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Spin-transfer torques (STT), Gilbert damping (GD), and effective spin renormalization (ESR) are investigated
microscopically in a two-dimensional Rashba ferromagnet with spin-independent Gaussian white-noise disorder.
Rashba spin-orbit coupling-induced anisotropy of these phenomena is thoroughly analyzed. For the case of two
partly filled spin subbands, a remarkable relation between the anisotropic STT, GD, and ESR is established. In
the absence of magnetic field and other torques on magnetization, this relation corresponds to a current-induced
motion of a magnetic texture with the classical drift velocity of conduction electrons. Finally, we compute spin
susceptibility of the system and generalize the notion of spin-polarized current.
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I. INTRODUCTION

Possibility to efficiently manipulate magnetic order by
means of electric current has gained a lot of attention over the
past decades [1,2]. Potential applications include race track
memory [3,4], spin-torque magnetization switching [5,6],
skyrmion-based technology [7,8], and other promising con-
cepts. Spintronic logic and memory devices based on current-
driven magnetization dynamics are believed to achieve high
speed, low volatility, outstanding durability and low material
costs with promises to outperform charge-trapping solid-state
memory devices [9].

In the light of recent detection of fast domain wall
(DW) motion in magnetic films [10,11] and predictions of
even higher DW velocities in antiferromagnets [12], current-
induced dynamics of domain walls, skyrmions, and other
magnetic textures remain an important research subject in the
field of spintronics. Such dynamics is mainly determined by
the interplay of the two phenomena: Gilbert damping (GD)
and spin torques [13–16].

In the absence of spin-orbit coupling (SOC), spin torques
emerge only in the systems with nonuniform magnetization
profiles and are most often referred to as spin-transfer torques
(STT). At the same time, the classification of spin torques
usually gets more complicated if coupling between spin and
orbital degrees of freedom becomes pronounced. Moreover,
the debate on the microscopic origin of spin torques in the
latter case remains ongoing [17,18]. Below, we regard STT,
in the continuum limit, as a contribution to the total torque on
magnetization that is linear with respect to both the electric
field E and the first spatial derivatives of the unit vector of
magnetization direction n. We note that, in the absence of
SOC, physics of STT is well understood [15,16].

In a similar fashion, Gilbert damping may be generally as-
sociated with the terms of the Landau-Lifshitz-Gilbert (LLG)
equation that are odd under time reversal and linear with
respect to the time derivative of n. In the most simplistic

approach, GD is modeled by a single phenomenological term
αn × ∂t n that corresponds to “isotropic” damping.

However, it has been known for quite a while that GD
may exhibit anisotropic behavior [19–27]. Or, to be more
precise, that the scalar damping constant α, in general, should
be replaced by a damping matrix with the components de-
pending on the orientation of n. These two manifestations of
anisotropy may be referred to as rotational and orientational
anisotropy, respectively [22]. Experimental observation of the
orientational anisotropy of Gilbert damping has been reported
very recently in a metal ferromagnet (FM)/semiconductor
interface of Fe/GaAs(001) [28] and in epitaxial CoFe films
[29]. The authors of Ref. [28] argued that the measured
anisotropy rooted in the interplay of interfacial Rashba and
Dresselhaus spin-orbit interaction.

Given the equal importance of GD and STT in the context
of current-induced magnetization dynamics and the signifi-
cant progress made in the understanding of the anisotropic
nature of Gilbert damping, we find it surprising that the
anisotropy of spin-transfer torques has so far only been ad-
dressed phenomenologically [24,30].

In the present paper, we consider a two-dimensional (2D)
Rashba FM with spin-independent electron scattering. A mi-
croscopic analysis, performed for an arbitrary magnetization
direction, allows us to quantify the rotational as well as the
orientational anisotropy of both STT and GD induced by
Rashba SOC. Our results indicate that, for a Rashba FM
system, spin-transfer torques T STT and Gilbert damping T GD

entering the LLG equation

∂t n = γ n × Heff + T STT + T GD + . . . (1)

naturally acquire the following forms:

T STT = ξ0∂vn − ξ‖[n × ∂vn‖] − ξ⊥[n × ∂vn⊥], (2a)

T GD = ξ0∂ t n − ξ‖[n × ∂ t n‖] − ξ⊥[n × ∂ t n⊥], (2b)

2469-9950/2020/101(8)/085405(18) 085405-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.085405&domain=pdf&date_stamp=2020-02-07
https://doi.org/10.1103/PhysRevB.101.085405


I. A. ADO, P. M. OSTROVSKY, AND M. TITOV PHYSICAL REVIEW B 101, 085405 (2020)

where ξi = ξi(n), the operator ∂v = (vd · ∇) is expressed via
the classical electron drift velocity vd = eE h̄τ/m, and n‖/⊥
denotes the in-plane/perpendicular-to-the-plane component
of the vector field n:

n = n‖ + n⊥, n⊥ = eznz = ez cos θ. (3)

For convenience, we have included the term ξ0∂t n into the
definition of T GD. This term, being even under time reversal,
leads to a renormalization of spin in the LLG equation [16]
and does not contribute to damping. In what follows, we
refer to such renormalization as effective spin renormalization
(ESR).

The rotational and orientational anisotropy arising in
Eqs. (2) appear to be a natural consequence of the fact that
the Rashba spin-orbit interaction singles out the direction
perpendicular to the electron 2D plane. The orientational
anisotropy of the dimensionless functions ξi(n) is determined
by all space symmetries of the system and, for a general
Rashba FM, may turn out to be rather complex. However,
for the particular interface model of the C∞v symmetry class,
which we consider below, one simply finds ξi = ξi(n2

z ).
Before we proceed, let us describe at least two important

outcomes of Eqs. (2). First, according to the usual conven-
tion, STT consist of two contributions: the adiabatic torque
∝ ( js · ∇)n and the nonadiabatic torque ∝ n × ( js · ∇)n,
where js denotes a spin-polarized current. For vanishing SOC,
the adiabatic torque has a clear physical meaning. As far
as spins of conduction electrons adiabatically follow local
magnetization direction, the corresponding change of their an-
gular momentum is transferred to the magnetic texture. Since
↑ and ↓ spins point in the opposite directions along n, the
transfer rate is proportional to ( js · ∇)n, where js = j↑ − j↓.
In the presence of SOC, however, conduction spins are no
longer aligned with the direction of n and, thus, the entire
concept of spin-polarized current becomes somewhat vague.
For the particular Rashba model, our results reveal an impor-
tant relation between the adiabatic torque and ESR, providing
steps toward better understanding of the former for systems
with SOC.

Another remarkable property of Eqs. (2) is a simple and
exact relation between the nonadiabatic torque and GD, which
has an important implication for current-induced motion of
magnetic textures (e.g., domain walls or skyrmions). Indeed,
by transforming Eq. (1) into the moving reference frame
[31] r′ = r − vdt , one immediately observes that both com-
ponents of the nonadiabatic torque are exactly canceled by
the corresponding Gilbert damping terms. Therefore, if the
effect of other driving torques on the motion of a magnetic
texture is negligible, then its terminal velocity, in the moving
reference frame, shall vanish for mediate currents [32,33]
(in the absence of magnetic field). This implies that, in the
laboratory reference frame, the texture moves with the uni-
versal electron drift velocity vd . Certainly, in the presence of,
e.g., spin-orbit torques, which can assist motion of domain
walls and skyrmions [10,34], the resulting dynamics might
differ. In any case, the analysis of such dynamics can still be
performed in the moving reference frame, where the effect of
the nonadiabatic spin-transfer torque is conveniently absent.

Having outlined our main results, we skip further dis-
cussion until Sec VIII. The rest of the paper is organized

as follows. In Sec. II we introduce the model and use an
expansion in spatial gradients to reduce the analysis to a study
of a homogeneous system. Self-energy and Kubo formulas are
addressed in Sec. III. A general relation between STT, GD,
and ESR (in the considered model) is obtained in Sec. IV,
while in Sec. V we establish the exact vector structures of
these quantities. Some analytical insight into our general
results is provided in Sec. VI and Sec. VII. An extensive
discussion of Sec VIII is followed by Conclusions (and seven
Appendices).

II. MODEL

A. Generalized torque in s-d model

In what follows, we adopt the ideology of the s-d model
by performing a decomposition of a FM into a system of
localized spins Si and a system of noninteracting conduction
electrons. Despite being rather simplistic, this approach has
proven to describe very well the key properties of current-
induced magnetization dynamics in ferromagnetic systems
[35–38].

If the value of |Si| = S can be assumed sufficiently large,
then it is natural to treat the localized spins classically by
means of the unit vector n(ri ) = Si/S, which points in the
opposite to local magnetization direction. In this case, the s-d-
like local exchange interaction between the localized spins
and conduction electrons is given, in the continuum limit, by

Hsd = JsdS n(r, t ) · σ, (4)

with Jsd quantifying the strength of the exchange and Pauli
matrices σ representing the spins of conduction electrons.

