
PHYSICAL REVIEW B 101, 085412 (2020)

Theoretical phase diagram of two-component composite fermions in double-layer graphene
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Theory predicts that double-layer systems realize “two-component composite fermions,” which are formed
when electrons capture both intra- and interlayer vortices, to produce a wide variety of new strongly correlated
liquid and crystal states as a function of the layer separation. Recent experiments in double-layer graphene have
revealed a large number of layer-correlated fractional quantum Hall states in the lowest Landau level, many of
which have not been studied quantitatively in previous theoretical works. We consider the competition between
various liquid and crystal states at several of these filling factors (specifically, the states at total filling factors
ν = 3/7, 4/9, 6/11, 4/7, 3/5, 2/3, and 4/5) to determine the theoretical phase diagram as a function of the layer
separation. We compare our results with experiments and identify various observed states. In particular, we show
that at small layer separations the states at total fillings ν = 3/7 and ν = 3/5 are partially pseudospin polarized,
where pseudospin refers to the layer index. For certain fractions, such as ν = 3/7, interlayer correlations are
predicted to survive to surprisingly large interlayer separations.

DOI: 10.1103/PhysRevB.101.085412

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) in double-layer
systems is an interesting platform for studying strongly cor-
related electron systems. In single layers, there is essentially
only one relevant energy scale for the FQHE. In a double-
layer system, two energy scales are present, namely the in-
tralayer and interlayer Coulomb interactions. The competition
between these two energy scales can be controlled by tuning
the distance between the layers d/l , given here in units of
magnetic length l = √

h̄/(eB), where B is the perpendicular
magnetic field. As a result, double-layer FQHE systems can
realize many states beyond single-layer FQHE systems. (A
note on terminology: The term bilayer has been used for
two uncoupled layers in the FQHE literature. However, in
the graphene literature bilayer graphene refers to the system
in which electrons can hop from one layer to another. We
consider in this paper systems where two graphene mono-
layers are in close proximity to one another, but separated
by an insulating layer that suppresses electron tunneling. To
avoid confusion, we use “double-layer” graphene for these
systems.)

Very early on, Halperin generalized [1] the Laughlin states
[2] to multicomponent systems. In particular, a FQHE was
predicted at total filling factor ν = 1/2, which was later
observed experimentally [3,4]. A much richer phase dia-
gram for double-layer FQHE was proposed by the composite
fermion (CF) theory through construction of two-component
Jain states [5], a generalization of the single-component Jain
states [6]. The Halperin and Jain two-component states were
considered in several theoretical articles [5,7–14]. In a closely
related development, two-component states were considered
in a single layer as well, where the two components are the

electron spin [11,14,15]. Double-layer systems of fully spin
polarized electrons in the limit d/l = 0 are formally equiv-
alent to a single-layer system of spinful electrons with zero
Zeeman energy, but the double-layer physics is, in general,
different for nonzero d/l . For small d/l , the analogy to spinful
composite fermions in a single layer is useful, and we will
sometimes refer to the layer index as “pseudospin” (with the
two layers representing up and down pseudospins). The real
spin will be taken as fully polarized, and thus will not be
explicitly considered.

