, applying an electric field along the ribbon leads to pumping of charge
carriers between the two valleys, realizing a valley analog of the chiral anomaly in one spatial dimension. These
effects produce unique signatures that can be observed experimentally by performing ordinary charge transport
measurements and spectroscopy.
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I. INTRODUCTION

The electronic band structure of graphene [1] hosts two
symmetry-inequivalent Dirac points, leading to an effective
pseudospin degree of freedom—the valley—at energies close
to the charge neutrality point. The possibility of addressing
or controlling the valley degree of freedom [2–5] has ush-
ered in the field of “valleytronics” [6], which now extends
beyond graphene to gapped 2D Dirac materials [7] such
as transition-metal dichalcogenide monolayers [8], bilayer
graphene [9–11], and two-dimensional ferroelectrics [12,13].

In monolayer graphene, a plethora of valley-specific phe-
nomena has been investigated recently. This includes valley
filters and switches [2,14–19] (which selectively reflect elec-
trons within a given valley), valley beam splitters [18–21]
(which spatially separate electrons according to their valley
index) and waveguides for valley-polarized currents [22,23].
The generation and detection of pure valley currents—
currents transporting only the valley degree of freedom but
no charge—have also received some attention. Theoretical
proposals include optical excitations generated by polarized
light [24], cyclic strain deformations [25], quantum pumping
[26,27], or applying AC bias [28]. Valley currents have been
observed experimentally as edge states in graphene super-
lattices [29] and graphene bilayers [9–11], but not yet in
monolayer graphene.

The goal of this paper is to describe an alternative way to
generate valley currents in monolayer graphene subjected to
nonuniform elastic strain. It is well known that elastic strain
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can be used to tailor the electronic properties of graphene
[30–32]—the most dramatic example being the creation of
uniform pseudomagnetic fields [33–40] which lead to Dirac
pseudo-Landau levels (pLLs) [34]. This effect was first ob-
served in scanning tunneling microscopy (STM) measure-
ments of graphene “nanobubbles” grown on a platinum sub-
strate [41]. Subsequent experimental work confirmed this re-
sult [42–45], including a recent momentum space observation
of pLLs using angle-resolved photoemission (ARPES) [46].
In this paper, we show how strain can lead to equilibrium val-
ley currents in graphene nanoribbons through the formation of
dispersive pLLs.

Our setup is described in Fig. 1—we consider a graphene
nanoribbon with zigzag edges, infinite along the x direction. A
static, uniaxial strain pattern is applied along the y direction.
The applied strain increases linearly with y, generating a
uniform pseudomagnetic field B perpendicular to the plane
which quantizes the low-energy electronic spectrum to a
ladder of pLLs. These pLLs show the ∼√|n| energy spacing
characteristic of Dirac electrons but are not flat—instead, they
disperse linearly near the Dirac points, with an opposite slope
in the two valleys. In equilibrium, the charge current carried
by each valley cancels out but the valley current adds up—
thus the bulk of the ribbon carries a net valley current. The
edges hosts counterpropagating valley currents (in a direction
determined by the sign of B)—thus the ribbon as a whole
acts as “valley-helical” wire (see Fig. 1). This counterintuitive
feature is naturally understood in terms of an inhomogeneous
Fermi velocity [47] arising in this geometry. We provide an
analytical solution of a singular Sturm-Liouville (SL) problem
which clarifies this connection. We also discuss how to control
the slope of the pLLs, and thus the velocity of the valley
currents, by applying bias voltages across the ribbon. To
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FIG. 1. Graphene nanoribbon with zigzag edges and periodic
boundary conditions along the x direction. An inversion-symmetry
breaking uniaxial strain (represented by the color scale) is applied
along the y direction and generates a uniform out-of-plane pseudo-
magnetic field B. The low-energy physics of this ribbon is described
by dispersing pseudo-Landau levels with an opposite velocity in the
two valleys, as shown by blue (K) and red (K ′) arrows. This leads
to equilibrium valley currents in the bulk. Localized edge states also
host counterpropagating valley currents.

this end, we generalize the seminal solution of Ref. [48] to
our setup, with Dirac electrons subjected to perpendicular
electric and pseudomagnetic fields. Finally, we show that
applying an electric field along the ribbon leads to pumping
of charge carriers between the two valleys, thus realizing an
analog to the chiral anomaly in one spatial dimension, and
discuss a related negative strain-resistance effect observable
in electrical conductivity measurements.

The rest of this paper is organized as follows. In Sec. II,
we describe our model and derive the low-energy theory in
the presence of uniaxial strain. In Sec. III, we summarize the
analytical solution for the bulk pLLs and compare our results
to numerical calculations. We also discuss the appearance of
valley currents and the chiral anomaly. In Sec. IV, we con-
sider the effects of electric fields (either externally applied or
induced by the strain itself) and discuss how they renormalize
the slope of the pLLs. We offer concluding remarks in Sec. V
and relegate more technical contributions to the Appendices.

II. THE MODEL

We consider an infinite graphene nanoribbon (with the
periodic direction along x), width W , and zigzag edges, as
shown in Fig. 1. We model the system using the nearest-
neighbor tight-binding Hamiltonian on the honeycomb lattice,
which in absence of strain reads

H = −t
∑

<r,r′>

(a†
r br′ + b†

r′ ar), (1)

where a†
r (b†

r′ ) creates an electron in the pz orbital on the sub-
lattice A (B), t = 2.7 eV and the nearest-neighbor distance is
a0 = 0.142 nm. In view of the negligible spin-orbit coupling
in graphene and the absence of (real) magnetic fields in our
setup, we neglect the spin degree of freedom in this paper. We
incorporate strain into our tight-binding Hamiltonian [Eq. (1)]
through a simple modulation of the hopping parameters,

t → trr′ = te−γ�urr′ , (2)

where �urr′ is the displacement of atoms at positions r
and r′ relative to a0, and γ = −∂ ln t/∂ ln a|a=a0 ∼ 3.37 is
the Gruneisen parameter of graphene [49]. We work within
the framework of continuum elasticity theory, where the
displacement field �urr′ is expressed as a smooth function of
the spatial coordinates. This approach is valid for displace-
ment fields varying slowly on the lattice scale. Unique effects
can be expected when going beyond the continuum elasticity,
see, e.g., Refs. [50,51].