It is known [16] that interaction of the form of Eq. (4),
leads to the following LLG equation for the dynamics of the
vector n:

∂t n = γ n × Heff + JsdA

h̄
[s(r, t ) × n(r, t )], (5)

where γ is the bare gyromagnetic ratio, Heff describes the
effective magnetic field, A denotes the area of the magnet unit
cell, and s(r, t ) stands for the nonequilibrium spin density
of conduction electrons [39]. The second term on the right-
hand side of Eq. (5) represents the generalized torque on
magnetization

T = JsdA

h̄
[s(r, t ) × n(r, t )]. (6)

Assuming slow dynamics of n(r, t ) on the scale of electron
scattering time and smoothness of magnetization profile on
the scale of electron mean free path, one may expand the
generalized torque in time and space gradients of n. In this
paper, we consider two particular terms of such expansion,

T = T STT + T GD + . . . , (7)

ignoring all other contributions (such as, e.g., spin-orbit
torques). In Eq. (7) and below, we identify spin-transfer
torques T STT as a double response of T to the electric field
E and to the spatial gradients of n, while the Gilbert damping
vector T GD (which also includes the ESR term) is defined as
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a response to the time derivative of n,

T STT
α =

∑
βγ δ

T STT
αβγ δ Eβ∇γ nδ, (8a)

T GD
α =

∑
δ

T GD
αδ ∂t nδ. (8b)

Microscopic analysis of the tensors T STT and T GD is the main
subject of the present work.

B. Single-particle problem

According to Eqs. (8), the vectors T STT and T GD represent
linear response to the time derivative of magnetization direc-
tion and to the time derivative of vector potential, respectively.
Hence, computation of both vectors can be performed with
the help of Kubo formulas that make use of Green’s functions
of the corresponding time-independent problem. We choose
the latter to originate in the 2D Rashba model [40] with the
effective s-d-type term of Eq. (4),

H = p2/2m + αR [p × σ]z + JsdS n(r) · σ, (9)

where αR characterizes the strength of Rashba coupling and m
is the effective electron mass.

The Hamiltonian of Eq. (9) should be supplemented with
a momentum relaxation mechanism since both STT and GD
tensors, similarly to the conductivity tensor, contain essen-
tially dissipative components. We assume that momentum
relaxation in the system is provided by scattering on a spin-
independent Gaussian white-noise disorder potential Vdis(r).
Thus, the full Hamiltonian of a single conduction electron
reads

Hdis = H + Vdis(r), (10)

where the disorder potential is characterized by the zero
average 〈Vdis(r)〉 = 0 and the pair correlator

〈Vdis(r)Vdis(r′)〉 = (h̄2/mτ ) δ(r − r′). (11)

The angular brackets in Eq. (11) denote the averaging over
the disorder realizations and τ is the mean scattering time
measured in the inverse energy units.

One can readily observe from Eq. (6) that the generalized
torque T can be understood as a spatial density of a disorder-
averaged mean value of the operator (JsdA/h̄)T̂ , where we
refer to

T̂ = σ × n(r), (12)

as the dimensionless torque operator.

C. Expansion in spatial gradients

Computation of STT involves the expansion of the Hamil-
tonian H of Eq. (9) and the corresponding Green’s function

GR,A = (ε − H ± i0)−1 (13)

in the first spatial gradients of n up to the linear terms. We
obtain the latter utilizing the Taylor expansion

n(r) = n(r∗) +
∑

γ

(r − r∗)γ ∇γ n(r∗), (14)

at some particular point r∗.

FIG. 1. Guide for an eye: Spectrum of the homogeneous system
of conduction electrons with a fixed direction of magnetization. Note
that the actual spectrum is not isotropic, and the two subbands may
even touch each other. We restrict the analysis to the case of ε > �sd.
For the latter, both subbands are always partly filled.

With the help of Eq. (14), H can be, then, approximated as

H = H +
∑

γ

(r − r∗)γ ∇γ n(r∗) · σ, (15)

where the Hamiltonian

H = p2/2m + αR [p × σ]z + JsdS n(r∗) · σ (16)

describes the homogeneous electronic system with a fixed
direction of magnetization set by n(r∗).

Similarly, we approximate the Green’s function GR,A, em-
ploying the Dyson series

GR,A(r, r′) = GR,A(r − r′) + JsdS
∫

dr′′ GR,A(r − r′′)

×
[∑

γ

(r′′ − r∗)γ ∇γ n(r∗) · σ

]
GR,A(r′′ − r′)

(17)

and the Green’s function

GR,A = (ε − H ± i0)−1 (18)

that corresponds to the homogeneous system. Note that, in
Eq. (17), we kept only the terms that are linear in the gradients
of n, as prescribed.

D. Spectrum of the homogeneous system

The spectrum of H incorporates two spectral branches

ε±(p) = p2/2m ±
√

�2
sd + (αR p)2 − 2ςαR�sd p sin θ sin ϕ,

(19)
where the angle θ denotes the polar angle of n with respect
to the z axis [see also Eq. (3)], while ϕ is the angle between
the momentum p and the in-plane component of the vector n:
ϕ = φp − φn. We have also introduced the notations

�sd = |Jsd|S, ς = sgn Jsd, (20)

where �sd has a meaning of half of the exchange interaction-
induced splitting (in the absence of SOC).

If the chemical potential ε exceeds the value of �sd, then
both subbands are always partly filled [41]. Below, we focus
solely on the latter case, which is schematically illustrated
in Fig. 1. Note that the spectrum is not isotropic. Moreover,
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for finite values of sin θ , separation of the two subbands
diminishes and they may even touch each other.

In what follows, we also find it convenient to introduce
the energy scale �so = |αR|√2mε, which is equal to half of
the spin-orbit coupling-induced splitting of the branches (for
vanishing �sd).

E. Roots of dispersion relation

Now let us analyze the roots of the dispersion of Eq. (19).
Using, for example, Ref. [42], one can show that, under the as-
sumption ε > �sd, the quartic function [ε+(p) − ε][ε−(p) −
ε] of the absolute value of momentum p always has four real
roots: two positive and two negative. The former two define
the angle-dependent Fermi momenta p± corresponding to ε±
branches. The four roots are distinct in all cases, except one.
Namely, when n⊥ = 0 (i.e., when sin θ = 1) and �so = �sd,
the subbands touch each other. We will not consider this
particular case.

Using the notation p±,neg for the negative roots, we have

p− > p+ > 0 > p+,neg > p−,neg, (21)

where

p∓ = 1

2
(
√

2u ±
√

−2u − 2q − r
√

2/u), (22a)

p±,neg = 1

2
(−

√
2u ±

√
−2u − 2q + r

√
2/u) , (22b)

u > 0 is the largest root of the resolvent cubic

u3 + qu2 − (s − q2/4)u − r2/8, (23)

while the parameters q, s, and r are given by

q = −4m
(
ε + mα2

R

)
, s = (2m)2

(
ε2 − �2

sd

)
, (24a)

r = 8m2αRς�sd sin θ sin ϕ. (24b)

It is straightforward to see, from Eqs. (24), that the depen-
dence on the momentum angle enters Eq. (23) only via the
parameter r2. As a result, the quantity u may only depend
on sin2 ϕ and other parameters of the model that are ϕ-
independent. This will play an important role below.

For αR = 0 (vanishing SOC), �sd = 0 (nonmagnetic
limit), or n = n⊥ (perpendicular-to-the-plane magnetization)
situation with the roots becomes less complex. In these cases,
[ε+(p) − ε][ε−(p) − ε] is biquadratic (with respect to p) and
p± = −p±,neg, as one can also see directly from Eqs. (22).
Furthermore, the Fermi momenta p±, then, are angle indepen-
dent, while their values yield the relations

p2
± = 2m[ε ∓ �sd], for αR = 0, (25a)

p2
± = 2m

[
ε + mα2

R ∓ λ(0)
]
, for �sd = 0, (25b)

p2
± = 2m

[
ε + mα2

R ∓ λ(�sd)
]
, for n = n⊥, (25c)

where λ(ϒ) =
√

ϒ2 + 2εmα2
R + m2α4

R.

III. DISORDER AVERAGING

Having analyzed the spectrum of the “clean” homogeneous
system, we can proceed with the inclusion of the disorder. In
what follows, we assume ε0τ � 1, where ε0 is the difference
between the Fermi energy ε and the closest band edge. We
start with a calculation of the self-energy in the first Born
approximation.

A. Self-energy

According to Eq. (11), the self-energy is defined as

�R,A(r) = (h̄2/mτ )GR,A(r, r), (26)

with the Green’s function GR,A of Eq. (13). It should be explic-
itly pronounced that �R,A(r) may have a spatial dependence
originating in the spatial dependence of n(r). However, as we
are about to see, the first spatial gradients of magnetization do
not affect the self-energy in the model under consideration.

Disregarding the “real” part of the self-energy that should
be included in the renormalized value of the chemical po-
tential, we focus only on the calculation of Im � (r) =
−i[�R(r) − �A(r)]/2. By substituting the expansion of
Eq. (17) into Eq. (26), switching to momentum representation,
and symmetrizing the result we obtain

Im � (r) = �(0) +
∑
γ δ

[
(r − r∗)γ �

(1)
δ + �

(2)
γ δ

]∇γ nδ (r∗),

(27)
with

�(0) = 1

2imτ

∫
d2 p

(2π )2
(GR − GA), (28a)

�
(1)
δ = ς�sd

2imτ

∫
d2 p

(2π )2
(GRσδ GR − GAσδ GA), (28b)

�
(2)
γ δ = ς�sdh̄

4mτ

∫
d2 p

(2π )2
(GRσδ GR vγ GR

− GR vγ GRσδ GR + H.c.), (28c)

where “H.c.” denotes Hermitian conjugate, GR,A is the Green’s
function of Eq. (18) in momentum representation,

GR,A = ε − p2/2m + αR [p × σ]z + ς�sd n(r∗) ·σ
(ε − ε+(p) ± i0)(ε − ε−(p) ± i0)

, (29)

and v = ∂H/∂ p is the velocity operator. In Eqs. (28), �(0)

defines the scattering time (for uniform magnetization), �(1)

corresponds to the renormalization of the gradient term on the
right-hand side of Eq. (15), while �(2) determines the possible
dependence of the scattering time on the first spatial gradients
of magnetization.

