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RKKY coupling in Weyl semimetal thin films

Sonu Verma,1 Debasmita Giri ,1 H. A. Fertig,2 and Arijit Kundu 1

1Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
2Department of Physics, Indiana University Bloomington, Bloomington, Indiana 47405, USA

(Received 29 October 2019; accepted 30 January 2020; published 24 February 2020)

We consider the effective coupling between impurity spins on surfaces of a thin-film Weyl semimetal within
Ruderman-Kittel-Kasuya-Yosida (RKKY) theory. If the spins are on the same surface, their coupling reflects
the anisotropy and the spin-momentum locking of the Fermi arcs. By contrast when the spins are on opposite
surfaces, their coupling is mediated by the Fermi arcs as well as by bulk states. In this case the coupling is both
surprisingly strong and highly thickness dependent, with a maximum at an optimum thickness. We demonstrate
our results using analytical solutions of states in the thin-film geometry, as well as using a two-surface recursive
Green’s function analysis of the tight-binding model.

DOI: 10.1103/PhysRevB.101.085419

I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional topologi-
cal systems that host an even number of band-touching points
(termed Weyl nodes) in the bulk spectrum, near which the low-
energy excitations follow the relativistic Weyl equation [1].
Such Weyl quasiparticles have definite chirality, and the chi-
rality of these quasiparticles is given by the nature of the
Weyl nodes, which can act as either sources or sinks of Berry
curvature in the Brillouin zone. In a finite geometry, WSMs
also host unique surface states known as Fermi arc states,
whose projected Fermi surfaces are open arcs on each of
the surfaces. Numerous materials have been predicted to be
suitable candidates for WSMs, and a variety of experiments
demonstrate their novel character.

Correlation functions impact many properties of these sys-
tems, and are of special interest because of the unique helical
nature of low-energy excitations in WSMs. Within this class
of properties, the effective interaction between two localized
impurity spins introduced in such a system, mediated by the
WSM conduction electrons, is described by the Ruderman-
Kittel-Kasuya-Yosida (RKKY) theory [2], and is directly re-
lated to the spin-spin correlation function of electrons within
the system. Among solid-state materials, spin-orbit coupled
systems [3,4], particularly topological and Dirac systems,
are interesting in the way they mediate long-range (and
sometimes controllable) coupling [5–17] among spins. Work
on RKKY interactions through bulk Weyl fermions [18–20]
shows the interactions can be anisotropic and are in some
circumstances weak, but generally carry signatures of the
chiral nodes.

Significant attention has also been given to RKKY interac-
tions on the surface of WSMs [21–23]. Surface states, at the
Fermi energy of a WSM in a slab geometry, typically reside at
wave vectors which form arcs in the surface Brillouin zone.
These arcs join one Weyl node to the other, and typically
disperse energetically perpendicularly to a given arc, with
different signs of the dispersion for each of the two physical
surfaces. The essentially one-dimensional character of the

surface states results in a strong, highly anisotropic spin-
spin correlation function, with similarly anisotropic RKKY
interactions among spin impurities adsorbed on the surface
of a WSM. Previous studies have been largely confined to
semi-infinite geometries, for which coupling between surfaces
cannot be modeled. Such coupling is potentially significant, as
the Fermi arc states can be relatively weakly localized at their
surfaces; moreover, the penetration length of a Fermi arc state
diverges as the surface wave vector approaches the projection
of a Weyl node. This can induce interesting physics due to
non-negligible coupling between spins on opposite surfaces
of the WSM.

In this paper, we investigate the effects of such intersurface
coupling by analyzing a slab geometry of finite thickness.
Specifically, we examine effective spin-spin interactions due
to the RKKY mechanism for two different situations. First,
when two spins are on the same surface of the WSM, surface
electrons on the opposite surface can participate in their cou-
pling. The resulting RKKY interaction reflects the anisotropy
of the Fermi surface, and in the thick-slab limit can be
compared with previous results in which only a single surface
was modeled [21]. Second, when the spin impurities are on
opposite surfaces of the slab, the resulting coupling depends
strongly on the overlap of the Fermi arc states. We find that
the resulting coupling is a nonmonotonic function of the slab
thickness, and a thin-film limit can be defined by observing
when the coupling between the spins is strongest. In order to
compute the coupling, we have developed a recursive Green’s
function scheme in which the elements of a Green’s function
on the surfaces can be computed essentially exactly with
relatively high numerical efficiency. We show that analytical
solutions for the WSM wave functions in a slab geometry
agree with the numerical results, and offer some qualitative
insight into their behavior.

This paper is organized as follows. In Sec. II, we intro-
duce the simple WSM model used for our work and find
analytical solutions for wave functions in a slab geometry
with appropriate boundary conditions. In Sec. III, we briefly
discuss the formal expression for RKKY interactions and our
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numerical scheme for computing them in a slab geometry of
a tight-binding model. Our numerical results along with their
asymptotic behaviors are presented in Sec. IV, where we make
comparison with analytical results. Finally we conclude with
a summary and discussion in Sec. V.

II. WEYL SEMIMETAL THIN FILM

A. Model Hamiltonian

A minimal model of a WSM has two Weyl nodes at the
Fermi energy and breaks time-reversal symmetry. For such
a model, the low-energy Hamiltonian can be written using a
two-band model. If the two bands represent spin states, then
for a slab geometry, with the Weyl nodes separated along the
momentum of one of the translationally invariant (in-plane)
directions, the surface states (Fermi arcs) are spin polarized,
resulting in completely spin-polarized surfaces of the slab. As
the indirect spin-exchange interaction is only interesting when
the ground state is spin unpolarized, the minimal model we
consider must have at least two Fermi arcs on each surface,
with the spin polarizations of each oriented such that the net
spin density on either surface vanishes. If the two Fermi arcs
on a surface have distinct locations in the surface Brillouin
zone, then one has a total of four Weyl nodes in the bulk, each
with a distinct location in momentum space. If the Fermi arcs
join two Dirac nodes, then the Fermi arcs will overlap in the
surface Brillouin zone. This latter situation was considered,
for example, in Ref. [21]. In our work we confine our studies
to the former case (i.e., Weyl semimetals).