A. Low-energy expansion

Before moving to the solution of the problem at hand, we
first review the case of homogeneous uniaxial strain [49]. We
take trr′ as independent of spatial coordinates but possibly
dependent on the bond direction n:

t → tn = te−γ�un ≈ t (1 − γ�un). (3)

Here we expanded the exponential for small displacements

�un =
∑
i, j

δi
nδ

j
n

a2
0

εi j, (4)

where the nearest-neighbor vectors δn are given by

δ1 = a0[0, 1], δ2 = a0

2
[−

√
3,−1], δ3 = a0

2
[
√

3,−1]. (5)

The strain tensor εi j = 1
2 [∂ jui + ∂iu j] is defined through the

in-plane displacement field u = (ux, uy ), which we take as a
smooth function of the coordinates. In this paper, we assume
that u is only a function of y, such that εxx = εxy = εyx = 0
and �u1 = εyy, �u2 = �u3 = εyy/4.

In momentum space, the Bloch Hamiltonian is given by
h(k) = d(k) · σ, where σ = (σx, σy) acts on the sublattice
(A, B) degree of freedom and

dx(k) = −t1 cos ky − 2t2 cos

√
3kx

2
cos

ky

2
, (6)

dy(k) = +t1 sin ky − 2t2 cos

√
3kx

2
sin

ky

2
, (7)

where tn = t (1 − γ�un) and we set a0 = 1 from here on. Ex-
panding to lowest order in momentum around the inequivalent
Dirac points K± = (± 4π

3
√

3
, 0), with k = K± + q, we obtain

d±
x (q) = ±h̄vF

[(
1 − γ

4
εyy

)
qx ± γ

2
εyy

]
, (8)

d±
y (q) = h̄vF

[(
1 − 3γ

4
εyy

)
qy ± qxqy

2

(
1 − γ

4
εyy

)]
, (9)

where vF = 3t/2h̄ is the Fermi velocity and the superscript
± refers to the two valleys K±. Note that we expanded to
linear order separately in both momentum components—
this generates a term proportional to qxqy which is usually
neglected when considering the low-energy physics of Dirac
fermions in graphene. Here it is important because of the
broken rotation symmetry of the problem—when considering
nonuniform strain in Sec. III, only the momentum qx remains
a good quantum number and one must consistently treat all
terms linear in qx to obtain a quantitatively correct result.

As expected, the strain tensor component εyy couples to qx

as a pseudogauge field Ax = γ εyy/2 (that is, with a different

085423-2



DISPERSIVE LANDAU LEVELS AND VALLEY CURRENTS … PHYSICAL REVIEW B 101, 085423 (2020)

sign between the two valleys). However, to the same order,
εyy also renormalizes the Fermi velocities along the qx and
qy directions. In the case of homogeneous strain, this only
produces an anisotropic Dirac cone. However, when εyy is
promoted to a function of the coordinates, it has an important
effect on the low-energy spectrum [47,52], as described in
Sec. III.

B. Symmetries

We now briefly comment on the relevant symmetries.
Combining the sublattice and valley degrees of freedom, the
low-energy limit of the problem is described by the four-
dimensional matrix Hamiltonian

h(q) =
(

h+(q) 0
0 h−(q)

)
, (10)

where h±(q) = d±(q) · σ describes the two valleys. We
henceforth denote the Pauli matrices acting on the valley
pseudospin as τ. The fact that the two valleys are decou-
pled in the low-energy limit allows one to ask meaningful
questions about valley transport. Contrary to the case of spin
transport (for example), valley is not a microscopic degree
of freedom—strictly speaking, there is no physical symmetry
leading to a conserved “valley charge.” Nevertheless, in the
effective low-energy description, Eq. (10), one can identify
the valley operator τ zσ 0 which is conserved, [h(q), τ zσ 0] =
0, as long as no scattering terms connect the two valleys.

The system respects time-reversal symmetry which acts as
T h(q)T −1 = τ xh∗(−q)τ x. In our case, this enforces h+(qx ) =
h−(−qx )—that is, the spectra at valleys K± are related by a
reflection with respect to qx = 0. The system also has a chiral
(or sublattice) symmetry, {C, h(q)} = 0 with C = τ 0σ z. This
implies that the spectrum at each valley is symmetric with
respect to the charge neutrality point E = 0. Chiral symmetry
is present whenever the terms in H only couple sublattices A
and B, and will be broken when adding scalar potential terms
in Sec. IV. Finally, our strain pattern (shown in Fig. 1) breaks
the inversion symmetry of the lattice, which is a necessary
ingredient to generate pseudomagnetic fields.

III. EXACT SOLUTION FOR DISPERSIVE
PSEUDO-LANDAU LEVELS

Having a low-energy expansion with the correct symme-
tries in place, we now promote the strain tensor to a smooth
function of the coordinate y. This semiclassical substitution
is justified if we assume that the displacement field u varies
slowly on the lattice scale. To generate a uniform pseudomag-
netic field B = Bẑ using only the εyy component, we take

εyy = 2eBy

h̄γ
≡ 2by

γ
, (11)

where we defined the dimensionless parameter b = eB/h̄.
Using Eqs. (8) and (9) the Bloch Hamiltonian in valley K+

reads

h+(q) = h̄vF [σx(qx + pby) + σyqy(s − rby)], (12)

where we defined p = 1 − qx/2, s = 1 + qx/2 and r = 3/2 +
qx/4. The corresponding Bloch Hamiltonian h−(q) for valley
K− is obtained by sending qx → −qx.