Recent experimental work in double-layer graphene
[16,17] has given tremendous impetus to this topic, through
the observation of a large number of FQH states, which
brings the richness of double-layer FQHE to the same level
as FQHE in single-layer systems [18]. Double-layer graphene
can explore parameter regimes not available to double-layer
systems in semiconductor quantum wells. In particular, these
can access much smaller interlayer separations, as small as
d/l ∼ 0.3; in contrast, in semiconductor quantum wells it is
difficult to attain small values of d/l (because the separation
must be greater than quantum well widths). Furthermore,
in graphene double layers the separation d/l can be varied
continuously over a wide range by tuning the electron den-
sity. Conductance measurements have also been performed
in the corbino geometry, probing the bulk properties of the
sample and allowing for finer resolution of FQH states [17].
Our work in this paper is motivated by the fact that while
the experimental observations in Refs. [16,17] are generally
consistent with the theoretical predictions, the experiments
observe layer-correlated states at many filling factors, such
as ν = 3/7, 4/9, 6/11, 4/7, 3/5, 2/3, and 4/5, that were
not studied quantitatively in Ref. [5]. (The symbol ν denotes
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the total filling factor in this paper.) The reason was that,
as we shall see below, some of these states are described
in terms of reverse-vortex attachment. While reverse-vortex
attached states were studied quite early on [19], theoretical
tools necessary to project states with reverse vortex attach-
ment to the lowest Landau level (LLL) for large system sizes
from which a reliable thermodynamic extrapolation can be
made [20,21] were only developed after the work of Ref. [5].
Given the new experiments, we determine the phase diagram
of FQHE at these filling factors as a function of the layer
separation, to allow an identification of the experimentally
observed states, and to make precise predictions that can be
tested in future experimental work in double-layer systems.
Certain noteworthy features of our study are as follows: We
consider partially pseudospin polarized states at ν = 3/7 and
3/5, which are identified with the observed incompressible
states at these filling factors. We consider additional candidate
states at ν = 1/2, but do not find them to be energetically
favorable. We find that the interlayer correlations are strongly
filling factor dependent, and for certain filling factors they
extend to much larger interlayer separations than previously
thought. The principal result of our present study is the phase
diagram, presented below in Fig. 2.

Several mysteries still remain. The fractions 10/17, 10/13,
and 6/7 are unexplained by our calculation here as there is
no simple correlated two-component Jain state for these fill-
ings (certain complicated constructions for pseudospin singlet
states at these fillings are not considered here). Also, at ν =
6/7 and ν = 4/5, drag experiments indicate a single interlayer
vortex, which is expected for ν = 4/5, but surprising at ν =
6/7 (see the discussion section for some candidate states).
These two fractions have been interpreted in terms of an in-
terlayer pairing of composite fermions [16]. The microscopic
origin of such pairing is presently unclear.

The plan of our paper is as follows. In Sec. II we present
the various two-component candidate states considered in this
work. Next, we discuss in Sec. III the methods of variational
Monte Carlo and exact diagonalization which have been used
to evaluate the energies of the various candidate states. We
conclude the paper in Sec. IV with a discussion of our results.

II. CANDIDATE STATES

We present the trial wave functions we will be considering
in the subsections below. There are two main types of states
considered: two-component Jain states and two-component
electron/CF crystal states. We also consider more exotic states
for filling factor ν = 1/2 that go beyond the standard CF
theory. It is expected that for small d/l , the most favorable
states will be those with definite pseudospin. For large d/l ,
on the other hand, one expects two uncorrelated layers. In the
intermediate region, in general, several two-component Jain
states or two-component crystals are possible, with diminish-
ing interlayer correlations as d/l increases.

To simplify the discussion, we present all wave functions
below in the disk geometry. These can be translated in the
standard manner [15] into the spherical geometry, which is
used in all of our calculations below.

A. States in the limit of small d/l

In the limit of zero-layer separation, the Coulomb inter-
action is pseudospin independent and the system becomes
equivalent to a single-layer system of spinful electrons with
zero Zeeman energy. The states obtained in the limit that
d/l → 0 have been well studied both theoretically and exper-
imentally [11,14,19,22–29]. The wave function can thus be
written in terms of pseudospins where ↑ labels one layer and
↓ labels the other. The full wave function at total filling factor
ν is given by

A[�ν ({z↑
j }, {z↓

j })α1 . . . αN↑β1 . . . βN↓] (1)

where A is the antisymmetrization operator, �ν is the spatial
part of the wave function at filling ν, α and β are spinors
corresponding to layer pseudospins, N↑ and N↓ are the number
of electrons with pseudospin ↑ and ↓ respectively, N = N↑ +
N↓ is the total number of electrons, and zα

j = xα
j − iyα

j is
the two-dimensional coordinate of the electron parametrized
as a complex number with α being the pseudospin of the
particle. Because the full wave function must have a definite
pseudospin, the spatial part �ν ({z↑

j }, {z↓
j }) must satisfy Fock’s

cyclic condition [30]. We specialize to ν = n/(2pn ± 1),
which maps into n filled Landau levels of composite fermions
[termed Lambda levels (�Ls)]. Here, in general, we have
n = n↑ + n↓, where n↑ and n↓ are the filling factors of the
up and down pseudospin �Ls. In this case, we have

�ν ({z j}) = PLLL�n↑ ({z↑})�n↓ ({z↓})
∏

1� j<k�N

(z j − zk )2p,

(2)
where �n is the wave function of the integer quantum Hall
(IQH) state with n filled Landau levels, and PLLL is the
LLL projection operator. We evaluate the projection using
the standard Jain-Kamila (JK) projection method [31]. The
product in the Jastrow factor �1 = ∏

i< j (zi − z j ) extends over
all pairs of particles, independent of their pseudospin.