Our starting point is a model Hamiltonian defined on a
cubic lattice [24]. The Hamiltonian preserves time-reversal
symmetry (defined by the time-reversal operator T = iσyK ,
with K the complex conjugation operator and σy a Pauli matrix
acting in the spin space), but breaks inversion symmetry, and
so has four degenerate Weyl nodes. Specifically, we take

H (k) = λ
∑

α=x,y,z

σα sin kα − μ + τyσyMk . (1)

Here Mk = m + 2 − cos kx − cos kz, and τα are Pauli matrices
acting in an orbital space. For |m| � λ the four Weyl nodes
are located at k = (0,±π/2 ± k0, 0), where k0 = π/2 −
sin−1(m/λ) (with lattice spacing a our unit of length and h̄ =
1). On a given surface, the two Fermi arcs join the four Weyl
nodes in a pairwise fashion, as illustrated in Fig. 1. States of
the two Fermi arcs are spin polarized along σx in opposite
directions (i.e., they are eigenvectors of σx ≡ τI ⊗ σx with
opposite eigenvalues for the two Fermi arcs). Furthermore, the
two Fermi arcs, at low energy, are dispersionless along the ky

direction and have opposite velocities along the x direction.
The Hamiltonian can be brought into a block-diagonal

form. Writing H ′ = UHU †, with the unitary matrix U defined
by

U = 1

2

⎛
⎜⎝

−1 −i −i 1
1 −i i 1
1 i −i 1

−1 i i 1

⎞
⎟⎠, (2)

<<<

<<<

FIG. 1. Top: For the WSM, Eq. (1), in a slab geometry with finite
thickness in the z direction and for kx = 0, the band structure (in the
units of λ) as a function of ky shows the four Weyl nodes in the bulk,
with the two Fermi arcs joining them. (The lattice spacing a is taken
to be unity.) Bottom: The spin densities of the Fermi arc states are
shown as a function of z for two values of ky as indicated in the top
panel. Parameters: m = 0.5λ, thickness Nz = 45 lattice spacings.

one finds H ′ has two 2 × 2 blocks, where for each block
(labeled by η = ±1), the two-band Hamiltonian is

H ′
η = λ(σy sin kx − σx sin kz )

+ ησz(2 + m − cos kx − cos kz ) − λσz sin ky. (3)

This is a particularly useful form in which each block indi-
vidually breaks time-reversal (TR) symmetry, while T maps
H ′

+ to H ′
− (and vice versa), so that the total Hamiltonian is TR

symmetric. Each of the blocks has two Weyl nodes separated
in momentum space, and on a given surface they are joined
by one Fermi arc. In principle, a system hosting many Fermi
arcs on a surface should be structured in such a way that each
joins two Weyl nodes; an effective model of such a multi-Weyl
node system could be written as H = H1 ⊗ H2 ⊗ · · · , where
each of the blocks contains two Weyl nodes.

To focus on the physics of the Fermi arcs, we expand the
Hamiltonian to lowest nontrivial order in kx and kz, writing
kx → qx and kz → qz. Then from Eq. (3) we obtain

H ′
η ≈ λ(σyqx − σxqz ) + σzMη(ky), (4)

with Mη(ky) = mη − λ sin ky. The four Weyl nodes
are at Kη,ξ = (0, η π

2 + ξk0, 0) with η, ξ = ±1 and
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k0 = cos−1(m/λ). For the η = +1 block, M+ < 0 between
ky ∈ (π/2 − k0, π/2 + k0). For a surface perpendicular to the
z direction, along the ky axis these two points are connected
by a Fermi arc. For the η = −1 block, M− > 0 between
ky ∈ (−π/2 − k0,−π/2 + k0), and again there is a Fermi arc
connecting these points on the ky axis for the same surface.
This situation is illustrated in Fig. 1. Note that for H ′ (i.e.,
after the unitary transformation), states on the Fermi arcs are
eigenvectors of σy rather than σx.

Near the Weyl nodes, if we can write the low-energy
Hamiltonian in the form of H = kμAμνσν , then the chirality
of the node is given by sgn(Det[A]). Writing k = (qx, η

π
2 +

ξk0 + qy, qz ) and expanding to first order in qi, we arrive at
the low-energy Hamiltonian

H low
ηξ ≈ λ(σyqx − σxqz ) + ηξασzqy, (5)

with α =
√

1 − (m/λ)2. The chiralities of the four nodes may
then be written as sgn(Det[Aη,σ ]) = −ηξ .

B. Infinite-mass boundary condition

To make progress analytically, we need to construct appro-
priate boundary conditions of the Dirac Hamiltonian Eq. (3)
for a slab geometry, such that the properties of the Fermi
arc can be recovered. In general boundary conditions for the
Dirac equation can be cumbersome, but our goal here is to
recover the properties of the surface modes (i.e., Fermi arc
states). Thus we adopt relatively simple boundary conditions
by taking the Hamiltonian of the vacuum (outside the slab,
which extends from z = 0 to z = Lz), to be similar to Eq. (4),
except for the mass term, whose form is taken as Mvac

η = ηm0,
with m0 → ∞. This construction is required to ensure that for
momentum between the Weyl nodes the effective mass term
[Mη(ky)] for the Weyl semimetal and the vacuum (Mvac

η ) are
oppositely signed.