By promoting the strain tensor to a function εyy(y), we
have explicitly broken the translational symmetry along y. We
now perform the canonical substitution qy → −i∂y and, using
the remaining translational symmetry along x, we look for
solutions of h+(q) of the form 
(y, qx ) ∝ eiqxxφα (y), where
α = A, B is the sublattice index. This leads to the following
eigenvalue problem:

[σx(qx + pby) − iσy(s − rby)∂y]

[
φA(y)
φB(y)

]
= E

h̄vF

[
φA(y)
φB(y)

]
,

(13)

with homogeneous Dirichlet boundary condition at infin-
ity. This differential equation differs from the conventional
Landau-level problem by the presence of terms of the form
y∂y which complicate the analysis, and also need a proper
Hermitization. Nevertheless, as discussed in Appendix A, this
problem can be solved by transforming Eq. (13) to a second-
order ordinary differential equation (ODE) for, say, φB,[

(pby)2 + pb

r
(2qxr + 2ps − br2)y + �

r2
− b2r2

4

]
φB

− b2r2(2yφ′
B + y2φ′′

B) = 0, (14)

where � = (qxr + ps)2 − r2( E
h̄vF

)2.
This turns out to be a singular SL problem [53,54] with a

regular singularity at ysgl = s
rb and an irregular singularity at

infinity. It exhibits an unusual finite sequence of eigenvalues
differing from that of regular SL problems. The spectrum of
Eq. (14) (and its equivalent result for valley K−) is given by

(E±
n )2 = h̄2v2

F (|bn|(2 ± 3qx ) − [bn(6 ± qx )/4]2), (15)

where

n = 0, 1, 2, · · · ,

⌊
8(2 ± 3qx )

|b|(6 ± qx )2

⌋
(16)

and 
a� denotes the greatest integer less than or equal to a.
The Landau-level spectrum is thus bounded from above, with
more levels attainable at smaller |b|. This can be intuitively
understood by comparing |ysgl| to the typical wave-function
size ∼lB, the magnetic length. When the wave-function size
becomes comparable to |ysgl|, it is significantly affected by
the regular singularity, eventually leading to the breakdown of
the pLL spectrum. When |b| decreases, levels with larger n ap-
pear in the spectrum because |ysgl| ∼ 1/|b| grows faster than
lB = 1/

√|b|. For the strain-induced pseudomagnetic fields
considered in this paper, one typically has |b| ∼ 10−4 � 1.
Thus, |ysgl| ∼ 104 is much bigger than both the wave-function
size and the ribbon width W , and does not directly influence
our analysis.

For small |bn|, the quadratic term in Eq. (15) can be safely
neglected, leading to

E±
n = sgn(n)h̄vF

√
|bn|(2 ± 3qx ). (17)

This dispersion relation is peculiar in that the pLLs are not
flat, but disperse linearly for small qx away from the Dirac
point, with an opposite slope between the two valleys. When
qx = 0, the conventional Landau level spectrum is recovered.
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FIG. 2. Spectra of zigzag graphene nanoribbons (width W ≈ 192 nm) subject to strain-induced pseudomagnetic fields B = 2.5, 5 and
−5 T (from left to right). The spectra are obtained from numerical diagonalization of the Hamiltonian [Eqs. (1) and (3)] and the color scale
represents the expectation value of the ŷ position operator for each eigenstate. A set of pseudo-Landau levels with linear dispersion near the
Dirac points is visible, as predicted by Eq. (17) (dotted gray lines, shown here only for valley K+). The n = 0 level remains dispersionless and
merges with the usual “zigzag” zero-energy edge states. Pseudo-Landau levels with higher index |n| can be resolved by increasing the field B.

We confirm this analytical result by numerically diagonal-
izing the tight-binding model, Eq. (1) with hoppings given by
Eq. (3), and compute the expectation value of the ŷ position
operator for all eigenstates, as shown in Fig. 2. Our numer-
ical results confirm the presence of dispersing bulk pLLs
described by Eq. (17). Landau levels with n = 0 eventually
merge into edge states dispersing upward (for n > 0) or down-
ward (for n < 0), which are of course not captured by our bulk
solution. The bulk pLL0 remains dispersionless and merges
with the usual zero-energy zigzag edge states for momenta
qx between the two Dirac cones [55]. The number of bulk
pLLs that are resolved depends on the interplay between the
magnetic length lB and the width of the nanoribbon W . In our
geometry, the pLL wave functions have an extent ∼lB in the y
direction which also increases with |n|. Thus, as |n| increases
the confining effect from the width W becomes stronger,
eventually rendering our bulk solution invalid. Conversely, as
the pseudomagnetic field |b| is increased, pLLs with higher
|n| can be resolved (see Fig. 2).

We note that linearly dispersing pLLs in uniaxially strained
graphene have been observed numerically in recent works
[56,57]. The linear dispersion was attributed to hybridization
with edge modes in Ref. [56]. In contrast, it was argued to
be a bulk effect in Ref. [57], using a perturbative treatment of
symmetry-allowed terms in the low-energy theory describing
the system. Our exact, nonperturbative solution unambigu-
ously identifies the dispersion of the pLLs as a bulk effect.
Further, it allows us to obtain a quantitative match with tight-
binding simulations by including the (seemingly) higher-order
qxqy term in the low-energy theory, Eq. (9). This term proves
to be crucial in obtaining the correct value for the slope of
the pLLs near the Dirac points [Eqs. (15) and (17)] because it
contributes to leading order in the pseudomagnetic field b.

A. Bulk valley currents

These results have an interesting consequence—when the
chemical potential μ lies within a pLL, we expect pure valley
currents in equilibrium in the bulk of the nanoribbon. This is
because the two sets of chiral pLLs in valleys K± disperse
with opposite velocities along x. They thus carry only the

valley degree of freedom but no electric charge, as shown
schematically in Fig. 1. We calculate the valley current in
equilibrium, as a function of the chemical potential μ, assum-
ing ballistic conduction,

Iv (μ) =
∑
s=±

∑
n

∫
dqx

2π

[
s f
(
Es

n (qx )
)
vs

n(qx )
]
, (18)

where s = ± denotes the two valleys,

v±
n (qx ) ≡ 1

h̄

∂E±
n

∂qx
= ±sgn(n)

3vF

2

√
|bn|

2 ± 3qx
; (19)

represents the group velocity of electrons in band n and
f (E±

n ) = 1/(e(E±
n −μ)/kBT + 1) is the Fermi function at tem-

perature T . We define Iv (0) = 0 as a conventional reference
point, noting that the notion of valley is only well-defined
close to charge neutrality. At T = 0, this leads to a contri-
bution Iv (μ) = 2|μ|/h for each pLL.