To proceed, we take advantage of the additional sym-
metrization of the integrands with respect to the transfor-
mation [43] ϕ → π − ϕ and observe that, in the first Born
approximation, integration over the absolute value of momen-
tum, in Eqs. (28), is reduced to a calculation of residues at
p = p±. Using Eqs. (22), we then get

�(0) = − 1

2τ

∫ 2π

0

dϕ

2π
[1 + rW1 + rW2 n(r∗) · σ

+W3 n‖(r∗) · σ sin ϕ], (30)
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where Wi = Wi(r2, u (r2)) are some functions of the pa-
rameter r2 and ϕ-independent parameters of the model.
Since r ∝ sin ϕ and, obviously, all integrals of the form∫ 2π

0 W (sin2 ϕ) sin ϕ dϕ vanish for arbitrary function W , we
obtain a particularly simple result for the constant part of the
self-energy,

�(0) = −1/2τ. (31)

Similar, but more lengthy, analysis shows that each compo-
nent of �(1) and �(2) is equal to zero. Therefore, there exists
no renormalization of the gradient term of the Hamiltonian
H as well as no scattering time dependence on the first
magnetization gradients. The self-energy, in the first Born
approximation, is found as

�R,A(r) = ∓i/2τ. (32)

B. Kubo formula for STT

As was outlined in Sec. II B, the generalized torque T (r0)
of Eq. (6), at a certain position r0 in space, is defined as a
disorder-averaged mean value of the operator (JsdA/h̄)δr0 T̂ ,
where δr0 = δ(r − r0). At zero temperature, the linear re-
sponse [44] of Tα (r0) to the zero frequency electric field E
is given by the standard Kubo expression

eh̄

2π

JsdA

h̄
〈Tr [GAδr0 T̂α GRv]E〉, (33)

where v = ∂H/∂ p is the velocity operator, Tr denotes the
operator trace, and angular brackets represent the disorder
averaging.

From Eq. (33), we can further deduce the Kubo formula
for spin-transfer torques. In order to do that, we substitute
the expansion of Eq. (17) into Eq. (33) and collect all terms
proportional to ∇γ nδ (r∗). Then we switch to momentum
representation and perform spatial averaging of torque on the
scale of transport mean free path in the vicinity of r = r0.
In the noncrossing approximation, this leads to the general
formula for the STT tensor,

T STT
αβγ δ = e�2

sdA

2π h̄S

∫
d2 p

(2π )2

× i tr
[
gA σδ gA vγ gA T̂ vc

α gR vvc
β − H.c.

]
, (34)

where the superscript “vc” marks the vertices corrected with
the impurity ladders, the notation tr refers to the matrix trace,
and

gR,A = 〈GR,A〉 = (ε − H ± i/2τ )−1 (35)

is the disorder-averaged Green’s function of the homogeneous
system. In Eq. (35), we have used the result for the self-energy
obtained in Sec. III A.

The expression of Eq. (34) is represented diagrammatically
in Fig. 2. We note that similar diagrams have been used in
Ref. [45] to compute STT in a 3D FM, in the absence of SOC,
and in Ref. [46] to study STT for the model of massive Dirac
fermions.

FIG. 2. Diagrammatic representation of the STT tensor T STT
αβγ δ of

Eq. (34). Solid lines correspond to the disorder-averaged Green’s
functions gR,A. Vertex corrections (impurity ladders) are represented
by green fillings.

C. Kubo formula for GD and ESR

Similarly, from the zero frequency linear response [44] of
Tα (r0) to the time derivative of n,

JsdSh̄

2π

JsdA

h̄
〈Tr [GAδr0 T̂α GRσ]∂t n〉, (36)

one may derive the formula for the GD tensor of Eq. (8b),

T GD
αδ = �2

sdA

2π h̄2S

∫
d2 p

(2π )2
tr
[
gA T̂ vc

α gR σδ

]
, (37)

where, according to the definition of T GD, spatial dependence
of n is completely disregarded.

Note that n, ∇γ nδ , and ∂t n in Eqs. (8), (34), and (37) are
all taken at r = r0. From now on, we consistently omit the
argument of all these functions.

D. Relation between T GD and vertex corrections
to the torque operator T̂

Vertex corrected torque operator that enters both Eqs. (34)
and (37) can be expressed with the help of vertex corrected
Pauli matrices. One can infer the latter from the “matrix of
one dressing” M, whose elements

Mi j = 1

2mτ

∫
d2 p

(2π )2
tr [gA σi gR σ j] (38)

are the coordinates (in the basis {σx, σy, σz}) of the operator σi

dressed with a single impurity line. We note that, in the model
considered, vertex corrected Pauli matrices σ vc

i appear to have
zero trace if ε > �sd. Hence, {σx, σy, σz} is, indeed, a proper
basis for the operators σ vc

i .
Matrix representation of the operator T̂ = σ × n, with

respect to this basis, is defined as

T̂i =
∑

j

Ui j σ j, U =
⎛⎝ 0 nz −ny

−nz 0 nx

ny −nx 0

⎞⎠. (39)

Since, obviously,

T̂ vc
i =

∑
j

Ui j σ
vc
j , (40)

we can see, from Eq. (38), that the geometric series

T = U (M + M2 + · · · ) = UM(I − M)−1, (41)

provides the matrix representation of vertex corrections to the
torque operator. Moreover, from Eq. (37), it is evident that the
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FIG. 3. Another diagrammatic representation of the STT tensor T STT
αβγ δ , given by Eq. (43). Six diagrams encircled by the dashed line define

the δT STT
αβγ δ tensor of Eq. (44) that vanishes for any direction of n provided ε > �sd. Solid lines correspond to the disorder-averaged Green’s

functions gR,A. Vertex corrections (impurity ladders) are represented by green fillings.

GD tensor is, in fact, determined by the same matrix T ,

T GD
αδ = �2

sdAmτ

π h̄2S
Tαδ. (42)

E. Crossing diagrams

It has been demonstrated recently that the diagrams with two
crossing impurity lines may contribute to such quantities as
the anomalous Hall effect [47–49], the spin Hall effect [50],
and the Kerr effect [51] in the same leading order with respect
to the small parameter (ε0τ )−1, as the conventional noncross-
ing approximation does. Scattering mechanisms associated
with these diagrams, in general, should affect spin torques and
damping as well.

In the present study we, however, completely disregard
the crossing diagrams as being significantly more difficult to
calculate. At the same time, preliminary analysis shows that
the related additional contributions to STT, GD, and ESR are
parametrically different from the present results and that, for
ε � �sd, they are negligible.

IV. RELATION BETWEEN STT, GD, AND ESR

A. Symmetrization of STT diagrams

Calculation of spin-transfer torques can be performed with
the help of Eq. (34) directly. Such brute-force calculation
has been originally performed by us. We have, however,
subsequently found a shortcut that makes it possible not only
to obtain the same results in a much more concise manner but
also to establish a general relation between T STT and T GD

tensors. This alternative approach takes a reformulation of the
result of Eq. (34) in a more symmetric form.

We apply the identity gA vγ gA = ∂gA/∂ pγ in Eq. (34) and
perform integration by parts. Then, we take a half-sum of the
result obtained and the original expression of Eq. (34). This
leads to the formula

T STT
αβγ δ = δT STT

αβγ δ + e�2
sdA

2π h̄S

∫
d2 p

(2π )2

× i

2
tr

[
−gA σδ gA T̂ vc

α gR
∂vvc

β

∂ pγ

− H.c.

]
, (43)

where the first term on the right-hand side

δT STT
αβγ δ = e�2

sdA

2π h̄S

∫
d2 p

(2π )2

× i

2
tr
[
gA σδ gA vγ gA T̂ vc

α gR vvc
β

− gA vγ gA σδ gA T̂ vc
α gR vvc

β

− gA σδ gA T̂ vc
α gR vγ gR vvc

β − H.c.
]

(44)

is illustrated schematically in Fig. 3 by a group of encircled
diagrams. The remaining two diagrams in Fig. 3 correspond
to the second term on the right-hand side of Eq. (43). We will
see below that, in fact, the entire tensor δT STT does vanish.

B. Relation between T STT and vertex corrections
to the torque operator T̂

As was argued in Ref. [52] on the basis of perturbative
expansions, the velocity operator v = p/m − αR[ez × σ], cor-
rected by an impurity ladder, has a particularly simple form in
the present model,

vvc = p/m. (45)

A formal proof of this statement that does not refer to any
perturbative expansion is presented in Appendix A. Interest-
ingly, Eq. (45) also allows to make a spin-orbit torque (SOT)
calculation extremely concise. We provide a brief discussion
of this matter in the same Appendix A.