The eigenfunctions for the Hamiltonian Hvac = λ(qxσy −
qzσx ) + Mvac

η σz are

ψvac ∝
(

λ(qz + iqx )

Mvac
η − E

)
ei(qzz+qxx), (6)

with eigenvalue E = ±
√

m2
0 + λ2(q2

z + q2
x ). For m0 
 E , the

eigenfunctions are normalizable if

qz = iκ, for z � Lz,

qz = − iκ, for z � 0,

with κ =
√

m2
0 + q2

x − E2. Thus, in the limit m0 → ∞, we
have κ → m0. For z > Lz,

ψ> ∝
(

im0 + iqx

ηm0 − E

)
e−m0z ≈

(
i
η

)
e−m0z. (7)

For z < 0,

ψ< ∝
(−im0 + iqx

ηm0 − E

)
em0z ≈

(
i

−η

)
em0z. (8)

At z = 0 and Lz, these spinors become the Fermi arc wave
functions, and are recognizable as eigenvectors of σy.

Matching the wave function ψ (z) within the slab to these
boundary forms yields the conditions

ψ (z = 0) ∝ ψ<(z = 0) and ψ (z = L) ∝ ψ>(z = Lz ), (9)

where

ψ (z) = a

(
λ(qz + iqx )

Mη(ky) − E

)
eiqzz

+ b

(
λ(−qz + iqx )

Mη(ky) − E

)
e−iqzz, (10)

with qz = (1/λ)
√

E2 − M2
η − λ2q2

x . Nontrivial solutions of

Eq. (9) exist if

Det

⎛
⎜⎜⎜⎝

i λ(qz + iqx ) λ(−qz + iqx ) 0

−η Mη(ky ) − E Mη(ky ) − E 0

0 λ(qz + iqx )eiqzLz λ(−qz + iqx )e−iqzLz i

0 [Mη(ky ) − E ]eiqzLz [Mη(ky ) − E ]e−iqzLz η

⎞
⎟⎟⎟⎠ = 0.

(11)

Simplifying this condition, we obtain a transcendental equa-
tion,

tanh(Lz

√
(Mη/λ)2 − χ )

Lz

√
(Mη/λ)2 − χ

= − λ

LzηMη

, (12)

where χ = (E/λ)2 − q2
x . For all real solutions χ of this equa-

tion, the energy has values E = ±λ
√

χ + q2
x . No solutions of

Eq. (12) exist with χ < 0.
For bound-state solutions, i.e., when qz is imaginary, χ <

(Mη/λ)2. The left-hand side of Eq. (12) is a positive func-
tion with values between 0 and 1. Thus, such bound-state
solutions are only possible when ηMη < 0 as well as when
|LzMη/λ| > 1, i.e., when |Mη| > λ/Lz. Defining χ ′ = L2

z χ

and M ′
η = ηLzMη/λ, we rewrite Eq. (12) as

tanh(
√

M ′2
η − χ ′)√

M ′2
η − χ ′

= − 1

M ′
η

. (13)

The various solutions of χ ′ from Eq. (13) can be labeled by an
index n = 0, 1, . . . (with increasing values of n corresponding
to larger values of χ ′) and the corresponding energy solutions
En,±(qx, qy) = ±λ

√
χn + q2

x give rise to particle-hole sym-
metric bands. The minimum solution of χ ′ is shown in Fig. 2.
The bands with n = 0 contain all the Fermi arc states (when ky

is between the Weyl nodes, in the Fermi arc interval) as well
as low-energy bulk states (when ky is outside the interval).

The a, b coefficients in Eq. (10) can be found from the
boundary conditions at z = 0 to be

a

b
= −Mη − E + ηλ(qx + iqz )

Mη − E + ηλ(qx − iqz )
. (14)

We can then write down the wave functions. Defining K =
Mη(ky) − E , f = λ(qx − iqz ), g = λ(qx + iqz ), one finds

|ψ〉 = 1√
N

{
(K + ηg)

(
i f
K

)
eiqzz

+ (K + η f )

(−ig
−K

)
e−iqzz

}
. (15)
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FIG. 2. Top: Minimum solution of χ ′ for values of M ′
η. When

M ′
η → −∞, χ ′ → 0; when M ′

η = 0, χ ′ = (π/2)2; and for large M ′
η,

χ ′ ≈ M ′2
η + π 2. Bottom: The lowest-energy solutions for qx = 0 for

various values of Lz from 5 to 30 are shown for half of the Brillouin
zone, containing two Weyl nodes. The energy values decrease expo-
nentially with increasing Lz, characteristic of surface states, for ky

between the Weyl nodes.

For real qz = √
χ − Mη(ky)2 (when χ > m2, f = g∗) the nor-

malization factor has the form

N = 2|K + η f |2(K2 + | f |2)L

+ Im

[
(K + η f )2(K2 + g2)

(
e−2iLqz − 1

qz

)]
. (16)

For purely imaginary qz = iκ (when χ < m2), f = qx + κ ,
g = qx − κ ,

N = −2(K + η f )(K + ηg)(K2 + gf )L

+ [(K + ηg)2( f 2 + K2)e−κL

+ (K + η f )2(g2 + K2)eκL]
sinh(κL)

κ
. (17)

These are the full solutions of the low-energy states of the
WSM slab in the rotated basis [Eq. (2)]. Once written in the
original basis, these solutions correctly reproduce the spin
configuration of the Fermi arc states.

In what follows, we retain only the n = 0 wave functions
above to calculate the one and two surface surface Green’s
functions. Using the unitary transformation U , we then write

these Green’s functions in the original basis of our model
Hamiltonian to compute the RKKY couplings.