We show in Fig. 3 the valley currents Iv (μ) computed
using Eqs. (18) and (19) close to charge neutrality, using
the numerical data from our tight-binding calculations. To
connect with our bulk solution for the pLLs, we artificially
separate the wire in three equal-width regions (along the y
direction) which we define as the bottom edge, bulk, and top
edge, respectively. We compute the contribution to the valley
current for each region separately, according to the expecta-
tion value 〈ŷ〉 of the corresponding eigenstates [see Figs. 3(a)
and 3(b)]. The bulk contribution shows linearly increasing
regions with Iv (μ) ∼ 2|μ|/h corresponding to well-formed
pLLs, and plateaus when μ/t lies within a bulk gap, as shown
in Fig. 2. [Note that, contrary to conventional (pseudo-) Lan-
dau levels, such bulk gaps only exist here because of the finite
width of the ribbon]. As expected, the two edges contribute
large valley currents of opposite signs, owing to their large
group velocity. However, they do not cancel out completely
because the n = 0 edge mode—connected to the zero-energy,
flat zigzag state—is uncompensated: the K+ valley only has
a right-moving edge mode and its left-moving partner lives in
valley K−.
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FIG. 3. Transport properties of strained graphene nanoribbons with B = 5 T. (a) Equilibrium valley currents Iv [Eq. (18)] as a function of
chemical potential μ/t . We separate bulk, top, and bottom edge contributions in three equal sections according to the expectation value 〈ŷ〉 of
each eigenstate. The vertical lines show the energy of the bulk pLLs at the Dirac point. (b) Same data as in (a) but with the contribution from
the two edges combined. The net valley current is nonzero because of the dispersing edge mode connected to the flat, zero-energy n = 0 pLL.
(c) Longitudinal conductivity σ xx [Eq. (21)] as a function of chemical potential, where the edge contribution is suppressed by a factor of 1000.
The dashed lines represent the expected bulk conductivity Eq. (24) for the first few pLLs with n = 1..9. (d) Derivative of the total σ xx [sum of
the edge and bulk contributions in (c)] with respect to μ. We use a small physical temperature T/t = 0.0001 for all plots.

B. Chiral anomaly and negative strain-resistance

The strain-induced pLL spectrum displayed in Fig. 2 has
important consequences for electrical transport which might
be the most practical method to probe it experimentally. These
include the chiral anomaly and negative strain resistance,
which we now discuss.

The structure of the edge modes associated with pLL0,
with one right-moving branch belonging to one valley and
one left-moving branch to the other, will give rise to the chiral
anomaly. The application of a bias voltage along the wire will
result in pumping electrons from one valley to the other, thus
producing a net valley polarization mostly localized at one
edge of the ribbon. This is analogous to the chiral anomaly
in (1 + 1)-dimensional field theory, where the number of
left-moving and right-moving chiral modes is not conserved.
Here, because of the oppositely dispersive pLLs at the two
valleys, the valley and chiral charge coincides. Therefore, the
valley pumping through the pLL0 is described by the “valley
anomaly” equation,

∂tρ
v + ∂xIv = e

h
εμνFμν, (20)

where ρv and Iv are the valley charge density and valley
current, respectively. Note that only the electric field F01 =
−F10 = E exists in (1 + 1) dimensions. Similarly, in our
model the pseudomagnetic field b only determines the slope
of the chiral modes, and the one-dimensional transport will
be driven solely by an external electric field. Similar to the
regular chiral anomaly [58–60] or its strained-induced coun-
terpart [61,62] in (3 + 1)-dimensional Weyl/Dirac semimet-
als, we may expect a large contribution to the conductivity
from the valley anomaly. This is because the imbalance be-
tween the valley charge densities can only be relaxed through
intervalley scattering whose rate tends to be suppressed
due to the large momentum space separation between the
valleys.

A unique manifestation of the pLL spectrum is the negative
longitudinal “strain-resistance,” which results from the group
velocity of the nth Landau level being both b and n dependent
as indicated in Eq. (19). The longitudinal DC conductivity for
Landau level n, in the semiclassical Boltzmann formalism, is

given by

σ xx
n = e2

∫
dqx

2π
τ (En(qx ))v±

n (qx )2

(
−∂ f (E − μ)

∂E

)∣∣∣∣
En(qx )

,

(21)

where τ (En(qx )) is the relaxation time and μ is the Fermi
energy. Using Eq. (19) for the group velocity of electrons in
the bulk pLLs and changing the integration variable to band
energy En, we obtain (at zero temperature)

σ xx
n

(e2/h)
= 3h̄v2

F |bn|τ (μ)

2μ
. (22)

In real systems, τ (μ) will be a phenomenological parameter
describing various contributions to electronic scattering. In the
following, we assume for simplicity that the dominant source
of scattering is a Drude contribution which can be treated
using the Born approximation. The relaxation time then reads
τ (μ) = h̄/2πD(μ)niC, where ni is the concentration of impu-
rities, C is a constant depending on the details of the scattering
and D(μ)−1 = 2π h̄|v±

n (μ)| is the density of electronic states
at the Fermi level μ. We obtain

τ (μ) = h̄2|v±
n (μ)|

niC
= 3h̄3v2

F

2niC

|bn|
μ

(23)

and thus

σ xx
n

(e2/h)
= K|bn|2

μ2
, (24)

where we defined the constant K = 9(h̄vF )4/4niC. We see
that the longitudinal resistivity ρxx = 1/σ xx of the pLLs de-
creases as 1/|b|2, giving rise to a characteristic negative strain
resistance. Note also the peculiar μ dependence reflecting the
fact that the pLLs are not linear far from the Dirac points.