It is important that the momentum operator p, as
well as vvc, commutes with the Green’s function gR,A. In
Appendix B, we demonstrate that this is sufficient for the
entire tensor δT STT to vanish. As a result, T STT is determined
by the second term on the right-hand side of Eq. (43) alone.
Computation of the this term is facilitated by the relation

∂vvc
β /∂ pγ = δβγ /m, (46)
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where δq1q2 is Kronecker delta. With the help of the above, the
STT tensor of Eq. (43) readily simplifies to

T STT
αβγ δ = δβγ

e�2
sdA

2π h̄Sm

∫
d2 p

(2π )2

× i

2
tr
[ − gA σδ gA T̂ vc

α gR − H.c.
]
, (47)

since, as we have mentioned, δT STT = 0.
Employing the Hilbert’s identity for the Green’s functions

of Eq. (35),

gA − gR = gR (i/τ ) gA, (48)

we can further reduce [44] Eq. (47) to the formula

T STT
αβγ δ = δβγ

e�2
sdAτ

2π h̄Sm

∫
d2 p

(2π )2
tr
[
gA T̂ vc

α gR σδ

]
, (49)

which resembles very closely the formula of Eq. (37) for the
GD tensor. The result of Eq. (49) can also be expressed in
terms of the matrix T as

T STT
αβγ δ = δβγ

e�2
sdAτ 2

π h̄S
Tαδ, (50)

where we have again used the argumentation of Sec. III D.

C. Relation between T STT and T GD

It can now be seen that both T STT and T GD vectors turn
out to be fully defined by the matrix of vertex corrections T
to the torque operator. Moreover, comparison of Eq. (42) and
Eq. (50) reveals a remarkable direct connection between the
STT and GD tensors,

T STT
αβγ δ = δβγ

eh̄τ

m
T GD

αδ , (51)

which is one of the central results of the paper.
According to the definitions of Eqs. (8), the established

relation between the two tensors indicates that all quantities
of interest (STT, GD, and ESR) may be related to the action
of a single linear operator �,

T STT = �[∂vn], T GD = �[∂t n], (52)

on one of the vectors, ∂vn or ∂t n. We remind here the short-
handed notations for the directional spatial derivative [53]
∂v = (vd · ∇) and for the classical drift velocity of conduction
electrons vd = eE h̄τ/m.

The matrix of the operator � coincides with the matrix
T GD, being also proportional to the matrix T [see Eqs. (8b),
and (42)]. In the next section we obtain the general form of
the latter and then use it to derive the exact vector forms of
T STT and T GD.

V. VECTOR FORMS

A. Matrix gauge transformation

In order to establish the structure of the operator �, it
should be first noted that the constraint n2 ≡ 1 is responsible
for an essential freedom in the definition of T . For an arbitrary
operator of differentiation ∂ , we have

1

2
∂n2 =

∑
δ

nδ ∂nδ = 0. (53)

Therefore, the left-hand sides of

T STT
α = �2

sdAmτ

π h̄2S

∑
δ

Tαδ ∂vnδ, (54a)

T GD
α = �2

sdAmτ

π h̄2S

∑
δ

Tαδ ∂ t nδ, (54b)

remain invariant under the addition of the matrix row R =
(nx, ny, nz ), with an arbitrary coefficient, to any of the rows
of the matrix T . In other words, the transformation T → TX

does not change T STT and T GD, provided

TX = T + XR, (55)

with any matrix column X = (X1, X2, X3)T .

B. Vector structure of T STT and T GD

The matrix T is defined in Eq. (41) with the help of the
matrix M. The latter is determined by the disorder-averaged
Green’s function which, in momentum representation, takes
the form

gR,A = ε ± i/2τ − p2/2m + αR [p × σ]z + ς�sd n · σ

[ε − ε+(p) ± i/2τ ][ε − ε−(p) ± i/2τ ]
.

(56)
Using Eq. (56), one can prove that M, in general, is expressed
as a linear combination of six matrices,

I, P, U, U 2, P UP, P U 2P, (57)

where U is introduced in Eq. (39) and P = diag (1, 1, 0)
is a diagonal matrix. In Appendix C, we demonstrate how
the components of this decomposition can be calculated for
n �= n⊥.

Then, in Appendix D, we show that any power of M
retains the same structure. It immediately follows that the
matrix T = U (M + M2 + · · · ) can be represented as

T = c1U + c2UP + c3U
2 + c4U

3 + c5UP UP + c6UP U 2P,

(58)
where ci are some dimensionless scalar functions.

The representation of Eq. (58) can be substantially simpli-
fied with the use of the matrix gauge transformation described
in the previous section. Namely, by taking advantage of the
directly verifiable relations

U 2 = RTR − I, U 3 = −U, (59a)

UP UP = (I − P)RTR − n2
z I, (59b)

UP U 2P = UP RTR − UP + n2
zU (I − P), (59c)

we find that the choice of the gauge

X̃ = −[c3I + c5(I − P) + c6UP]RT , (60)

for the transformation T → TX̃ ≡ T̃ , leads to

T̃ = t0 I + t‖ UP + t⊥ U (I − P), (61)

or, more explicitly, to

T̃ =
⎛⎝ t0 nzt‖ −nyt⊥

−nzt‖ t0 nxt⊥
nyt‖ −nxt‖ t0

⎞⎠, (62)
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where the quantities ti are related to the matrix T by means of
the relations

t0 = −c3 − c5n2
z , (63a)

t‖ = c1 + c2 − (c4 + c6), (63b)

t⊥ = c1 − c4 + c6n2
z . (63c)

Replacing T with T̃ in Eqs. (54),

T STT
α = �2

sdAmτ

π h̄2S

∑
δ

T̃αδ ∂vnδ, (64a)

T GD
α = �2

sdAmτ

π h̄2S

∑
δ

T̃αδ ∂ t nδ, (64b)

we observe that the operator � in Eq. (52) is represented by
three dimensionless quantities ξ0, ξ‖, ξ⊥, such that

ξi = �2
sdAmτ

π h̄2S
ti, (65)

while the vector structure of T STT and T GD is, indeed, pro-
vided by the formulas

T STT = ξ0∂vn − ξ‖[n × ∂vn‖] − ξ⊥[n × ∂vn⊥],

T GD = ξ0∂ t n − ξ‖[n × ∂ t n‖] − ξ⊥[n × ∂ t n⊥],

announced in the introductory part. With some remarks, they
remain valid for n = n⊥ as well. We consider this specific case
separately, in Sec. VI B.

In the next section, we derive closed-form results for ξ0,
ξ‖, and ξ⊥ in two particular regimes. Afterward, we find
asymptotic expansions of these functions in either small αR or
in small �sd. All the obtained results are collected in Table I
and represented in Fig. 4 alongside with the corresponding
numerical curves.

VI. CLOSED-FORMS

The analysis of T STT and T GD tensors, as has been pointed
out, reduces to integration in Eq. (38) and subsequent matrix
arithmetics. Unfortunately, for arbitrary direction of magneti-
zation, the results cannot be expressed in terms of elementary
functions. For example, for n⊥ = 0, Eq. (38) already involves
elliptic integrals. The complexity is caused, primarily, by the
angle dependence of the dispersion relation roots p±, p±,neg of
Eqs. (22). Additional complications arise due to the fact that
all four roots are distinct.

On the other hand, if the parameter r defined in Eq. (24b)
vanishes, then the angle dependence of p±, p±,neg is absent
and, furthermore, p± = −p±,neg (see also Sec. II E). In this
case, angle integration in Eq. (38) is trivial, while integration
over the absolute value p of momentum can be replaced with
an integration over p2. For such integrals, we can extend the
integration contour to −∞ and close it through the upper
half-plane. Then the value of the integral is given by a sum
of residues at the p2

± poles of Eqs. (25) that acquire finite
imaginary parts due to a ε → ε + i/2τ shift.

Hence, computation of the matrix M is straightforward
when αR = 0, �sd = 0, or n = n⊥. In this section, we calcu-
late ξ0, ξ‖, and ξ⊥, for the first and third cases. In the next

section, we use the first two cases as reference points for
perturbative analysis of these functions.

A. Vanishing spin-orbit coupling

We will study the case of αR = 0 first. In the absence of
SOC, conservation of spin brings a technical difficulty to the
calculation of T . Namely, at zero frequency and zero mo-
mentum, the matrix of disorder-averaged advanced-retarded
spin-spin correlators M(I − M)−1 that enters Eq. (41) cannot
be finite. Indeed, using the formulas of Appendix C with
αR = 0, one finds

M = I − 2ςτ�sd

1 + (2τ�sd)2
U (I − 2ςτ�sdU ), (66)

so that I − M is proportional to U . But det U = 0 and,
therefore, M(I − M)−1 = ∞. Physically, this divergence is
caused by the absence of linear response of electron spins po-
larized along n to time-dependent homogeneous perturbations
of Jsd (cf. Sec. 8.3 in Ref. [54]). Nevertheless, even in the limit
of zero momentum and zero frequency, STT, GD, and ESR
remain finite, since the series

T = UM + UM2 + UM3 + . . . (67)

actually converges.
The sum in Eq. (67) is most easily calculated in the

diagonal representation of U ,

U = VUdiagV
†, Udiag = diag (i,−i, 0), (68)

which is defined by the unitary matrix

V =

⎡⎢⎢⎢⎢⎢⎣
i ny−nxnz√
2
(

n2
x+n2

y

) − i ny+nxnz√
2
(

n2
x+n2

y

) nx

− i nx+nynz√
2
(

n2
x+n2

y

) i nx−nynz√
2
(

n2
x+n2

y

) ny

√
n2

x+n2
y√

2

√
n2

x+n2
y√

2
nz

⎤⎥⎥⎥⎥⎥⎦. (69)

Introducing MU = V †MV and making use of the relation
Udiag = UdiagP, to take care of the potential divergence, we
can rewrite Eq. (67) as

T = VUdiag(PMU + PM2
U + PM3

U + . . . )V †, (70)

where, according to Eqs. (66) and (68),

PMk
U = diag([1 + 2iςτ�sd]−k, [1 − 2iςτ�sd]−k, 0). (71)

Summation in Eq. (70) is trivially performed, leading to

T = − ς

2τ�sd
VU 2

diagV
† = − ς

2τ�sd
U 2

= ς

2τ�sd
(I − RTR) = T̃ − X̃R, (72)

where T̃ = (ς/2τ�sd)I represents the gauge of Eq. (61) and
we have used the first identity of Eq. (59a).