III. RKKY INTERACTION AND RECURSIVE GREEN’S
FUNCTION

Ruderman-Kittel-Kasuya-Yosida (RKKY) theory [2] de-
scribes the effective coupling between two impurity spins S1

and S2 in a metal mediated by the conduction electrons. The
spins, located respectively at r1 and r2, are typically treated as
classical magnetic moments, and are assumed to be coupled to
the electrons by sd Hamiltonians, Hsd = JSi · s(ri ) (i = 1, 2),
where s(ri ) is the conduction electron spin density at the
location of impurity spin i. For small J , the resulting impurity
spin interaction becomes

HRKKY = −J 2

π

∫ EF

−∞
dωTr[(S1 · s)G(r12; ω + i0+)(S2 · s)

× G(−r12; ω + i0+)] (18)

≡
∑

i, j=x,y,z

Ji jS1iS2 j, (19)

where r12 is the separation of the two spins and G(r12; ω +
i0+) is the real-space Green’s function for the unperturbed
electron system. The resultant Ji j is essentially the electronic
spin-spin correlation matrix. In all of our results we show Ji j

in units of J 2.
Details of the particular electron system in which the

impurity spins are embedded enter the calculation through
G(r12; ω + i0+). For our WSM system, we will proceed in
two ways. First, we will directly compute G in momen-
tum space from the low-energy Hamiltonian wave functions
Eq. (15), and then Fourier-transform the expression to obtain
the needed real-space Green’s function. Our second approach
is more numerical, and involves inverting the tight-binding
model, Eq. (1). In this approach the discrete translational
invariance in the x-y plane of the slab geometry allows, for
each two-dimensional wave vector, independent computation
of the Green’s function. A computation of the real-space
Green’s function then follows from a Fourier transform. For
the results we present in the next section, we also restrict our-
selves to considering impurities which are exchange-coupled
to the same orbital of the two-orbital model, Eq. (1), which
captures the essential physics of interest. For the case of the
semianalytical model of the last section, for which the atomic-
scale structure is not included, we assume the impurities to be
exchange coupled to the conduction electrons within a small
region (of thickness of one lattice spacing) on each surface.

Before proceeding to our results, we use the remainder of
this section to outline the recursive Green’s function method
we use for our fully numerical studies. We are interested in the
coupling between impurities placed on the surfaces, so that in
the computation of G(r12; ω + i0+) one actually only needs
the Green’s function for sites r1 and r2 on the slab surfaces.
Following Ref. [25], we can compute the two-dimensional
Fourier transform of this, Gi j (ω, kx, ky), where i and j label
the surfaces of the slab on which r1 and r2 reside, respectively.
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FIG. 3. The RKKY coupling between two spins (connected to the same orbital) put on the same surface [along the x direction, i.e.,
R = (R, 0, 0)] of the WSM slab with (a) the analytical wave functions and keeping only the n = 0 bands, and (b), (c) numerically evaluated
Green’s function in real space. With increasing thickness, all components except Jxx becomes essentially thickness independent after a certain
thickness, as shown in (d). Inset of (d) shows the RKKY coupling vs slab thickness calculated using analytical wave functions and n = 0
bands. Results shown are for μ = 0 (i.e., Fermi wave vector kF = 0) and m = 0.5λ. R/a = 40 in panel (d).

For a slab geometry of Nz sites in the z direction, we rewrite
the tight-binding Hamiltonian [Eq. (1)] in the form

H (�k||) =
∑

j

[
ψ

†
j (�k||)A(�k||)ψ j+1(�k||) + H.c.

+ψ
†
j (�k||)h j, j (�k||)ψ j (�k||)

]
, (20)

where �k|| = (kx, ky), which are good quantum numbers. This
allows us to write the Hamiltonian in the form of

H =

⎛
⎜⎜⎜⎝

h A 0 . 0
A† h A . 0
0 A† h . 0
. . . . .

0 0 0 . h

⎞
⎟⎟⎟⎠, (21)

and the Green’s function is evaluated from the equation

[ωI − H (�k||)]G(�k||, ω) = I. (22)

When Nz = 1 + 2k , the above set of equations can be recast in
the form (

ωI − h′)G′ = I, (23)

with

h′ =
(

h(k) A(k)

A†(k) h(k)

)
, G′ =

(
G11 G1Nz

GNz1 GNzNz

)
, (24)

where the h(k)
t , h(k)

b , and A(k) are found by recursively solving

A(i+1) = A(i)(ω − h(0) )−1A(i),

h(i+1) = h(i) + A†(i)(ω − h(i) )A(i) + A(i)(ω − h(i) )A†(i),

h(i+1)
t = h(i)

t + A(i)(ω − h(i) )−1A†(i),

h(i+1)
b = h(i)

b + A†(i)(ω − h(i) )−1A(i), (25)

with h(0)
t = h(0)

b = h(0) = h and A(0) = A. This yields the two
surface Green’s functions G(�k||)1,1 and G(�k||)Nz,Nz as well as
their connections G(�k||)1,Nz and G(�k||)Nz,1 without requiring a
solution for the full Green’s function.

IV. NUMERICAL RESULTS

In this section, we present our results for the specific cases
when (i) the magnetic impurities are on the same surface
of the WSM, and (ii) when the magnetic impurities are on
opposite surfaces of the WSM. In both cases we compute
the RKKY interaction using the recursive Green’s function
method outlined in the last section, as well as using the
analytical wave functions of the n = 0 bands of Sec. II, which
contain the Fermi arc states, and compare the results.
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FIG. 4. The RKKY coupling between two spins (connected to same orbital) on opposite surfaces of the WSM slab, with the positions of
the two spins at (x, y, z) = (0, 0, 0) and (R, 0, Lz = Nza). (a), (c), and (e) are results for the analytical wave functions keeping only the n = 0
bands. (b), (d), and (f) show numerically evaluated results from the Green’s function approach. With increasing thickness, all components
decrease rapidly (shown in more detail in Fig. 5). These results are for μ = 0 (kF = 0). For all panels, m = 0.5λ.

A. Impurities on a single surface

As discussed above, the Fermi arc states disperse in energy
along �k perpendicular to the arc itself. As a result these states
have a highly asymmetric velocity, with vy � vx. The effec-
tive interaction between spin impurities placed on the same
surface reflects this strong asymmetry. For a semi-infinite
system, it can be shown for large r that the elements of the
Green’s function G(�r) asymptotically vanish as ∼1/r2 when
�r is on the surface and �r ‖ ŷ. By contrast, they fall off as
∼1/r when �r points along the x̂ direction [21]; the difference
is a consequence of the (nearly) unidirectional dispersion of
the Fermi arc energies. This results in the strongest RKKY
coupling for impurities separated along the x̂ direction, and
in what follows we focus on separations along this direction.
Moreover, for a thick enough sample (when the presence
of the other surface may be neglected), states in each of
the Fermi arcs are spin polarized (along the direction of σx

in our model) and are chiral in their dispersion (i.e., the
energy is proportional to ±kx for η = ±1). For such helical
states, where oppositely polarized electrons move in opposite
directions, one expects the spin-spin coupling will vanish for
the impurities with spin polarization parallel to that of the
electrons [5,17,21]. This argument suggests that Jxx will van-
ish for coupling among spins mediated by a single Fermi arc.