In systems with a finite width, the pLLs are not completely
formed—they only exist in a region of momentum space near
the Dirac points. Consequently, the bulk expression for σ xx

n
only applies for μ inside a well-formed bulk pLL, as shown
in Fig. 3(c), which compares the tight-binding simulation
with the analytical prediction, Eq. (24). The edge states (not
captured by this argument) provide the dominant contribution
to σ xx, given their large group velocity, and might therefore
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mask the contribution from the bulk pLLs in experiments.
Nevertheless, clear signatures of the pLLs can be seen in
dσ xx/dμ, which shows oscillations with a series of minima
between two neighboring peaks [see Fig. 3(d)]. These peaks
correspond to the abrupt change in group velocity occurring
when a bulk pLL merges into an edge state.

IV. SCALAR POTENTIAL

In general, a nonuniform deformation of the lattice will
not only generate a pseudomagnetic field, but also a scalar
potential energy U . This was so far neglected by consider-
ing only changes in hopping parameters. In general, such a
scalar potential term is proportional to the trace of the strain
tensor [33,63],

U = λ(εxx + εyy), (25)

where λ is a coupling constant which depends on microscopic
details and is estimated to be λ ∼ 4 eV in monolayer graphene
[64]. For the simplest triaxially symmetric strain pattern orig-
inally considered in Ref. [34], εxx = −εyy and U vanishes by
symmetry. However, for the uniaxial strain considered here,
this is not the case and U = 2λby/γ . In our tight-binding
model, this term simply reads

Hscalar =
∑

r

U (a†
r ar + b†

rbr), (26)

which breaks chiral symmetry but respects time-reversal sym-
metry. It has the same form as the coupling to an exter-
nally applied electric field E = E ŷ = (2λb/eγ )ŷ. Thus, even
though the parameter λ cannot be directly controlled, it can
be canceled (or enhanced) by applying a bias voltage across
the nanoribbon. The presence of this scalar potential term was
argued [64] to explain some features of the pLL spectrum
observed in Ref. [41].

A. Solution for pseudo-Landau levels

In the presence of the scalar potential term, the low-energy
theory for valley K+ [Eq. (12)] becomes

h+(q) = h̄vF [σx(qx + pAx ) + σyqy(s − rby) + σ0A0], (27)

where we defined the electromagnetic potential Aμ =
(A0,Ax, 0) with A0 = eEy/h̄vF and Ax = by = eBy/h̄. This
Hamiltonian is reminiscent of the seminal problem of a 2+1-
dimensional massless Dirac fermion in perpendicular electric
and magnetic fields, which can be solved in an elegant manner
by boosting to a frame where the electric field vanishes
[48,65]. In our case, a complication arises: The Dirac equation
obtained from Eq. (27) is not Lorentz invariant because p,
r, and s are not Lorentz scalars but functions of the spatial
derivative ∂x. However, when considering small pseudomag-
netic fields and momenta near the Dirac points (such that
qx � a−1

0 ), these Lorentz-invariance breaking terms are small.
One is thus tempted to treat p, r, and s as Lorentz scalars
and derive an approximate expression for the Landau level
spectrum in the presence of both E and B. We then confirm
that this method yields a quantitatively correct spectrum for
small fields, near the Dirac points, by comparing directly with
tight-binding results.

With this is mind, we now perform a Lorentz boost along
the x direction to a new frame S̃, following Ref. [48]. The
coordinates of the new frame are given by x̃ν = �ν

μxμ, where
xμ = (vFt, x, y) and

� =
⎛
⎝cosh θ sinh θ 0

sinh θ cosh θ 0
0 0 1

⎞
⎠. (28)

The relative velocity β between the old and the new frame
is determined through the usual relationship tanh θ = β. The
electromagnetic potential transforms with the inverse transfor-
mation as Ãν = �μ

ν Aμ, which yields

Ã0 = cosh θ

(
E

vFB
− β

)
by,

Ãx = cosh θ

(
1 − βE

vFB

)
by. (29)

Choosing the new frame velocity as β = E/vFB, the electric
field vanishes and we are left with a problem of the same form
as in Eq. (12), albeit with a renormalized pseudomagnetic field
b̃ = b

√
1 − β2. Invoking our previous result [Eq. (17)], the

solution for the pLLs in the new frame (to lowest-order in the
field b) reads

Ẽ+
n = sgn(n)h̄vF (1 − β2)1/4

√
|bn|(2 + 3q̃x ). (30)

Transforming back to the original frame (see details in
Appendix B) we obtain, to lowest order in |b|, β and qx,

E+
n

h̄vF
= − βqx + 3

2
β|bn|

+ sgn(n)(1 − β2)3/4
√

|bn|(2 + 3qx ). (31)

In the K− valley, the spectrum is obtained by the replacement
qx → −qx to respect time-reversal symmetry.

Numerical simulations on the strained lattice model in-
corporating the scalar potential term Eq. (26) reproduce the
analytical result Eq. (31) for the bulk modes, as shown in
Fig. 4. The most striking effect of taking the electric field
into account is that LL0 also acquires a linear dispersion with
an opposite slope ∓β h̄vF in the two valleys. Therefore, LL0

contributes to bulk valley currents under the combination of
E and B fields, whereas LLn with n = 0 only require the
presence of B.

B. Consequences for valley currents and tunable flat bands

In the presence of the scalar potential term, the group
velocity of bulk pLLs changes to

v±
n (qx ) = ∓βvF ± sgn(n)

3vF

2
(1 − β2)3/4

√
|bn|

2 ± 3qx
, (32)

which affects the valley currents and can also change their
sign, as shown in Fig. 4. This mechanism provides a way
to electrically control the magnitude as well as switch the
polarity of the bulk valley currents. Similarly, the longitudinal
conductivity σ xx will be affected by the slope renormalization
(not shown here).