The above wave function corresponds to the highest weight
state with S = Sz = (N↑ − N↓)/2. We will assume in this
work that the densities in the two layers are equal, i.e., N↑ =
N↓ = N/2 and therefore Sz = 0. For pseudospin singlet states
we already have Sz = 0. For other cases, the Sz = 0 state
can in principle be constructed by repeated application of
the pseudospin lowering operator S−. For fully pseudospin
polarized states i.e., when the total pseudospin S = N/2, the
spatial portion of the wave function remains the same upon
action of the S− operator because the spatial portion is fully
antisymmetric. In such cases, the spatial part of the Sz = 0
state is obtained simply by assigning half of the coordinates
to one layer and the rest to the other. Partially pseudospin
polarized states do not allow for such a simple construction.
The action of the S− operator on the highest weight state
produces a sum of many different Slater determinants, which
quickly becomes intractable for use as trial wave functions
for variational Monte Carlo (VMC) calculations. We address
transitions at filling factors ν = 3/5 and 3/7, where partially
polarized states arise, by using exact diagonalization.
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TABLE I. Candidate ground-state wave functions. We list all wave functions for each filling factor observed, except for 1/2, which we list in
a subsequent section. Where possible we use the notation (ν̄, ν̄| m), where m is the number of interlayer vortices attached and ν̄ is the effective
filling of each layer. For pseudospin states that we cannot write in this form we write the wave function as �n↑,n↓�

2p
1 with �n↑,n↓ = �n↑�n↓ .

�n is the IQHE Slater determinant at filling factor n. The † sign marks states that are not amenable to Monte Carlo calculations since they
cannot be projected to the lowest Landau level using the Jain-Kamilla method (see text for details). For entries marked with a — we have not
identified suitable candidate ground-state wave functions and appropriate interlayer correlation strengths.

ν Pseudospin eigenstate m = 2 m = 1 m = 0

1/3 �3
1({z↑}, {z↓}) (1/4, 1/4| 2) (1/5, 1/5| 1) (1/6, 1/6| 0)

2/5 �1,1�
2
1 — (1/4, 1/4| 1) (1/5, 1/5| 0)

3/7 PLLL�2,1�
2
1 (3/8, 3/8| 2)† (3/11, 3/11| 1) (3/14, 3/14| 0)

4/9 PLLL�2,2�
2
1 — (2/7, 2/7| 1) (2/9, 2/9| 0)

6/11 PLLL�3,3�
2
1 — (3/8, 3/8| 1)† (3/11, 3/11| 0)

4/7 PLLL�∗
2,2�

2
1 — (2/5, 2/5| 1) (2/7, 2/7| 0)

10/17 — (5/7, 5/7| 2)† (5/12, 5/12| 1)† (5/17, 5/17| 0)†

3/5 PLLL�∗
2,1�

2
1 (3/4, 3/4| 2)† (3/7, 3/7| 1) (3/10, 3/10| 0)

2/3 PLLL�∗
1,1�

2
1 (1, 1| 2)† (1/2, 1/2| 1) (1/3, 1/3| 0)

3/4 — (3/2, 3/2| 2)† (3/5, 3/5| 1) (3/8, 3/8| 0)†

10/13 — (5/3, 5/3| 2)† (5/8, 5/8| 1)† (5/13, 5/13| 0)†

4/5 — (2, 2| 2)† (2/3, 2/3| 1) (2/5, 2/5| 0)
6/7 — (3, 3| 2)† (3/4, 3/4| 1)† (3/7, 3/7| 0)

B. Two-component Jain states

For d/l �= 0, the ground-state wave function no longer has
to have a definite total pseudospin, and many other candidate
states become possible. We consider two-component states
that are labeled (ν̄, ν̄| m), whose wave functions are given
by