These expectations may be understood as follows. The
Fermi arcs, for a thick sample, are exponentially confined to
a surface at z = 0 with an approximate wave function [see
Eqs. (7) and (8)]

ψFA(r) ≈ eikxxeikyye−|Mη (ky )| z
λ

(
i

−η

)
, (26)

where Mη(ky) = mη − λ sin(ky). This wave function allows us
to write an effective Green’s function from the Fermi arc on

this two-dimensional surface in the form

GFA
η (ω + iδ; r) = (σ0 − ησy)

∫
d2k

(2π )2

eikxxeikyy

ω − ηvF kx + iδ

×
∣∣Mη(ky)

∣∣
λ

θ (ky − kη,1)θ (kη,2 − ky), (27)

where the Fermi arcs exist between kη,1 = ηπ
2 − k0 and kη,2 =

ηπ
2 + k0. The ky momentum can be integrated between kη,1

and kη,2, and performing the kx integral one obtains

GFA
η (ω + iδ; r) = i

σ0 − ησy

πv2
F

ei(ω+iδ) |x|
vF I (y)θ (ηx), (28)

where the Fermi velocities of the Weyl nodes vF = λ. In the
limit δ → 0+,

I (y) = eiπy/2�(y), (29)

with �(y) = m sin(yk0) − yλ sin k0 cos(yk0)

y(y2 − 1)
, (30)

and r = (x, y). This approximate form for the Green’s func-
tion is useful in determining the asymptotic behavior of the
RKKY interaction, as we show briefly in the next section
(see also Ref. [21]). Note that the step function in Eq. (28)
implements the chiralities of the Fermi arcs. As η = ±, in the
full 4 × 4 orbital/spin space, the Green’s function is then

GFA(ω; r) =
(

GFA
+ (ω; r) 0

0 GFA
− (ω; r)

)
. (31)

With this expression it is straightforward to work out the
RKKY integral [Eq. (18)] and show that, in the original basis
of the Hamiltonian, Eq. (1), the elements of the correlation
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FIG. 5. Top main panel: The RKKY coupling between two spins
(connected to the same orbital) on opposite surfaces of the WSM
slab of thickness Lz = Nza and placed at (0,0,0) and (R = 40a, 0, Lz )
as a function of Nz, evaluated using the numerical Green’s func-
tion method. Inset: Results from analytical wave functions, keeping
only the n = 0 bands. With increasing thickness, all components of
RKKY coupling decrease rapidly after attaining a maximum value
at an optimum thickness (see discussion in the main text). Bottom
panel: The RKKY coupling between two spins (connected to same
orbital) on opposite surfaces of the WSM slab of thickness Nza
placed at three lateral distances (R = 20a, 0, Lz ), (R = 40a, 0, Lz ),
(R = 60a, 0, Lz ) as a function of Nz. These results are computed
using the analytical wave functions keeping only the n = 0 bands.
Note that the spin-spin couplings peak at slightly different slab
thickness for different lateral separations between them and Jxx =
Jyy ≈ −Jzz. Other parameters are the same as in Fig. 4.

matrix, Eq. (19), are given by

Jxx = 0; Jyy = Jzz = −J2�(y)2

2π3v3
F x

cos(2kF x + πy), (32)

Jzy = −Jyz = J2�(y)2

2π3v3
F x

sin(2kF x + πy). (33)

Other off-diagonal components vanish. In this limit, the sep-
aration of the pairs of the Weyl nodes (taken as π/a in
our model) does not alter the result. Note that a nonvan-
ishing asymmetric Dzyaloshinskii-Moriya (DM) [26,27] type
of exchange interaction (Jzy = −Jyz �= 0) arises among the
impurity spins due to the broken inversion symmetry of the
system. The symmetries apparent in Eqs. (33) can be under-
stood from the original tight-binding system, as we discuss in

Appendix A. These are reflected in our results, as illustrated
in Fig. 3.

In particular, the value of Jxx attains a maximum at an
optimum thickness Lz = Lc and decreases with further in-
crease in the thickness of the sample. The other components
increase with increasing thickness and become constant as
Lz > Lc, as shown in Fig. 3(d). In Sec. IV C, we provide a
detailed analysis of asymptotic behavior of Jxx and Jyy for
large R. Off-diagonal components other than Jzy and Jyz (not
shown) are several orders of magnitude smaller than these
quantities, as expected from the above analysis. (Note also the
qualitative agreement between results from our semianalytical
model and the tight-binding computation.) The DM type of
coupling follows similar behavior to that of Jyy. In Fig. 3(a),
one sees |Jxx| � |Jyy|, |Jzz|, both for our numerical analysis
(see below) and when using the analytical model with just the
n = 0 band. However, Jxx shows further oscillations for the
analytical model for larger values of Nz. The precise reason
for this is uncertain; it may be caused either by limitations in
our numerics, or due to the fact that the n = 0 band itself is
not enough to fully capture the intersurface coupling through
the bulk states at larger thickness.