Another interesting feature of this system is that by tuning
the strength of the electric and magnetic contributions, the
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FIG. 4. Spectra of zigzag graphene nanoribbons (width W ≈ 192 nm) subject to pseudomagnetic field B = 5 T and electric fields with
β = E/vFB = 0.05 (a) and −0.05 (b). The spectra are obtained from the exact diagonalization of the Hamiltonian [Eqs. (1) and (3) with
the addition of the scalar potential term, Eq. (26)], and the color scale represents the expectation value of the ŷ position operator for each
eigenstate. The dispersion of the pLLs follows the prediction based on the solution of the Dirac equation in the boosted frame, Eq. (31) (dotted
gray lines, shown here only for valley K+). The n = 0 pLL now disperses with an opposite slope in the two valleys. (c) Bulk contribution to
the equilibrium valley current for different β.

linear in qx part of the dispersion can be canceled out for any
given Landau index n, thus generating a nearly flat band. This
could be accomplished by tuning the electric field across the
nanoribbon with bias voltages such that

β

(1 − β2)3/4
= sgn(n)

3

2

√
|bn|

2
. (33)

This mechanism could thus provide a way to tune correlation
effects in graphene nanoribbons.

C. Quantitative estimates

Here we provide estimates of quantities relevant for the
experimental exploration of the valley physics discussed in
this paper. First, it is crucial that pLLs are formed in the
system. This necessitates a magnetic length that is much
smaller than the width W of the ribbon:

lB =
√

h̄

eB � W. (34)

For B = 2.5T (B = 5T) shown in Fig. 2, we get lB ∼ 16
nm (lB ∼ 11.5 nm) as a lower bound for W . For a linearly
increasing strain with the unstrained (equilibrium) point lo-
cated in the middle of the nanoribbon, the maximal relative
displacement �umax will be experienced at the edges (y =
±W/2) and given by

�umax ∼ εyy

(
y = W

2

)
= ea0B

γ h̄
W, (35)

where we restored a0. For B = 2.5 − 5.0T and W ∼ 192 nm
as shown in Fig. 2, we get �umax ∼ 3 − 6 %. These
values are not unreasonable, as Ref. [66] reports that in situ
uniaxial strain gradients of ∼1% can already be created. They
are also well below the ∼20% threshold which monolayer
graphene can withstand without breaking [67]. Further, the
characteristic energy gaps induced for fields B = 2.5 − 5.0 T
are given (at the Dirac point) by Egap ∼ 55 − 78 meV and are
thus within the experimental resolution of ARPES or STM
techniques.

Finally, our calculation relies on β < 1, where β = 1 cor-
responds to the collapse of the pLL spectrum. For B = 5 T and

vF ≈ 9 × 105m/s in graphene, this leads to the condition E <

4.5 × 103 V/mm. In comparison, we get E = 2λa0B/h̄γ ≈
2.5 × 103 V/mm, indicating that this system is close to the
pLL collapse (as also discussed in Ref. [64]). However, in our
setup E can be controlled by applying bias voltages across the
ribbon, thus allowing to access the small β regime discussed
in this paper.

V. DISCUSSION AND OUTLOOK

In this paper, we presented a simple setup which generates
spatially separated valley currents and a valley analog to the
chiral anomaly in uniaxially strained graphene nanoribbons.
These features are a direct consequence of dispersive bulk
pLLs near the Dirac points. We showed how this anomalous
dispersion arises through an inhomogeneous Fermi velocity,
which naturally appears in the low-energy theory describing
our system, and which lends itself to an exact analytical
solution. The effects of an applied electric field were also
considered by generalizing the solution of Ref. [48] to our
setup, showing how the valley currents can be controlled (and
even reversed) by bias voltages applied across the ribbon.

We now conclude by providing further remarks relevant
to potential experimental realizations of the physics discussed
in this paper. One major challenge will be to engineer such a
nonuniform, uniaxial strain pattern in a real graphene nanorib-
bon. This differs from the proposal of Ref. [39], which em-
ploys a uniaxial stretch to generate a uniform pseudomagnetic
field which, however, is not equivalent to a uniaxial strain
due to the particular geometry used. One solution could be
to bend a graphene nanoribbon (or a flexible substrate on
which the graphene nanoribbon would be deposited) in a
spiral-like shape, where the radius of curvature r(θ ) would
depend linearly on the angle θ . Perhaps more practically, a
recent work [66] reports the creation of linearly increasing
uniaxial strain patterns similar to those considered in this
paper. Using in situ strain tuning of graphene encapsulated in
hBN, the authors report a maximal strain around ∼1% which
is not too far from the 3 − 6% used in this work.

Another challenge will be the detection of such valley
currents. This could potentially be accomplished by attaching
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a “valley filter” [2,14–19] or a “valley beam splitter” [18–21]
at one end of the nanoribbon. However, care must be taken in
separating the bulk contribution from the edge contributions
which tend to dominate transport properties, owing to their
large group velocities. Further, careful matching between the
filter or beam splitter characteristic energy window and the
energy of the pLL under study must be achieved. Using
instead a superlattice of valley filters might offer better energy
tunability [68], but still remains an experimental challenge.

The simplest experimental detection of the anomalous pLL
structure predicted in this paper can be achieved through
an ordinary charge transport measurement. As implied by
Eq. (24) and Fig. 3, the bulk longitudinal electrical conduc-
tivity σ xx of a strained nanoribbon exhibits several remark-
able features. These include a negative strain resistance (that
is, decreasing resistance with increasing strain) as well as
a characteristic nonmonotonic dependence on the chemical
potential which can be tuned by adjusting the gate voltage.
Given that the edge contribution to σ xx typically dominates
over the bulk contribution, such effects might be easier to
observe in the derivative of the total conductivity, dσ xx/dμ,
as shown in Fig. 3(d). The unique signatures of pLLs could
also be observable using standard spectroscopic techniques
including scanning tunneling spectroscopy and angle-resolved
photoemission, which have been successfully employed to
probe strain-induced gauge fields in graphene [41–46].