�(ν̄, ν̄| m) = �ν̄ ({z↑
i })�ν̄ ({z↓

i })
∏
i, j

(z↑
i − z↓

j )m, (3)

where we have assumed equal densities in the two layers.
These states are constructed by placing each layer in an
independent FQH state at an effective filling ν̄ and allowing
for additional attachment of m vortices between electrons in
different layers. In general, the effective filling in the ↑ layer,
ν̄↑, is defined in terms of the number of particles in each layer
and the number of flux quanta, Nφ , as ν̄↑ = N↑/(Nφ − mN↓).
The effective filling factor ν̄ is related to the total filling ν by
ν = 2ν̄/(1 + mν̄ ) or ν̄ = ν/(2 − mν). When ν̄ = n/(2pn ±
1), we have �ν̄ = PLLL�n�

2p
1 and ν = 2n/[(2p + m)n ± 1].

The ( n
2pn±1 , n

2pn±1 |m) state describes an incompressible state
where composite fermions with 2p intralayer vortices and m
interlayer vortices attached to them undergo a ν∗ = n integer
quantum Hall effect (IQHE). The Halperin states are obtained
when n = 1. Certain relevant states of Eq. (3) and pseudospin
singlet states at many fractions are listed in Table I.

C. Two-component crystal states

In addition to incompressible states, two-component elec-
tron or CF crystals have also been predicted in double layers at
filling factors ν = 1/3, 1/5, and 2/5 [32]. The wave functions
for these crystals are given by

�X(2p,m)
ν = �

X(2p)
ν̄ ({z↑

i })�X(2p)
ν̄ ({z↓

i })
∏
i, j

(z↑
i − z↓

j )m (4)

with

�
X(2p)
ν̄ ({zi}) = Det[φRi (z j )]

∏
j<k

(z j − zk )2p, (5)

φRi (z) = 1√
2π

exp

[
1

2
R̄iz − 1

4
|z|2 − 1

4
|Ri|2

]
. (6)

Here φRi (z) is an electron wave packet localized at position
Ri; Det[φRi (z j )] is the wave function of a single-layer crystal
of electrons located at positions {Ri}; �

X(2p)
ν̄ ({zi}) is the

wave function of a crystal of composite fermions in a single
layer; and �

X(2p,m)
ν is the wave function of a layer-correlated

double-layer crystal. The superscript X denotes the crystal
type. Previous work by Faugno et al. [32] has shown that
the most likely crystal structures in bilayer systems are trian-
gular Ising antiferromagnetic (TIAF), correlated square (CS)
and binary graphene (BG). The TIAF crystal is a triangular
lattice when viewed from above (i.e., when both layers are
viewed together), with the condition that any nearest-neighbor
triangle may not contain all three sites in the same layer. The
CS crystal consists of a square lattice in each layer, with the
lattices in the two layers offset such that the sites in one layer
align with the centers of the squares of the opposite layer. The
BG lattice appears as a graphene lattice when viewed from
above, but with the two sublattices lying in opposite layers. A
representation of these crystal configurations can be found in
Fig. 1 of Ref. [32].

D. Exotic candidates at ν = 1/2

At ν = 1/2, we consider several additional candidate states
beyond those listed above. We note that it has been previously
shown that two-component crystals are not relevant for this
system [32]. For ν = 1/2, we consider compressible states,
namely fully pseudospin polarized CF Fermi sea (CFFS),

�FS(1/2, 1/2| 2) = PLLL�FS({zi})
∏

1�i< j�N

(zi − z j )
2, (7)
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TABLE II. Candidate wave functions at ν = 1/2. We consider
states from the theory of two-component Jain construction as well as
more exotic non-Abelian Pfaffian states and states constructed from
the parton theory. The method for constructing each of the proposed
wave functions is discussed in detail in the text. The only states
relevant for the parameters considered in our work are the singlet
CFFS, the Halperin 331 state, and the uncoupled two-component
(1/4 1/4| 0).