The results for Jxx obtained from the tight-binding compu-
tation are particularly interesting. If the coupling between the
spins were only mediated by the Fermi arc states and if they
were fully spin polarized along the x direction, then one would
expect Jxx to vanish. In contrast, in the slab geometry Jxx

remains nonzero and falls off rather slowly (see Fig. 3) with
the distance between the impurity spins. (Similar behavior
is found in our analytical model at small thickness.) The
discrepancy can be attributed to two possible effects: (i) inter-
actions mediated by the bulk states which were not included
in the simple Fermi arc analysis, and (ii) the presence of the
second surface. Interestingly, Fig. 3(b) shows that Jxx, after
attaining a maximum value, vanishes rapidly with increasing
thickness, which clearly favors mechanism (ii). Indeed, the
nonmonotonic behavior of Jxx can be understood as follows.
Initially when the sample thickness is small, processes that
couple the spins involve both surfaces, which host states
of opposite helicity. The surface density of states increases
with increasing thickness, giving rise to values of Jxx that
increase with thickness. At larger thicknesses, the second
surface becomes increasingly inaccessible to impurities on the
first surface. Thus Jxx deceases rapidly with further increase in
thickness. Since the chiral nature of the surface states does
not affect the other RKKY couplings, with rising sample
thickness these couplings increase monotonically, due to the
increasing surface density of states. They saturate to constant
values at large thickness.

The critical thickness Lc can be used to define a “thin-film
limit” of the system, for which the effects of having two
surfaces are maximal. Noting that k0 is the only relevant
momentum scale, we expect the thin-film limit to scale as
Lc ∼ a/k0. A numerical verification of this hypothesis is
presented in Appendix B.

B. Impurities on opposite surfaces

When the impurity spins are put on opposite surfaces
of the slab, they may communicate via electron states that
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(e)

(f)

(a)

(b)

(c)

(d)

FIG. 6. Asymptotic behavior of spin-spin couplings: Exponents α, γ , and β (see the main text) of the RKKY coupling between the two
spins are estimated for various values of the parameter m/λ, where a larger m/λ ratio represents a smaller length of the Fermi arc in momentum
space, which is given by 2 cos−1(m/λ). All other figures of the coupling amplitudes, in the main text, are shown for m/λ = 0.5. (a)–(d) show
the exponents when the spins are on the same surface, and (e) and (f) show the exponents when the two spins are on opposite surfaces. Other
than the plots for larger thickness, which are marked directly in panels (a)–(d), the thickness of the sample is kept fixed at Lz = 33a for all of the
cases. Linearly dispersing electronic states would result in γ = 2δ/λ ≈ 0.016, where δ is the small imaginary part added to the denominator
of the Green’s function. Plots for which γ ≈ 2δ imply that the electronic states most important in the coupling are linearly dispersing. In the
inset of (a) and (b), we show the behavior of α and γ parameters for the spins on the same surface by varying m/λ continuously for a fixed
separation of the spins, R = 80a. In the inset of (e), we show the nature of the parameter β for spins on opposite surfaces by varying m/λ

continuously for a fixed in-plane separation of the spins, R = 40a.

are present in the bulk of the Weyl semimetal. To examine
this effect numerically, we place the two spins on different
surfaces of a WSM slab with various thicknesses and vary
their separation along the x axis (i.e., the direction in which
the Fermi arc states disperse). Results from this are illustrated
in Figs. 4 and 5.

For the range of parameters we examined, the symmetry
properties of the spin-coupling matrix turn out to be the same
as when the spins are situated in the bulk and are separated
along the z direction (see Appendix A). Numerically, when
the two spins are located at sites (x, y, z) = (0, 0, 0) and
(R, 0, Lz = Nza), the coupling between them is surprisingly
strong despite the fact that they reside on different surfaces. It
is shown in Fig. 4 that in addition to DM-type exchange cou-
plings, symmetric off-diagonal type [27] exchange couplings
Jxz = Jzx are also present. The asymptotic behavior of diag-
onal couplings for large R is discussed in detail in Sec. IV C
below; off-diagonal components of the coupling matrix have
asymptotic behavior similar to diagonal components.

As a function of the thickness Lz, for fixed R all the cou-
plings initially increase and after attaining maximum values
decrease rapidly. Results for both the analytical and tight-
binding approaches for varying Nz are illustrated in Fig. 5.
The nonmonotonic behavior of all the couplings as a function
of thickness can be qualitatively understood as follows. As
the thickness increases, the Fermi arcs localize increasingly

firmly on the surfaces, increasing the surface density of states
near the Fermi energy. This leads to an increase in the cou-
pling between the impurity spins on the surfaces and the con-
duction electrons, which can mediate intersurface interactions
effectively when Lz is not too large. On the other hand, as
Lz increases, the number of conduction electron states which
are sensitive to both surfaces decreases, resulting in weaker
coupling between spins on opposite surfaces. With increasing
thickness, the competition between these two mechanisms
gives rise to a critical thickness for which the coupling be-
tween spins placed on opposite surfaces maximizes. As in our
earlier argument for impurities on the same surface, with k0

the only relevant momentum scale we expect this thickness
to scale as ∼a/k0. We explore this in Appendix B. Again
this critical thickness also defines a thin-film limit; the values
of this critical thickness obtained from intersurface coupling
are of the same scale as those obtained from the intrasurface
coupling.

C. Asymptotic behavior

In this section we analyze the asymptotic behavior
of RKKY couplings based on the observations shown in
Figs. 3, 4, and 5. We first examine the behavior of the various
RKKY couplings as the distance between spin impurities be-
comes very large. For numerical estimation of the functional
form of the Jii as R along x̂ becomes large, we numerically
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FIG. 7. RKKY coupling for slab with surfaces perpendicular to
the inter-Weyl node separation (y direction in our model) for which
there are no Fermi arcs. m = 0.5λ, Nz = 33. Top panel: Spins on
the same surface. Bottom panel: Spins on opposite surfaces. In
comparison with Figs. 3 and 4 the couplings are very small. For
larger R, as the Jii become very small, the oscillations are likely due
to the numerical inaccuracy.

evaluate two quantities,

α(R) = R2 d2 log J

dR2
, γ (R) = −a

d

dR

(
R

d log J

dR

)
, (34)

and plot them as a function of R in Figs. 6(a)–6(d). Essen-
tially, if these functions become independent of R at large R,
then the asymptotic functional form of the coupling is J ∼
e−γ (R/a)R−α . The numerical origin of γ is that in evaluating
the Green’s function, we add a small imaginary value δ to
ω, which models contacting the electrons to some source
of incoherence. For a system with linear dispersion, it is
easy to check that the resulting γ in the asymptotic limit
would simply be 2δ, which matches well with the numerically
estimated value of γ for Jyy and Jzz. As δ → 0, γ should also
vanish.