The above result clearly corresponds to t0 = ς/2τ�sd and
t‖ = t⊥ = 0 or

ξ0 = ς�sdAm

2π h̄2S
, ξ‖ = ξ⊥ = 0. (73)

Hence, Gilbert damping and the nonadiabatic spin-transfer
torque are both absent when αR = 0, as it should be in the
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model with no SOC, spin-dependent disorder, or other sources
of spin relaxation.

The parameter ξ0 defines the effective spin renormaliza-
tion (due to conduction electrons) in the LLG equation as
ξ0 = −δSeff/S [16]. In fact, for αR = 0, the effective spin
renormalization coincides with actual spin renormalization.
Indeed, without SOC, all electrons are polarized along ±n,
and, for the calculation of the total electron spin in a unit cell,

δS = δS↑ − δS↓ = ς

2
(N+ − N−)

= ςA

8π2h̄2

[∫
ε+(p)�ε

p d pdφp −
∫

ε−(p)�ε

p d pdφp

]
, (74)

one may use ε±(p) � ε ⇔ p2 � 2m(ε ∓ �sd) to obtain

δS = −ς�sdAm

2π h̄2 . (75)

Thus, δS = −ξ0S = δSeff in this case.
In Appendix E, we compute spin susceptibility of the sys-

tem for αR �= 0 and demonstrate that the spin renormalization
does not depend on the SOC strength. At the same time, the
effective spin renormalization does. Moreover, the identity
δSeff = δS is, in fact, a very specific case. It holds either for
vanishing spin-orbit interaction, or at some particular value
of �so ≈ �sd, as one can learn from Table I and Fig. 4 (we
recall that �so = |αR|√2mε characterizes the SOC-induced
splitting of the spectral branches).

B. Perpendicular-to-the-plane magnetization

Now we turn to the n = n⊥ regime. The formulas of
Appendix C are not applicable in this case. Nevertheless, one
can perform the integration in Eq. (38) directly, utilizing the
expression for the Green’s function of Eq. (56) with sin θ = 0
(and n = ez cos θ ). It follows that

M = [
1 + 4τ 2

(
�2

sd + �2
so

)]−1{[1 + 2(τ�so)2]P

+ [1 + 4(τ�sd)2](I − P) − 2ςτ�sdP UP} (76)

and, after some arithmetic,

T = ς

2τ�sd

[
1 −

(
τ�2

so

)2

�2
sd + τ 2

(
2�2

sd + �2
so

)2

]
P

+ 1

2

{
�2

so

[
1 + 2τ 2

(
2�2

sd + �2
so

)]
�2

sd + τ 2
(
2�2

sd + �2
so

)2

}
P UP. (77)

Substitution of this result into Eqs. (54) shows that, in this
case, both T STT and T GD are represented as linear combina-
tions of two vector forms: ∂n‖ and n⊥ × ∂n‖. Since n = n⊥
and, thus, ∂n⊥ = 0, the coefficients in front of these forms
should be recognized as t0 and t‖, respectively. With the help
of Eq. (75), we, therefore, find

ξ0 = −δS

S

[
1 −

(
τ�2

so

)2

�2
sd + τ 2

(
2�2

sd + �2
so

)2

]
, (78a)

ξ‖ =
∣∣∣δS

S

∣∣∣τ�sd

{
�2

so

[
1 + 2τ 2

(
2�2

sd + �2
so

)]
�2

sd + τ 2
(
2�2

sd + �2
so

)2

}
. (78b)

For a fixed n = n⊥, however, one cannot directly define ξ⊥.
Indeed, the latter function, in this case, is a prefactor in front
of the vanishing vector form n × ∂n⊥ and, in principle, can be
even taken arbitrary. The only way to assign a clear meaning to
ξ⊥, here, is to consider its asymptotic behavior at small values
of sin θ . Namely, one should expand the integrands in Eq. (38)
up to sin2 θ and, after the integration, compute the coefficients
of the decomposition of Eq. (58) with the same accuracy.
Application of a sin θ → 0 limit in Eq. (63c), afterward, will
lead to

ξ⊥ =
∣∣∣δS

S

∣∣∣τ�sd

{
1

2

�2
so

[
1 + (2τ�sd)2

]
�2

sd + τ 2
(
2�2

sd + �2
so

)2

}
. (79)

One may use Eqs. (78b) and (79) to evaluate the strength of the
rotational anisotropy of GD and the nonadiabatic STT, given
n ≈ n⊥. We see, for example, that, for small sin θ , the ratio

ξ‖/ξ⊥ = 2 + �2
so

�2
sd + (1/2τ )2

+ O(sin2 θ ), (80)

exceeds 2, making the rotational anisotropy considerable even
if SOC is weak. At the same time, for strong spin-orbit
coupling, ξ‖ can potentially be orders of magnitude larger than
ξ⊥ (see also Fig. 4).

For the perpendicular-to-the-plane magnetization, GD was
analyzed previously in Ref. [55] under an additional assump-
tion of large chemical potential. Our result for the Gilbert
damping coefficient ξ‖, given by Eq. (78b), coincides with the
expression on the right-hand side of Eq. (25) of Ref. [55], to
an overall factor that we were unable to identify (most likely,
it is equal to 4). The τ → ∞ limit of the same expression was
derived recently in Ref. [56] (with another overall factor). This
paper also mentions the role of the diagonal terms of the GD
tensor on ESR.

A separate study of the nonadiabatic STT (also limited to
the n = n⊥ case) was reported in Ref. [57]. As we have shown
above, this torque should be fully determined by the very same
function ξ‖ as is GD. The authors, however, ignored vertex
corrections, and, as it seems, overlooked this fact. In any case,
their results differ from those of Eq. (78b).

VII. ASYMPTOTIC EXPANSIONS

We proceed with a calculation of the ξi expansions in either
small αR or small �sd. To perform such a calculation, one
should expand the integrands in Eq. (38) or, alternatively, in
Eqs. (C2), with respect to the corresponding variable. Then the
result can be integrated over the poles, provided by Eqs. (25a)
and (25b), respectively (where ε should be replaced with
ε + i/2τ ).

A. Weak spin-orbit coupling

Keeping the notation of Sec. VI A for the matrices M and
T in the absence of SOC, below we use the symbols δM
and δT to represent the respective contributions provided by
finite αR.

Since δM �= 0, the result of matrix inversion in

T + δT = U (M + δM)(I − M − δM)−1 (81)
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TABLE I. Closed-form results and asymptotic expansions for the dimensionless functions ξ0, ξ‖, and ξ⊥ that define anisotropic spin-transfer
torques, Gilbert damping, and effective spin renormalization. The results are expressed in terms of the energy scales �sd = |Jsd|S and �so =
|αR|√2εm that describe, respectively, the exchange and spin-orbit-induced splitting. The second row shows the expansion up to the second
order in �so. The third row provides the leading-order terms of the expansion with respect to small �sd. Spin renormalization is defined in
Eq. (75) by δS = −JsdSAm/2π h̄2.

ξ0/
( − δS

S

)
or δSeff/δS ξ‖/

(| δS
S |τ�sd

)
ξ⊥/

(| δS
S |τ�sd

)
αR = 0 1 0 0

O
(
�2

so

)
1 + 2(τ�so )2

1+(2τ�sd )2
1−n2

z
1+n2

z

(�so/�sd )2

1+(2τ�sd )2

[
(2τ�sd )2 + 2

1+n2
z

] (�so/�sd )2

1+(2τ�sd )2
1+(2nzτ�sd )2

1+n2
z

�sd → 0
(

�sd
�so

)2[
4n2

z + 1+n2
z

2(τ�so )2

]
2 + 1

(τ�so )2
1

2(τ�so )2

n = n⊥ 1 −
(
τ�2

so

)2

�2
sd+τ2

(
2�2

sd+�2
so

)2

�2
so

[
1+2τ2

(
2�2

sd+�2
so

)]
�2

sd+τ2
(

2�2
sd+�2

so

)2
1
2

�2
so[1+(2τ�sd )2]

�2
sd+τ2

(
2�2

sd+�2
so

)2

is finite, making the analysis straightforward yet rather cum-
bersome. Retaining only proportional to α2

R terms in δM (see
Appendix F for explicit formulas), we obtain

δT = δc2P + δc3U + δc4U
2 + . . . , (82)

where dots represent terms that do not contribute to the δT̃
gauge in the α2

R order and

δc2 = �2
so

2�2
sd

1

1 + n2
z

, (83a)

δc3 = − τ�2
so

ς�sd[1 + (2τ�sd)2]

1 − n2
z

1 + n2
z

, (83b)

δc4 = − �2
so

2�2
sd

1 + (2nzτ�sd)2

1 + (2τ�sd)2

1

1 + n2
z

. (83c)

Then, utilizing Eqs. (63) with ci replaced by δci, we arrive
at the second-order expansions in small SOC strength for the
functions ξi. Those are collected in the second row of Table I.