(1/2FS, 1/2FS|2) PLLL�FS({z↑
i })�FS({z↓

i })�2
1

FS(1/2, 1/2| 2) PLLL�FS�
2
1

(1/2PF, 1/2PF|2) Pf( 1
z↑
i −z↑

j

)Pf( 1
z↓
i −z↓

j

)�2
1({zi})

PF(1/2, 1/2| 2) Pf( 1
zi−z j

)�2
1({zi})

2̄2̄111 PLLL�∗
2�

∗
2�

3
1

221 PLLL�2�2�1

(1,1)21 PLLL�1,1�2�1

(1/3, 1/3| 1) �3
1({z↑

i })�3
1({z↓

i })
∏

i, j (z
↑
i − z↓

j )
(1/4FS, 1/4FS| 0) �FS({z↑

i })�4
1({z↑

i })�FS({z↓
i })�4

1({z↓
i })

(1/4PF, 1/4PF| 0) Pf( 1
z↑
i −z↑

j

)Pf( 1
z↓
i −z↓

j

)�4
1({z↑

i })�4
1({z↓

i })

and the pseudospin singlet CFFS,

�(1/2FS, 1/2FS|2) = PLLL�FS
({

z↑
i

})
�FS

({
z↓

i

}) ∏
1�i< j�N

(zi−z j )
2,

(8)
where �FS is the wave function for the Fermi sea and the Jas-
trow factor involves all coordinates. In addition we consider
the (1/4, 1/4| 0) state:

�(1/4, 1/4| 0) =
⎡
⎣PLLL�FS({z↑

i })
∏

1� j<k=N/2

(z↑
j − z↑

k )4

⎤
⎦

×
⎡
⎣PLLL�FS({z↓

i })
∏

1� j<k=N/2

(z↓
j − z↓

k )4

⎤
⎦. (9)

The incompressible (1/3, 1/3| 1) state is equivalent to the
Halperin 331 state.

We can further construct a set of non-Abelian states by
substituting the Fermi sea wave function with the Pfaf-
fian wave function Pf[(zi − z j )−1] [33]. The Pfaffian of
an antisymmetric matrix with elements Mi, j is given by
A(M1,2M3,4 . . . MN−1,N ). This allows us to construct several
additional wave functions as shown in Table II. These states
are interesting because they support Majorana modes at the
vortices and the edge of the system.

Finally, we consider states constructed via the parton the-
ory [34]. In the parton theory of the FQHE, each electron
is broken into m parts, called partons, each with a fractional
charge −νe/νi where ν is the total filling for electrons, νi is the
filling for each parton species, and (−e) is the charge of the
electron. We obtain an incompressible state when all νi = ni

for ni integers. Each state is labeled by n1n2n3 . . . and to
denote negative fillings we use n̄i = −ni. The wave functions
suggested by this theory are then products over a series of IQH
Slater determinants, PLLL

∏
i �ni . At ν = 1/2, the most likely

parton states are 221, 2̄2̄111, and a two-component (1,1)21

state, where the label (1, 1) refers to the singlet state at filling
factor 2. The 221 state [35–37] is not considered here as it
cannot be projected to the LLL by JK projection. On the other
hand the 2̄2̄111 state can be projected as

�2̄2̄111 = PLLL�∗
2�

∗
2�

3
1 ∼ �2

2/3/�1 (10)

where the ∼ sign indicates that states on either side of the
sign differ in the details of the projection. We do not expect
such details to affect the topological properties of the state
[38]. The 2̄2̄111 state is in the same topological class as
the anti-Pfaffian [39,40], but has been shown to be a better
candidate at ν = 5/2 than the traditional anti-Pfaffian [41].
The two-component (1,1)21 state can also be evaluated via
the JK projection as

�(1,1)21 = �1,1�2�1 ∼ �1,1�2/5/�1, (11)

where �1,1 is the product of two n = 1 IQH Slater determi-
nants each containing a distinct set of half the total number of
particles.