The separation of Weyl nodes in momentum space is con-
trolled by the parameter m/λ and is given by 2 cos−1(m/λ).
As shown in Fig. 6, for all values of possible Weyl node
separations, the numerical estimation of α indicates that
Jzz, Jyy ∼ 1/R for R 
 a. For very small separation of the
Weyl nodes (i.e., for m/λ close to unity) convergent 1/R
behavior is reached only for a large thickness. Note that, at
very large R (such that k0R/a 
 1), it is predicted that Jzz and
Jyy would fall off asymptotically roughly as 1/R2 due to the
curvature of the Fermi arcs [21]. Our numerical results suggest
that Fermi arc curvature effects on the exponent may require
very large spin separations to become noticeable.

Our estimate of the quantities α and γ display a surpris-
ingly slow decay of the coupling with impurity separation,
even for spins on opposite surfaces. This raises the possibil-
ity that magnetizations on the surfaces should order at low
temperature. For intersurface coupling, γ remains close to
2δ for large R, but α(R), even for large R, shows a weak R
dependence, hinting that the coupling may have a more com-
plicated asymptotic form than 1/R. Our numerical estimate
of α(R) for a large R (≈150a) is about 1.25. Results from
the tight-binding simulation and from the low-energy wave
functions both support this result.

In the inset of Fig. 6(e), we plot the function

β(Lz ) = L2
z

d2 log J

dL2
z

(35)

as a function of Lz using the results from the low-energy wave
functions (for fixed R), showing that at large Lz, β retains a
value ≈5. Thus as a function of thickness, the coupling decays
as ∼e−γ̃ (Lz/a)L−β

z with β ≈ 5. This value of β matches the
power-law falloff of RKKY coupling for spins in the bulk
of the WSM [18,21], suggesting that for large enough Lz the
coupling between spins on opposite surfaces is dominated by
the bulk states. The coefficient γ̃ (not shown) arises due to the
nonvanishing δ.

V. SUMMARY AND DISCUSSION

In this work we have examined RKKY interactions among
impurity spins on the surfaces of Weyl semimetal (WSM)
slabs, using both an approach in which the wave functions
of the WSM electrons are found in an analytical form, and
a more fully numerical recursive Green’s function technique.
We find that Fermi arc surface states play an important role in
the RKKY coupling, creating couplings that are stronger and
more long range than is found for impurities well inside the
bulk of the system. Surprisingly, even the coupling between
spins on opposite surfaces can be relatively strong. As a
function of film thickness, we find that the RKKY couplings
are nonmonotonic, with maxima that can define a “thin-film”
limit, in which the effects of both surfaces are in some
sense maximal. The relative strengths and signs of different
components of the RKKY couplings Ji j can be understood
using a simple model in which only surface states associated
with the Fermi arcs are retained, and in which the Fermi arcs
are perfectly straight.

The importance of electron states with strong support
on the surfaces can be examined by comparing results for
geometries with Fermi arcs to ones without them. Figure 7
illustrates RKKY coupling for spins on the same and opposite
surfaces which are perpendicular to the direction of separation
between the Weyl nodes in the bulk, for which surface states
are not present. The generally smaller scale of the resulting
couplings supports the idea that the Fermi arc states play a
large quantitative role in setting the coupling scale.

The results presented to this point have been for vanishing
chemical potential μ, where the only extended Fermi surfaces
are due to the Fermi arcs, and the Fermi energy passes directly
through the Weyl nodes in the bulk. In general, when μ �= 0
and the Fermi wave vector kF �= 0 in the bulk, one expects
2kF oscillations in the RKKY coupling. Results for μ �= 0 are
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FIG. 8. The diagonal elements of coupling matrix at a finite chemical potential (given by μ in units of λ), showing 2kF oscillations. The
left column shows the results for the spins on the same surface of the slab and the right column shows the results when the spins are on opposite
surfaces. The slab thickness Nz = 33 and all other parameters are the same as in Figs. 3 and 4.

presented in Fig. 8, for which the oscillations are apparent.
The envelopes within which these oscillations occur behave
rather similarly to the results for μ = 0. For finite, but small
μ, the nonmonotonic behavior of the couplings that defines
the “thin-film limit” persists, as illustrated in Fig. 9.

When a system is on the order of or thinner than a critical
thickness ∼1/k0, our results show that a proper treatment

FIG. 9. The Jxx coupling between spins on opposite surfaces for
the system with a finite but small chemical potential μ/λ = 0.05, as a
function of the thickness of the slab, showing that the nonmonotonic
behavior persists (compare to Fig. 5, where the chemical potential is
the energy of the Weyl nodes). Other parameters are the same as in
Fig. 5. Other couplings behave analogously.

of RKKY interactions requires one to retain states from the
Fermi arcs of both surfaces, even if the two spins reside on
the same surface. For real systems, such as TaAs [28], the
typical separation of Weyl nodes is rather small (on the order
of k0 ≈ 0.1π/a) and thus we expect the critical thickness to be
on the order of several tens to a hundred lattice spacings. Such
thicknesses are quite reasonable for thin-film semiconductor
systems.