Finally, we remark that our analysis does not crucially rely
on a nanoribbon geometry—it could also be realized as a
uniaxally strained region embedded in a larger (unstrained)
graphene sheet. In that case, the “bulk” valley currents would
occur in the center of the strained region, and the counter-
propagating “edge” valley currents would be mostly localized
at the interfaces between the strained and unstrained regions.
This might provide an alternative platform to test the valley
physics presented in this paper.
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APPENDIX A: EXACT SOLUTION OF THE DISPERSIVE
PSEUDO-LANDAU LEVELS

1. The differential equations and mathematical properties

For the low-energy physics around Dirac points of pLLs
due to spatial modulations in the y direction (Landau gauge),
one can write down a most general system of linear ODEs of
the 2 × 2 Hamiltonian,

�d · �σ
[
φA(y)
φB(y)

]
= ε

[
φA(y)
φB(y)

]
with

dx = −i(u − vby)∂y + pby + q, (A1)

dy = −i(s − rby)∂y + wby + t, (A2)

where ε = E/(h̄vF ) and p, q, r, s, u, v,w, t are certain linear
polynomials of qx dependent on the specific model. It lacks a
straightforward analytic solution to the best of our knowledge,
unless u = v = 0 or r = s = 0 or s − rby ∝ u − vby, which
can all be solved in a way similar to the following. The
analytic tractability thus lies in the absence of differentiation
in one of dx, dy or the presence of a same type of differentia-
tion in both, which, interestingly, always introduces a regular
singularity in (−∞,∞) as shown below.

Without loss of generality, we focus on the case when u =
v = 0 to account for all the models considered here:

�d · �σ = (q + pby)σx − i(s − rby)∂y σy. (A3)

In the main text, q is replaced directly by the momentum qx.
As aforementioned, adding nonzero w, t is still analytically
solvable in a similar manner. For completeness, we mention
that two independent artificial modulations could possibly in-
troduce two different rates of modulation, b̄ = νb and b corre-
sponding, respectively, to the two b’s in Eq. (A3), although the
overall effect is a single pseudomagnetic field dependent on
both. Obviously, ν can be absorbed into p. This, in some cases,
contrary to the one in the main text, can in its own right gen-
erate dispersionless flat pLLs even in zigzag graphene ribbon.

For Eq. (A3), let’s first shift y �→ y + s
rb to get[

q + pb
(

y + s

rb

)]
σx + i rby∂y σy. (A4)

Under the usual homogeneous Dirichlet boundary condition,
we note that −iy∂y is not Hermitian. Therefore, one had better
first perform a proper Hermitization, which is not unique in
general. A convenient choice that preserves the eigenequation
structure is to use instead the symmetrically Hermitized op-
erator −i y∂y+∂yy

2 = −i(y∂y + 1
2 ) . Further eliminating φA, we

arrive at a second-order ODE[
(pby)2 + pb

r
(2qr + 2ps − br2)y + �

r2
− b2r2

4

]
φB

− b2r2(2yφ′
B + y2φ′′

B) = 0, (A5)

where we define � = (qr + ps)2 − r2ε2. This Hermitization
only introduces the last term in the bracket in front of φB and
does not alter the overall form of the equation and hence the
eigenspectrum.

Equation (A5) can be cast in the form of a singular SL
problem

(Pφ′
B)′ − QφB = −λW φB, (A6)

with P(y) = y2,W (y) = 1, Q(y) = [(pby)2 + pb
r (2qr+2ps −

br2)y + (qr+ps)2

r2 − b2r2

4 ]/(b2r2), λ = ε2

b2r2 . It is singular be-
cause the interval is infinite and P(0) = 0. Therefore, it is
not guaranteed to have square integrable (i.e., inside the
physical Hilbert space) eigenfunctions on (−∞, 0] or [0,∞)
or (−∞,∞) for real eigenvalues, depending on Weyl’s spec-
tral dichotomy, limit circle/limit point classification, of the
boundary or singular points 0,±∞. Neither is an infinite
sequence of discrete eigenvalues guaranteed [53,54]. A finite
sequence of discrete eigenvalues is actually what we will see
in Eq. (A11). Knowing that each eigensubspace is at most one-
dimensional for separated boundary conditions and a well-
posed SL problem should have a complete eigenbasis [54],
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the existence of a complementary continuous essential eigen-
spectrum above the maximal discrete eigenvalue is naturally
expected.

2. Analysis of the equation

To facilitate the analytic solution, we first perform the
asymptotic analysis. Now the original regular singularity
ysgl = s

rb is moved to ysgl = 0 while the irregular singularity
is still at ∞. In the vicinity of ysgl, we can neglect any term
dependent on y in the polynomial factor of φB and Eq. (A5)
becomes(

�

r2
− b2r2

4

)
φB − b2r2(2yφ′

B + y2φ′′
B) = 0. (A7)

Physically, for small momentum k relative to the Dirac point
and lower Landau-level energies ε, we hereby safely assume
� � 0 and will justify later. This Cauchy-Euler equation has

two independent solutions, y
− 1

2 ±
√

�

|b|r2 . To make the solution

not divergent at ysgl, only y
− 1

2 +
√

�

|b|r2 is physically acceptable.
Toward the infinity, Eq. (A5) is asymptotically expressed as

(pby)2φB − (bry)2φ′′
B = 0, (A8)

which has two independent solutions e± p
r y. Note that they

diverge at ±∞, respectively. Therefore, they cannot help
build any physical solution on the whole y axis, which is a
peculiarity of the present singular SL problem and will be
made clear later.

We are now ready to make the substitution φB(y) =
e− z

2 y
− 1

2 +
√

�

|b|r2 u(y) with a change of variable z = −sgn(b) 2p
r y

for brevity. It may look a priori for the sgn(b) dependence and
surely can be motivated by a numerical solution. (Although it
later helps make the solution mathematically and physically
clear, we can otherwise stick to the same substitution without
sgn(b) and get some seemingly distinct solution, which can be
shown equivalent by certain transformation properties.) The
new equation turns out to be

− |b|e− z
2 y

1
2 +

√
�

|b|r2

×
{ p

r

[
2sgn(b)

(√
� − qr − ps

)+ r2(b + |b|)]u(y)

+ (2prby + 2
√

� + r2|b|)u′(y) + r2|b|yu′′(y)
}

= 0.