III. METHODS OF CALCULATION

In this work, we use the spherical geometry [42] wherein
N electrons are placed on a sphere with a magnetic monopole
of strength 2Q placed at its center. The radius of the sphere
is

√
Ql . It is convenient to define spinor coordinates u and v,

which are related to the spherical polar and azimuthal angles
θ and φ by u = cos(θ/2)eiφ/2 and v = sin(θ/2)e−iφ/2. The
chord distance, in units of l , between particles i and j on the
sphere is ri, j = 2

√
Q|uiv j − u jvi|, and the Jastrow factor is

given by
∏

i< j (uiv j − u jvi ). To compare the various candidate
ground-state wave functions we evaluate their double-layer
Coulomb interaction which is given by

V↑,↑ = V↓,↓ = e2

εl

1

ri, j
, (12)

V↑,↓ = e2

εl

1√
r2

i, j + (d/l )2
, (13)

where ε is the dielectric constant of the material.
Determining the best candidate wave function at a given

value of d/l is a question of energetics. We evaluate the en-
ergy of each state under the interaction of Eq. (13) via Monte
Carlo integration. We achieve an error less than 10−5 e2/εl for
a Monte Carlo simulation with 107 iterations. We additionally
multiply the energies by

√
2Qν/N , the ratio of the density in

the finite system to the density in the thermodynamic limit, to
suppress the dependence of the energy on the particle number
[43].

We constructed our candidate states for many different
finite system sizes up to 100 particles for states with parallel
vortex attachment and 40 particles for states with reverse vor-
tex attachment. JK projection of reverse vortex attached states
is carried out using the scheme of Ref. [21] which requires
computationally expensive high precision arithmetic. We then
carry out a linear fitting of the energies as a function of 1/N
to determine the energy in the thermodynamic limit. Because
the interactions involving the background can be complicated
in double-layer systems, we extrapolate the energy difference
between states, measured relative to a convenient reference
state for each filling factor. (We note that since all states
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FIG. 1. Energies for various candidate states as a function of layer separation d/l . All energies are measured relative to a convenient
reference state. The liquid states are labeled by (ν̄, ν̄| m), the same labeling as in Tables I and II. TIAF(2p, m), CS(2p, m) and BG(2p, m)
correspond to CF crystals with structures of triangular Ising antiferromagnetic (TIAF), correlated square (CS) and binary graphene (BG)
with 2p the number of intralayer vortices and m the number of interlayer vortices. The dashed vertical lines mark the positions of the phase
transitions.

cannot necessarily be constructed at all system sizes, we
interpolate the electron-electron interaction of the reference
state before taking the difference.) Thermodynamic extrapo-
lations for various states at each filling factor for a separation

of d/l = 1 are shown in the panels of Fig. 3. We make
several approximations in our calculation. We assume there
is no Landau-level mixing, the electron spin is frozen by the
magnetic field, and disorder is negligible. We also assume no
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FIG. 2. Theoretical phase diagram of double-layer states. The label (ν̄, ν̄|m) refers to the state given in Eq. (3), where ν̄ the effective
single-layer filling factor and m is the number of interlayer vortices. Pseudospin singlet and partially polarized states are labeled as such
directly. TIAF(2p, m), CS(2p, m), and BG(2p, m) correspond to CF crystals with structures of triangular Ising antiferromagnetic (TIAF),
correlated square (CS), and binary graphene (BG) with 2p the number of intralayer vortices and m the number of interlayer vortices. The
region corresponding to the d/l = 0 limit is colored in blue, whereas the region where the states are layer uncorrelated is colored in red. The
vertical dashed black line marks the upper limit of the separations where the experimental measurements have been reported in Refs. [16] and
[17]. For completeness, we have included results from previous studies; the results for filling factors 1/5, 1/3, and 2/5 are taken from [5] and
[32] and for filling factors 1/4 from [44].

tunneling between layers, which is achieved experimentally
in double-layer graphene by including an insulating layer of
hexagonal boron nitride between the graphene layers.

As discussed above, at ν = 3/7 and ν = 3/5 we construct
the trial wave function for the state that is likely to be relevant
for small d/l using exact diagonalization (ED). Specifically,
we find the ground state of the LLL Coulomb interaction for
a spinful electron system at zero Zeeman energy with the
smallest Sz (Sz = 0 for even N and Sz = 1/2 for odd N).
We take this state as a good representation of the partially
polarized state of composite fermions, wherein composite
fermions occupy two spin-up and one spin-down �Ls, with
parallel vortex attachment for 3/7 and reverse vortex at-
tachment for 3/5. This is justified because previous work
[19] has shown that the exact Coulomb ground state for a
partially spin polarized FQH state has a high overlap with the
corresponding partially polarized CF wave function. With the
spin index replaced by the layer / pseudospin index, we treat
this wave function as a trial wave function for nonzero values
of d/l , evaluate the expectation value of the energy [for the
interaction given in Eq. (13)] as a function of layer separation
for system sizes N = 5, 8, and 11 for 3/7 and N = 5, 8, 11,
and 14 for 3/5. We obtain the interaction energy, including the
electron-electron and electron-background and background-
background contributions, in the thermodynamic limit. For
this purpose, we correct for the finite-size deviation of the
density from its thermodynamic value by multiplying the total

energy by
√

2Qν/N [43]. The background-background and
electron-background interactions are given by Vbb + Veb =
−N2/4