We may again use the obtained results to quantify the
rotational anisotropy of GD and the nonadiabatic STT by
computing the ratio

ξ‖/ξ⊥ = 2 + 1 − n2
z

n2
z + 1/(2τ�sd)2

+ O
(
�2

so

)
. (84)

For weak spin-orbit coupling, the rotational anisotropy is
minimal when magnetization is perpendicular to the plane
and increases for the magnetization approaching the in-plane
direction.

We also note that the asymptotic expansions up to the order
α2

R allow us to estimate the orientational anisotropy of ξi.
Employing the notation ξi = ξi(n2

z ), we find

ξ0(0) − ξ0(1) = 2(τ�so)2

1 + (2τ�sd)2
, (85a)

ξ‖(0) − ξ‖(1) = 1

1 + (2τ�sd)2

�2
so

�2
sd

, (85b)

ξ⊥(0) − ξ⊥(1) = 1 − (2τ�sd)2

1 + (2τ�sd)2

�2
so

2�2
sd

, (85c)

for weak SOC. Clearly, ξ0 and ξ‖ are both maximal for
n⊥ = 0. On the other hand, the expression on the right-hand
side of Eq. (85c) can change sign, depending on the value of

τ�sd. Therefore, the orientational anisotopy of ξ⊥ in a “clean”
system (τ�sd � 1) differs from that in a “dirty” one (Fig. 4
corresponds to the case of a “clean” system).

Interestingly, at αR = 0 the matrix function δT turns out to
be discontinuous. Namely, its elements have finite limits for
αR → 0. This discontinuity has, however, no physical conse-
quences, since the matrix δT itself is not gauge invariant. In
the δT̃ gauge, the discontinuity is removed and, thus, it does
not affect the physically relevant quantities ξ0, ξ‖, and ξ⊥. This
property demonstrates the importance of full analysis of all
components of the STT and GD tensors.

B. Weak exchange interaction

Up to the linear order in �sd, we have

M = I + 2(τ�so)2P

1 + 4(τ�so)2
− 2ςτ�sd

U + 4(τ�so)2P UP

[1 + 4(τ�so)2]2
. (86)

This corresponds to the following coefficients of the decom-
position of Eq. (58):

c1 = 1

4(τ�so)2
, c2 = 1 + 1

4(τ�so)2
, (87a)

c3 = − ςτ�sd

4(τ�so)4
, c4 = 0, (87b)

c5 = −ςτ�sd[1 + 8(τ�so)2]

4(τ�so)4
, c6 = 0. (87c)

Substituting the latter expressions into Eqs. (63), one obtains
the leading-order contributions to ξi in the limit of small �sd.
The respective results are presented in the third row of Table I.
Using them, we can find yet another expression for the ratio

ξ‖/ξ⊥ = 2 + (2τ�so)2 + O
(
�2

sd

)
. (88)

Remarkably, the rotational anisotropy of GD and the nona-
diabatic STT, ξ‖/ξ⊥ = 2, persists to both limits

�sd � �so � 1/τ and �so � �sd � 1/τ, (89)

in which the Fermi surfaces defined in Eq. (19) are not only
essentially isotropic but, at the same time, do get strongly
broadened by the disorder (the broadening 1/τ exceeds the
splitting of the subbands).

It is also interesting to mention that, for small values of
�sd, the nonadiabatic spin-transfer torque dominates over the
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FIG. 4. Dimensionless functions ξ0, ξ‖, and ξ⊥ that define anisotropic spin-transfer torques, Gilbert damping, and effective spin
renormalization as functions of the spin-orbit coupling strength αR for four different polar angles of magnetization (nz = cos θ ). The notations
coincide with those of Table I. We use the dimensionless combinations ετ = 50, τ�sd = 10. Since for θ = 0 it is impossible to compute ξ⊥
numerically, only analytical result is shown. The O(1/�4

so) expansion is addressed in Appendix G.

adiabatic one: ξ‖,⊥/ξ0 ∝ 1/�sd. This agrees with the intuitive
logic that, for a weak exchange between conduction and
localized spins, the former would rather not adiabatically
follow the direction of the latter.

VIII. DISCUSSION

A. Role of vertex corrections

We begin this final section by stressing that it is the
accurate consideration of vertex corrections that is responsible

for the established vector structures of anisotropic STT, GD,
and ESR, as well as for the relation between them. Practically
none of this would be seen from an uncontrolled analysis that
ignores vertex corrections.

For example, if one does not apply the disorder dressing
to the current vertex v, then the relation of Eq. (50) will
no longer be valid. Instead, the STT tensor, in this case,
will contain 18 additional nonzero components of different
symmetries, which one might by mistake interpret as physical
torques.
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B. Renormalization of spin

In Sec. VI A, we have demonstrated that, in the limit
of vanishing SOC, the ESR factor δSeff = −ξ0S does coin-
cide with the actual total electron spin in a unit cell δS =
−JsdSAm/2π h̄2. On the other hand, this equality breaks down
for finite αR, and the ratio δSeff/δS starts to depend on all of
the parameters of the system, including scattering time (see
Table I and Fig. 4).

For large values of spin-orbit-induced splitting �so, the
quantity ξ0 (which determines ESR) understandably decays
due to the effective randomization of the electron spin direc-
tion induced by SOC. What is, however, rather interesting, is
that, for relatively small values of αR, the ESR factor δSeff

exceeds δS, reaching the maximum value at �so ≈ �sd. We
do not have an intuitive explanation for such behavior.

C. LLG equation

It is instructive to compare the microscopic LLG Eq. (1)
to its conventional phenomenological counterpart. In the ab-
sence of spin-orbit, thermal, and other torques that we do not
consider in this study, the latter equation reads

∂t n = γ n × Heff + ( js · ∇)n

− α[n × ∂t n] − β[n × ( js · ∇)n], (90)

where the vector quantity js is interpreted as the phenomeno-
logical spin-polarized current, while the parameters α and
β define Gilbert damping and the nonadiabatic spin-transfer
torque, respectively. The latter is also commonly referred to
as the β torque. The adiabatic spin-transfer torque is repre-
sented by the term ( js · ∇)n, while Heff denotes effective field
contributions.

First, taking into account Eqs. (2), we can rewrite the
microscopic LLG Eq. (1) in a form which is similar to that
of Eq. (90),

∂t n = γ̄ n × Heff + ( js · ∇)n

− α‖[n × ∂t n‖] − β‖[n × ( js · ∇)n‖]

− α⊥[n × ∂t n⊥] − β⊥[n × ( js · ∇)n⊥], (91)

where

js = vd
ξ0

1 − ξ0
= −vd

δSeff

S + δSeff
, (92a)

α‖,⊥ = ξ‖,⊥
1 − ξ0

, β‖,⊥ = ξ‖,⊥
ξ0

, γ̄ = γ

1 − ξ0
, (92b)

and each of the quantities js, α‖,⊥, β‖,⊥, γ̄ depend on the
orientation of the vector n. For the particular 2D Rashba FM
model system considered in this paper,

js = js

(
n2

z

)
, α‖,⊥ = α‖,⊥

(
n2

z

)
, (93a)

β‖,⊥ = β‖,⊥
(
n2

z

)
, γ̄ = γ̄

(
n2

z

)
. (93b)

We see that the microscopic LLG Eq. (91) is essentially
anisotropic, in contrast with the phenomenological LLG
Eq. (90). Namely, the coefficients α and β got split into two
components each. Moreover, the new coefficients α‖,⊥ and

β‖,⊥ as well as the other parameters of the LLG equation
became dependent on the direction of magnetization. We note
that the splitting of the GD coefficient α has been reported, for
a Rashba FM, in Ref. [58].

Next, let us comment on the microscopic definiton of the
spin-polarized current formulated in Eq. (92a). Normally, if
spins of conduction electrons (travelling with the character-
istic velocity v) adiabatically follow the direction of n, then
one assumes js = −v δS/(S + δS), where δS is a contribution
from conduction electrons to the total spin of the system. In
this case, Eq. (90) can be simply viewed as a manifestation of
the total angular momentum conservation (for n × Heff = 0),

(S + δS)∂t n + δS(v · ∇)n = 0, (94)

where −δS(v · ∇)n is the rate of angular momentum transfer
from conduction to total spin.

The definition of the vector quantity js, given by Eq. (92a),
provides a perfect generalization of the above logic for a
system with finite Rashba SOC. Indeed, conduction spins
no longer follow the direction of n (due to, e.g., nonzero
damping). Nevertheless, −δSeff(vd · ∇)n still has a meaning
of the rate of “angular momentum transfer” from the effective
conduction spin δSeff to the total S + δSeff. Importantly, it
was a fully controllable accurate microscopic treatment of
the problem that led us to Eq. (92a). (We identified the drift
velocity vd as a “proportionality coefficient” between the STT
and GD tensors and observed that the adiabatic spin-transfer
torque and ESR are described by the same quantity ξ0.)

Finally, for the sake of historical integrity, let us also
mention that the equalities α‖ = β‖ and α⊥ = β⊥, in this
system, are equivalent [59] to the relation

δSeff = −S/2, (95)

which appears to be rather unphysical.