(A9)

Away from the singularity, we further transform it to a conflu-
ent hypergeometric equation of u(z),

zu′′(z) + (γ − z)u′(z) − αu(z) = 0, (A10)

in which α = (b+|b|)r2+2(
√

�−qr−ps)
2|b|r2 and γ = 1 + 2

√
�

|b|r2 . For-
mally, it has two linearly independent solutions, Kummer’s
function M(α, γ , z) and Tricomi’s function U (α, γ , z) [69].
Solution M exists when γ is not a nonpositive integer,
which is manifestly satisfied. Solution U in general ex-
ists as a linear combination �(1−γ )

�(α+1−γ ) M(α, γ , z) + �(γ−1)
�(α) z1−γ

M(α + 1 − γ , 2 − γ , z) or only the second part if γ is a non-
positive integer. Exhausting all the special cases, U (α, γ , z)
either always contains a term proportional to z1−γ or is
reduced to M(α, γ , z) when α is a nonpositive integer and γ

is not.

3. Eigenenergy and wave function

Thus, if solution U were present, φB would have a part ∝
y
− 1

2 −
√

�

|b|r2 that diverges at ysgl and hence we can hereafter work
only with solution M. For M(α, γ , z) to not diverge at infinity,
it is cut off to the generalized Laguerre polynomial Lγ−1

−α (z)
when α is a nonpositive integer. This solves the eigenvalues

ε2 = |b|n(2qr + 2ps − |b|nr2), (A11)

in which n = 0, 1, 2, · · · , 
 qr+ps
|b|r2 �. This already takes into

account that the overall power of y in φB(y) should be non-
negative for the convergence at ysgl. And in fact, we have
n � 1 (n � 0) when b > 0 (b < 0), which is intentionally cor-
rected since this apparent asymmetry between two opposite
directions of magnetic field is purely an artifact of converting
the first-order matrix ODE to a single second-order ODE.
Note that the eigenvalues clearly show a higher order effect
of the magnetic field b and have an upper bound as seen
from the fact that the quantization condition automatically
excludes � < 0. This eigenenergy upper bound, together with
the wave-function expanse (see discussion below), (−∞, s

rb )
and ( s

rb ,+∞) for positive and negative b, respectively, di-
verges with vanishing b as understood from the limiting case
recovering the leading-order conventional Landau level. Also
note that in Eq. (A5), only one term ∝ b2y in the factor of φB

will flip its sign by the mapping b �→ −b, y �→ −y. Therefore,
for the opposite direction of magnetic field, the solution
of identical energy is not obtained as a simple coordinate
reflection with respect to the singularity point ysgl.

It is also worthwhile to further comment on the wave
function. First, similar to conventional Landau levels, for nth
eigenenegy, φB(y) possesses exactly n − 1 zeros as seen from
the Laguerre polynomial contained. Note that this is in general
not granted since we have a singular SL problem. Second, the
exponential factor in φB(y) will diverge at sgn(b)∞. It looks
as if the analytic solution doesn’t allow a physical solution
vanishing toward both directions of the infinity simultane-
ously. This is resolved by noticing that homogeneous Dirichlet
boundary condition is automatically satisfied at −sgn(b)∞
and ysgl. Therefore, the true wave function is

φB(y)θ [sgn(b)(ysgl − y)]. (A12)

This is continuous but not its derivative, which is valid for
a wave function and is a typical consequence of the regular
singularity ysgl. The singularity suggests that some otherwise
small term cannot be ignored in the vicinity of the singularity,
and adding it eliminates the singularity. Physically, the lattice
regularization surely plays such a role. As a final check,
we mention that all the features discussed are confirmed by
numerical solutions based on a second-order finite element
method.

APPENDIX B: SPECTRUM OF PSEUDO-LANDAU LEVELS
IN THE PRESENCE OF ELECTRIC AND

PSEUDOMAGNETIC FIELDS

The Landau-level spectrum in the new frame S̃, in the K+

valley, reads

Ẽn = sgn(n)h̄vF (1 − β2)1/4
√

|bn|(2 + 3q̃x ). (B1)
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To obtain the spectrum in the original frame S, we have to
consider the transformation of the energy-momentum four-
vector under the Lorentz transformation �,

Ẽn = En cosh θ + h̄vF qx sinh θ, (B2)

h̄vF q̃x = En sinh θ + h̄vF qx cosh θ, (B3)

where tanh θ = β = E/vFB. Applying first Eq. (B2), we
obtain

En

h̄vF
= −βqx + sgn(n)(1 − β2)3/4

√
|bn|(2 + 3q̃x ), (B4)

which recovers the result of Ref. [48] when q̃x = 0. Trans-
forming q̃x to the original frame, using Eq. (B3), yields

En

h̄vF
= − βqx

+ sgn(n)(1 − β2)3/4

√√√√|bn|
(

2 + 3
qx + βEn/h̄vF√

1 − β2

)
.

(B5)

Squaring on both sides and taking h̄vF = 1, we obtain a
quadratic equation aE2

n + bEn + c = 0 with

a = 1,

b = 2βqx − 3β(1 − β2)|bn|,
c = β2q2

x − 2(1 − β2)3/2|bn| − 3(1 − β2)|bn|qx. (B6)

Neglecting terms of order O(b2), we get

En

h̄vF
≈ − βqx + 3

2
β(1 − β2)|bn|

+ sgn(n)(1 − β2)3/4
√

|bn|(2 + 3
√

1 − β2qx ). (B7)

In the limit of small β and small qx, this expression can be
further simplified by keeping terms up to second order in any
small quantity (β, qx, b), leading to

En

h̄vF
≈ −βqx + 3

2
β|bn| + sgn(n)(1 − β2)3/4

√
|bn|(2 + 3qx ),

(B8)

which is Eq. (31) in the main text.
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