√
Q − N2/4

√
Q + (d/l )2. The extrapolations for ν =

3/7 and ν = 3/5 are shown in Fig. 4. In order to compare
with the VMC results, we obtain the thermodynamic en-
ergy of the reference state at each filling factor including
electron-electron and electron-background and background-
background contributions.

IV. RESULTS AND DISCUSSION

The thermodynamic extrapolations of the energies of vari-
ous candidate states are shown in the Appendix for a typical
interlayer separation of d/l = 1. The thermodynamic energies
obtained in a similar fashion in a range of d/l are shown
in Fig. 1. At each filling factor, we choose one state as
a convenient reference state, and all energies are measured
relative to the energy of this reference state. The meanings
of the labels for different candidate states are explained in
the text. The labels “singlet,” “fully polarized,” and “partially
polarized” refer to pseudospin (i.e., the layer index). The d/l
values where transitions occur are indicated by the vertical
dashed lines.

The phase diagram as a function of the layer separation
and the filling factor, obtained from the calculations shown in
Fig. 1, is shown in Fig. 2. This phase diagram is the principal
result of our study. (For completeness, it includes results from
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FIG. 3. Thermodynamic limits of the energies of various candidate states for d/l = 1. All energies are measured relative to a convenient
reference state. The liquid states are labeled by (ν̄, ν̄| m), the same labeling as in Tables I and II. TIAF(2p, m), CS(2p, m), and BG(2p, m)
correspond to CF crystals with structures of triangular Ising antiferromagnetic (TIAF), correlated square (CS), and binary graphene (BG) with
2p the number of intralayer vortices and m the number of interlayer vortices.

previous studies [5,32,44].) The vertical dashed line marks the
largest value of d/l in the experiments of Refs. [16,17], which
shows that the experiments lie mostly within the d/l = 0 limit
of our phase diagram. The overall trend shows that as the layer
separation is increased the interlayer correlations weaken in

favor of stronger intralayer correlations, eventually producing
states at large d/l that do not have interlayer correlations.
This is consistent with previous theoretical calculations that
focused on filling factors below ν = 1/2 [5,32]. Despite this
overall trend, we find that the nature of the states and the
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FIG. 4. Thermodynamic limits of the energies of the partially polarized trial states at ν = 3/7 and ν = 3/5. The trial wave function is
generated by exact diagonalization at d/l = 0. Its Coulomb energy is then calculated as a function of d/l . This figure shows results for d/l = 1.
This energy includes the background-background and electron-background contribution, Vbb + Veb = −N2/4

√
Q − N2/4

√
Q + (d/l )2.

strength of their interlayer correlations are strongly filling
factor dependent, with the onset of the layer-uncorrelated
regime ranging from 1.2l at ν = 2/3 to 7l at ν = 3/7.

In the limit of d/l = 0, the system is equivalent to spinful
electrons at zero Zeeman energy, and the ground states should
be the same with spin replaced by pseudospin. As a result, the
ground states for ν = 3/7 and 3/5 are partially pseudospin
polarized states with a minimal value of |Sz|, the pseudospin
operator that counts the difference between the number of
particles in each layer. We find that these states persist for
finite values of d/l . These states have not been considered
previously in the context of pseudospin. A clear experimental
signature of such states is that they should survive for finite
density imbalances between layers, corresponding to increas-
ing the layer polarization, until |Sz| achieves its maximal
value.