D. Material derivative and moving reference frame

In the presence of the anisotropic STT and GD of Eqs. (2),
it is natural to analyze the microscopic LLG Eq. (1) in such
a frame, where the effect of the nonadiabatic spin-transfer
torque is absent. Namely, in the frame that moves with the
classical drift velocity of conduction electrons vd . One may
use a nice analogy to continuum mechanics as an illustration
of this fact.

Indeed, despite the essentially anisotropic character of both
T STT and T GD, their sum is conveniently expressed in the
LLG Eq. (1) via the operator of material derivative Dt =
∂t + (vd · ∇) as

(1 − ξ0)Dt n = γ n × Heff + (vd · ∇)n − ξ‖[n × Dt n‖]

− ξ⊥[n × Dt n⊥] + . . . , (96)

where we have moved the term ξ0Dt n to the left-hand side
and added (vd · ∇)n to both sides. By considering conduction
electrons as a “fluid” flowing with the drift velocity vd , one
may interpret the material derivatives of Eq. (96) as the change
rates of components of n that are associated with the elec-
tronic “fluid parcels.” Thus, in the moving (“flowing”) frame,
r′ = r − vdt , the material derivatives Dt are automatically
replaced [31] by the ordinary time derivatives ∂t .
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In other words, in the moving reference frame, Eq. (96)
takes the form of the LLG equation

(1 − ξ0)∂t n = γ n × Heff + (vd · ∇)n − ξ‖[n × ∂t n‖]

− ξ⊥[n × ∂t n⊥] + . . . (97)

that comprises the analog of the adiabatic torque (vd · ∇)n,
two components of damping, and (represented here by dots)
all other possible torques. As long as the latter are absent, the
dynamics of a magnetic texture, governed by such an equation
(under mediate currents and in the absence of magnetic field),
is likely to be a motion with zero terminal velocity (as it is,
in the isotropic case, for domain walls [32,33]). For a general
situation, current-induced magnetic dynamics can differ sig-
nificantly. Nevertheless, it should still be more convenient to
perform the analysis once the effect of the nonadiabatic STT
has been accounted for by switching to the “flowing” frame.

Interestingly, any “propagating” texture of the form
n(r, t ) = ζ(r − vdt ) = ζr(t ) nullifies the sum T STT + T GD.
Hence, for such textures, the LLG Eq. (1) reads

dζr/dt = γ ζr × Heff + . . . , (98)

where r can be regarded as a parameter. If one takes into
account only spin-transfer torques and fieldlike spin-orbit
torque, solutions of this equation will have an oscillatory char-
acter. Note that Eq. (98) is different from the LLG equation

0 = γ ζr × Heff (99)

that describes the uniform motion of the ground state in
the presence of the Galilean invariance [the case α = β in
Eq. (90)] [13,15,16,60].

E. Response to electric current

So far, we have computed spin-transfer torques as a linear
response of the system to the external electric field E. In
experiment, however, it is not the electric field but rather the
electric current j which is externally applied. To relate spin
torques to the latter, one should compute the conductivity
tensor σ̂ and, afterward, use the identity

E = σ̂−1 j (100)

to replace E with j. Importantly, the conductivity tensor has
to be computed up to the linear order in first magnetization
gradients ∇αnβ .

F. Relation to Edelstein effect

It is worth noting that some of our results can be indepen-
dently benchmarked. As it was suggested in Ref. [36], there
exists a connection between some particular pairs of quantities
in the model of Eq. (9), as, e.g., between the Dzyaloshinskii-
Moria interaction strength and the exchange stiffness, or be-
tween spin-orbit torques and spin-transfer torques. The latter
relation is relevant to our study.

A general interpretation of the approach described in
Ref. [36] would be the following. Suppose there exists a
quantity F (αR) which, for the model with αR = 0, depends
on the gradients of n, such that

F (0) = F (∇xn,∇yn). (101)

Then, up to the linear order with respect to αR, one would
obtain [61]

F (αR) = F (0) + αR

[
∂

∂αR
F (∇̃xn, ∇̃yn)

]
αR=0

, (102)

where

∇̃in = ∇in + 2mαR

h̄
[n × [ez × ei]]. (103)

Let us now choose three functions Fi(αR) to be the compo-
nents of the vector T STT. Using the expression for the quantity
ξ0 in the limit αR = 0 (see Table I), we can write

T STT = eA

2π h̄
Jsdτ (E · ∇)n. (104)

From Eq. (102) we then find another contribution to the
generalized torque in the ∝ αR order,

T SOT = 2mαR

h̄

eA

2π h̄
Jsdτ [n × [ez × E]], (105)

which is precisely the expression for the Edelstein effect [62]
in a form of a fieldlike torque on magnetization. In a similar
way, vanishing of the functions ξ‖ and ξ⊥ at αR = 0 can be
translated into the absence [52] of the antidamping SOT in the
model of Eq. (9).

The result of Eq. (105) coincides with the direct derivation
of SOT, for the model of Eq. (9), that has been reported
previously [52]. A more compact and accurate form of this
derivation is also presented in Appendix A. Such independent
consistency check adds to the credibility of our results.

CONCLUSIONS

We have presented a thorough microscopic analysis of
STT, GD, and ESR for the particular 2D FM system with
Rashba spin-orbit coupling and spin-independent Gaussian
white-noise disorder. Assuming arbitrary direction of magne-
tization, we have established the exact relation between these
effects. We have introduced the notion of the matrix gauge
transformation for magnetization-dependent phenomena and
used it to express spin-transfer torques, Gilbert damping,
and effective spin renormalization in terms of meaningful
vector forms. The latter allowed us to quantify the SOC-
induced anisotropy of the former. We have analyzed, both
analytically and numerically, three dimensionless functions
that fully define anisotropic STT, GD, and ESR. We have also
generalized the concept of spin-polarized current, computed
spin susceptibility of the system, and obtained a number of
other results.

It would be an interesting challenge to observe the
anisotropy of STT experimentally. It might be possible to do
this by measuring current-induced corrections to the magnon
spectrum asymmetry that is normally associated with the
Dzyaloshinskii-Moriya interaction. We also believe that, to
some extent, the anisotropy of STT and GD might explain the
differences in dynamics of domain walls (and skyrmions) with
different characteristics.

085405-13



I. A. ADO, P. M. OSTROVSKY, AND M. TITOV PHYSICAL REVIEW B 101, 085405 (2020)

ACKNOWLEDGMENTS

We thank Jairo Sinova for pointing out a number of flaws in
the original version of the manuscript. We are also grateful to
Artem Abanov, Arne Brataas, Sergey Brener, Ivan Dmitriev,
Rembert Duine, Olena Gomonay, Andrew Kent, Alessandro
Principi, Alireza Qaiumzadeh, and Yaroslav Tserkovnyak for
helpful discussions. This research was supported by the JTC-
FLAGERA Project GRANSPORT and by the Dutch Science
Foundation NWO/FOM 13PR3118. M.T. acknowledges the
support from the Russian Science Foundation under Project
No. 17-12-01359.

APPENDIX A: VERTEX CORRECTIONS TO VELOCITY
OPERATOR; SPIN-ORBIT TORQUE

In order to compute vertex corrections to the velocity op-
erator v = p/m − αR[ez × σ], we first apply a single impurity
line to the scalar part of the latter,

(p/m)1×dr = 1

mτ

∫
d2 p

(2π )2
gR(p/m)gA. (A1)

Due to the fact that the momentum operator p commutes
with the Green’s functions gR,A, the above relation can be
equivalently written as

(p/m)1×dr = i

m

∫
d2 p

(2π )2
(p/m)(gR − gA), (A2)

where we have used the Hilbert’s identity of Eq. (48).
The subsequent analysis follows the route of Sec. III A. In-

tegration over the absolute value of momentum in Eq. (A2) is
performed by computing residues at p = p±. Symmetrization
of the obtained result, with respect to the transformation [43]
ϕ → π − ϕ, leads to

(p/m)1×dr =
∫ 2π

0

dϕ

2π
(αR(1 + rW4)[ez × σ] + (αR + rW5)

×{n‖[σ × n]z − (n‖ · σ )[ez × n]} cos 2ϕ

+ (W6 + W7 n · σ )[ez × n] sin ϕ), (A3)

where Wi = Wi(r2, u (r2)) are some functions of the parameter
r2 and ϕ-independent parameters of the model. Again, all
terms that contain Wi vanish identically after integration over
the angle and we conclude that

(p/m)1×dr = αR[ez × σ]. (A4)

Next, we observe that the corrected by an impurity ladder
velocity operator vvc can be recast in the form

vvc = {p/m − αR[ez × σ]}vc

= p/m + {(p/m)1×dr − αR[ez × σ]}vc. (A5)

According to Eq. (A4), expression inside the brackets on the
second line vanishes, leading us to the desired result,

vvc = p/m, (A6)

which coincides with Eq. (45) of the main text. Note that,
since the momentum operator commutes with the Green’s
functions, Eq. (A6) determines both advanced-retarded and
retarded-advanced vertex corrections to the velocity operator.