We conclude with some speculations about the kind of
magnetic order these RKKY interactions might induce in the
low-temperature state of spin impurities on the surfaces of a
WSM thin film. At large distances, the strongest couplings we
find are for Jyy = Jzz < 0 within a single surface, suggesting
the system will form a planar ferromagnet in its ground
state. The nonvanishing Jyz and Jzy couplings if large enough
could induce spiral order; while at short distances these can
be larger than the diagonal elements, at long distances the
latter are significantly larger. Given the relatively slow spatial
decay of the RKKY interaction, it seems likely that the
system will favor ferromagnetism. Furthermore, the sign of
coupling for impurities on different surfaces suggests that
the magnetization of the two surfaces will be parallel to one
another in the ground state. In principle at low temperature
such magnetic order should be detectable. Moreover, with this
type of order one expects a magnetic disordering transition
at finite temperature in the Kosterlitz-Thouless universality
class, which might be detected in thermal measurements or
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via spin transport in the system. Finally, the importance of
the Fermi arc states in supporting such magnetic order could
be tested by comparing the behavior of slabs in which the
surfaces support them to ones in which they do not. We leave
the investigation of these questions to future work.
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APPENDIX A: SYMMETRIES AMONG THE
SUSCEPTIBILITY MATRIX ELEMENTS

In this Appendix we briefly discuss the symmetries among
the various coupling elements Ji j for spins that are on the
same or opposite surfaces, as well as in the bulk, based on
the symmetry of the underlying Hamiltonian of the WSM.

First we consider the case when both spins, coupled to
same orbital, are on the same surface of a WSM slab of thick-
ness Nz with spatial separation (x = R, 0, 0). The two Green’s
functions G(r12, ω) and G(−r12, ω) required to calculate the
RKKY coupling between the spins for some arbitrary values
of x and ω have the structures

G(r12, ω) =

⎛
⎜⎝

s0 s1 s2 s3

s1 s0 s4 s2

s2 −s3 s0 s1

−s4 s2 s1 s0

⎞
⎟⎠, (A1)

G(−r12, ω) =

⎛
⎜⎝

s0 −s1 −s2 s3

−s1 s0 s4 −s2

−s2 −s3 s0 −s1

−s4 −s2 −s1 s0

⎞
⎟⎠, (A2)

where si (with i = 0, 1, 2, 3, 4) are complex numbers depend-
ing on R and ω. Using these in Eq. (19), we obtain all possible
nonzero components of the spin-spin correlation matrix to be

Jzz = Jyy, Jxx �= 0, Jzy = −Jyz. (A3)

Next, we consider the case when both spins, coupled to the
same orbital, are on the opposite surfaces of a WSM slab of
thickness LZ with lateral spatial separation R; the positions of
the two spins are (0,0,0) and (x = R, 0, Lz ). The two Green’s
functions G(r12, ω) and G(−r12, ω) required to calculate the

RKKY coupling between the spins for arbitrary values of R
and ω now have the structure

G(r12, ω) =

⎛
⎜⎝

o0 o2 0 o3

o2 o1 −o3 0
0 −o3 o0 o2

o3 0 o2 o1

⎞
⎟⎠, (A4)

G(−r12, ω) =

⎛
⎜⎝

o1 −o2 0 o3

−o2 o0 −o3 0
0 −o3 o1 −o2

o3 0 −o2 o0

⎞
⎟⎠, (A5)

with oi (with i = 0, 1, 2, 3, 4) complex numbers depending on
R, Lz, and ω (o2 is two orders magnitude smaller than other
elements). Using these in Eq. (19), we find that all possible
nonzero components of the spin-spin correlation matrix are
related by

Jxx ≈ Jyy, Jzz �= 0, Jxy = −Jyx,

Jzx = Jxz, Jzy = −Jyz. (A6)

Finally, we consider the case when the two spins, coupled
to the same orbital, are deep in the bulk of a WSM and have
spatial separation (0, 0, z = R). The two Green’s functions
G(r12, ω) and G(−r12, ω) required to calculate the RKKY
coupling between the spins for some arbitrary values of R and
ω have the structure

G(r12, ω) =

⎛
⎜⎝

b0 0 0 b2

0 b1 −b2 0
0 −b2 b0 0
b2 0 0 b1

⎞
⎟⎠, (A7)

G(−r12, ω) =

⎛
⎜⎝

b1 0 0 b2

0 b0 −b2 0
0 −b2 b1 0
b2 0 0 b0

⎞
⎟⎠, (A8)

where bi (with i = 0, 1, 2, 3, 4) are complex numbers de-
pending on R and ω. Using these in Eq. (19), we obtain the
components of the spin-spin correlation matrix as similar to
those in Eqs. (A6):

Jxx = Jyy, Jzz �= 0, Jxy = −Jyx,

Jzx = Jxz = 0, Jzy = Jyz = 0. (A9)

APPENDIX B: CRITICAL THICKNESS AND THE
SEPARATION OF THE WEYL NODES

Finally, we examine in more detail the k0 dependence of
the critical thicknesses at which the couplings are maximized,
as discussed in the main text. Figure 10 illustrates numerical
results for the thickness dependence of RKKY couplings for
various values of the Weyl node separation k0, for both the
cases when the spins are on the same surface as well as
when the spins are on the opposite surfaces. If one estimates
the critical thickness Lc at which the coupling attains its
maximum, one finds that Lck0/a ≈ constant.
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(a)

(b)

(c)

(d)

FIG. 10. The critical thickness at which the RKKY coupling is maximum depends strongly on the separation of the Weyl nodes in
momentum space, given by k0 = cos−1(m/λ). For three values of m/λ = 0.2 (triangles), 0.5 (filled circles), and 0.95 (squares), (a) and
(b) show the thickness dependence when the spins are on the same surface, while (c) and (d) show the thickness dependence when the
spins are on opposite surfaces. For (a) and (c) the analytical solutions for wave functions of the low-energy Hamiltonian have been used. For
(b) and (d) the recursive Green’s function method was used directly on the tight-binding model. The parameter values are the same as for
Figs. 3 and 4. For (a) and (b), the two spins are at positions (x, y, z) = (0, 0, 0) and (R = 40, 0, 0), and for (c) and (d) the two spins are at
positions (x, y, z) = (0, 0, 0) and (R = 40, 0, Lz = Nza).
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