One phenomenon of note is the persistence of interlayer
correlations up to large d/l at fillings ν = 1/5, 3/7, 4/9, and
4/5. The layer correlated states are favored up to d/l = 5
at ν = 4/5, 4/9, and 1/5, and up to d/l = 7 at ν = 3/7.
This is in stark contrast to other fillings, for example those
studied in Ref. [5], where the layer-uncorrelated state occurs
beyond a layer separation of d/l = 1.5–3. The robustness of
certain states is also surprising. For example, even though
the 3/11 state in a single layer is a fragile FQHE state, the
(3/11, 3/11| 1) state at ν = 3/7 appears rather robust. A
similar feature had been found in the phase diagram of spinful
composite fermions in a single layer [13].

Our phase diagram also includes previous results at filling
factors ν = 1/5, 1/4, 1/3, 2/5, and 1/2 [5,32,44]. For filling
factors 1/5, 1/4, 1/3, and 2/5, we see strong competition
between two-component Jain states and CF crystals in the
intermediate separation regime. We note that at ν = 1/4 the-
ory does not predict any incompressible ground states, but
there is a pseudospin phase transition from a fully polarized
pseudospin state to a pseudospin singlet [44]. At ν = 1/2, we
find that only two-component Jain states are relevant.

At ν = 2/3, our calculation suggests the possibility of
an intermediate state consisting of two coupled CF Fermi
seas, denoted as (1/2, 1/2| 1). Previous ED calculations
find a direct transition from the layer singlet 2/3 to the layer
uncorrelated (1/3, 1/3| 0) [45,46]. ED calculations, however,

are not able to deal with compressible states in a reliable
manner due to finite-size limitations.

We have only considered in this work states of the type
(ν̄, ν̄| m) where ν̄ belong to the primary Jain sequence
for noninteracting composite fermions, i.e., ν̄ = n/(2pn ± 1).
Further, we allow for reverse vortex attachment only within
each layer but not between layers. Even within this class,
many states are not amenable to our VMC calculations with
sufficiently large systems, and are therefore not considered.
We give here some examples. At ν = 4/5 and 6/7, there are
candidate states for spinful composite fermions in a single
layer, constructed from combinations of particle-hole con-
jugation and reverse vortex attachment. These states can be
written using the notation of Ref. [13] as [[1, 1]−2]−2 at ν =
4/5 and [[[1, 1]−2]−2]−2 at ν = 6/7 [47]. Similarly, either a
fully spin polarized or a partially polarized candidate state
at ν = 10/13 can be constructed from parent states at ν∗ =
10/7 = 1 + 3/7 by reverse vortex attachment [13]. We have
not considered the double-layer analogs of these states in this
work. At ν = 10/13 and 10/17, we can construct double-layer
incompressible FQH states (5/3, 5/3| 2) and (5/7, 5/7| 2).
These have not been considered above because of technical
reasons.

Of course, it is also possible to consider real spin in
addition to the layer pseudospin. That enlarges the space to
SU(4), which allows for new states beyond those constructed
here [48,49].

We mention several unexplained observations. The Hall
plateau at ν = 1/2, commonly associated with the Halperin
331 state, persists to lower values of d/l than we predict.
The nature of the observed state at ν = 6/7 is not well
understood in a quantitative sense. Coulomb drag experiments
show a single-interlayer zero at this filling factor, but the
state (3/4, 3/4| 1) is not incompressible for noninteracting
composite fermions. It has been suggested that the state at
ν = 6/7 arises due to pairing of composite fermions [16,17].
As stated above, we are not able to calculate the phase diagram
at several filling factors, such as ν = 10/13 and 10/17.

In summary, double-layer graphene systems have made
it possible to study two-component FQHE states in a larger
parameter regime than before. That has motivated us to eval-
uate the theoretical phase diagram including many states not
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previously considered, revealing the richness of states avail-
able in these systems. The current experimental data [16,17]
appear to lie mostly in the d/l = 0 limit of the phase dia-
gram, but the rest of the theoretical phase diagram should be
experimentally accessible in graphene based systems. These
systems thus provide an ideal platform for furthering our
understanding of strongly correlated electron systems and the
competition between the inter- and intralayer correlations.
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APPENDIX: THERMODYNAMIC LIMITS

In this Appendix, we show the thermodynamic extrapola-
tions of the energies of various candidate states for d/l = 1
(see Figs. 3 and 4). Similar extrapolations at other values of
d/l are used to deduce the phase diagram shown in the main
text.
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