One immediate consequence of Eqs. (A4) and (A6) is a
trivial form of spin-orbit torque in the considered interface
Rashba model. Indeed, it was conjectured in Ref. [52] that the
antidamping SOT, in this model, is identically absent, while
the fieldlike SOT is entirely isotropic. To prove the conjecture,
we use the Kubo formula for SOT

T SOT = eJsdA

2π h̄2

∫
d2 p

(2π )2
tr [T̂ gR(vvc · E )gA]. (A7)

Substituting vvc = p/m and using Eq. (A1), we immediately
find

T SOT = eJsdAmτ

2π h̄2 tr {T̂ [(p/m)1×dr · E]}, (A8)

Finally, with the help of Eqs. (12) and (A4), we obtain the
expression for spin-orbit torque,

T SOT = eJsdAmταR

2π h̄2 tr {[σ × n]([ez × σ] · E )}

= eJsdAmταR

π h̄2 [n × [ez × E]], (A9)

which coincides with that of Eq. (105), as expected.

APPENDIX B: VANISHING OF δT STT

We will now prove that the absence of the spin component
in the vertex corrected velocity operator vvc nullifies the
contribution δT STT to the STT tensor of Eq. (44). Using
cyclic permutations under the matrix trace and the fact that
vvc = p/m commutes with any function of momentum, one
can rewrite Eq. (44) as

δT STT
αβγ δ = −e�2

sdA

2π h̄S

∫
d2 p

(2π )2

pβτ

2m
tr [�1 + �2] (B1)

with

�1 = (
vγ gA T̂ vc

α gR σδ − σδ gA T̂ vc
α gR vγ

)gRgA

iτ
, (B2a)

�2 = (
σδ gA vγ gA T̂ vc

α − vγ gA σδ gA T̂ vc
α

)gRgA

iτ

− (
T̂ vc

α gR vγ gR σδ − T̂ vc
α gR σδ gR vγ

)gRgA

iτ
. (B2b)

In Eq. (B2a), we employ the Hilbert’s indentity of Eq. (48) to
replace the factor gRgA/iτ with gR − gA and again use cyclic
permutations to obtain

�1 = T̂ vc
α gR σδ gR vγ gA − T̂ vc

α gR vγ gR σδ gA

− T̂ vc
α gR σδ gA vγ gA + T̂ vc

α gR vγ gA σδ gA. (B3)

A similar procedure is performed to simplify the expression
for �2. We note, however, that terms with only retarded or
only advanced Green’s functions, in Eq. (B2b), should be
disregarded [44]. Hence, gRgA/iτ is replaced with gR in the
first line of Eq. (B2b) and with −gA in the second line. After
moving the torque operator to the first place in each term,

�2 = T̂ vc
α gR σδ gA vγ gA − T̂ vc

α gR vγ gA σδ gA

+ T̂ vc
α gR vγ gR σδ gA − T̂ vc

α gR σδ gR vγ gA, (B4)
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we conclude that �1 + �2 = 0 and, therefore, δT STT = 0 as
well.

APPENDIX C: STRUCTURE OF M

Using Green’s function of Eq. (56) we compute the matrix
trace in Eq. (38) and further symmetrize the integrands with
respect to the transformation [43] ϕ → π − ϕ. This results in
the decomposition

M = γ1I + γ2P + γ3U + γ4U
2 + γ5P UP + γ6P U 2P,

(C1)
where the coefficients are given in the integral form,

γ1 = 2
[(

�2
sd + |ε + i/2τ |2)I0 − 2(ε + δso)I1 + I2

]
,

(C2a)

γ2 = −4

[
2δson2

z

1 − n2
z

I1 +
(
1 + n2

z

)
ς�sd√

1 − n2
z

J1 − 1 + n2
z

1 − n2
z

J2

]
,

(C2b)

γ3 = −2

τ

(
ς�sdI0 − 1√

1 − n2
z

J1

)
, (C2c)

γ4 = 4ς�sd

(
ς�sdI0 − 1√

1 − n2
z

J1

)
, (C2d)

γ5 = − 2

τ
√

1 − n2
z

J1, (C2e)

γ6 = −4

(
2δso

1 − n2
z

I1 + ς�sd√
1 − n2

z

J1 − 2

1 − n2
z

J2

)
, (C2f)

with δso = mα2
R and

Ik =
∫

d2 p

(2π )2

(2mτ )−1(p2/2m)k

|ε − ε+(p) + i/2τ |2|ε − ε−(p) + i/2τ |2 ,

(C3a)

Jk =
∫

d2 p

(2π )2

(2mτ )−1(αR p sin ϕ)k

|ε − ε+(p) + i/2τ |2|ε − ε−(p) + i/2τ |2 .

(C3b)

Some of Eqs. (C2) formally become invalid when n = n⊥.
However, structure of M and T in the respective case was
analyzed directly in Sec. VI B.

APPENDIX D: STRUCTURE OF Mk

We have already demonstrated that

M ∈ spanL, L = {I, P, U, U 2, P UP, P U 2P}. (D1)

Let us now prove that any natural power of M belongs to the
same linear span,

Mk ∈ spanL, ∀k ∈ N. (D2)

The operation of matrix product, by itself, is not closed
on spanL. Moreover, 14 of 36 elements of L × L do not
belong to spanL. On the other hand, a combination of two
such elements (matrices P U and UP),

P U + UP = {P,U } = U + P UP, (D3)

obviously does. Similarly, the remaining 12 “unsuitable”
elements of L × L do form 6 pairs, such that the cor-
responding anticommutators (namely, {P,U 2}, {P UP,U },
{P U 2P,U }, {P UP,U 2}, {P U 2P,U 2}, and {P UP, P U 2P})
belong to spanL.

In general, the following statement holds: Operation of
matrix anticommutation sends elements of L × L to a linear
span of L,

{ , } : L × L → spanL. (D4)

Taking into account the fact that anticommutator is a bilinear
map, we deduce from Eq. (D4):

{ , } : spanL × spanL → spanL. (D5)

Finally, since for arbitrary k we have

Mk = 1
2 {M,Mk−1}, (D6)

the desired result, Mk ∈ spanL, is proven by induction.

APPENDIX E: SPIN SUSCEPTIBILITY IN
THE PRESENCE OF SOC

In this Appendix, the total spin δS of conduction electrons
in a unit cell of the area A is computed for a general case of
αR �= 0. We use the following standard definition:

δS = A

2π i

∫
dε f (ε)

∫
d2 p

(2π h̄)2
tr
[σ

2

(
GA − GR

)]
, (E1)

where f denotes the Fermi-Dirac distribution,

f (ε) = {1 + exp [(ε − ε)/T ]}−1, (E2)

and GA,R refers to the momentum-dependent Green’s function
of Eq. (29). We will first consider the in-plane component
of δS.

Matrix trace calculation followed by an integration over ε,
in Eq. (E1), gives

δSx = A
∫

d2 p

(2π h̄)2

ς�sdnx − αR py

ε+(p) − ε−(p)
( f+ − f−), (E3a)

δSy = A
∫

d2 p

(2π h̄)2

ς�sdny + αR px

ε+(p) − ε−(p)
( f+ − f−), (E3b)

where f± = f [ε±(p)]. It is convenient to introduce the quan-
tity δS+ = δSx + iδSy. For the latter, we find

δS+ = A

4αR

∫
d2 p

(2π h̄)2
( f+ − f−)

×
(

i
∂

∂ px
− ∂

∂ py

)
[ε+(p) − ε−(p)], (E4)

where we took advantage of the fact that the fractions in
Eqs. (E3) can be expressed as the derivatives with respect to
the components of momentum. In the zero-temperature limit,
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one can use Green’s theorem to reduce the double integrals
in Eq. (E4) to the integrals over the closed curves C± = {p |
ε±(p) = ε},

δS+ = δS+
+ + δS−

+, (E5a)

δS±
+ = ± A

4αR

∫
C±

d px + id py

(2π h̄)2
[ε+(p) − ε−(p)]. (E5b)

Next, we follow the approach used by K.-W. Kim et al. in
Ref. [41]. Using the variable w = px + ipy and the relation
ε±(p) = p2/2m ± [ε+(p) − ε−(p)]/2, we find

δS±
+ = A

16π2 h̄2αR

∫
C±

dw

(
2ε − w∗w

m

)
, (E6)

where w∗w = p2 and C± = {w | ε±(w,w∗) = ε} are now re-
garded as contours in the complex w plane. Since the contours
are closed, Eq. (E6) is further simplifed to

δS±
+ = − A

16π2 h̄2mαR

∫
C±

dw w∗w. (E7)

In order to perform integration in Eq. (E7), we solve the
equation ε±(w,w∗) = ε for w∗ and express the result as a
function of w ∈ C±,

w∗ = 2m

w2

(
w
[
ε + mα2

R

] − imαRς�sdn+ ±
√

R
)
, (E8)

where n+ = nx + iny and R is a cubic function of w. Different
signs in front of the square root in Eq. (E8) correspond to
two different functions w∗ = w∗

±(w) of w ∈ C±, respectively.
We do not specify which sign corresponds to which function.
Such ambiguity, however, does not affect the final result for
δS+. Indeed, it can be proven [41] that all three zeros of R are
of the form wk = irkn+ with real rk . Then, from the general
relation

[ε − ε+(w,w∗)][ε − ε−(w,w∗)]

= −R +
(

w∗w
2m

− [
ε + mα2

R

] + imαRς�sdn+
w

)2

, (E9)

we learn that

[ε − ε+(wk,w
∗
k )][ε − ε−(wk,w

∗
k )] � 0 (E10)

and, thus, ε−(wk,w
∗
k ) < ε ⇒ ε+(wk,w

∗
k ) � ε. Hence, all the

singularities of w∗
− that lie inside the contour C− are, in fact,

located inside or, at most, on the contour C+ (note that C+
is inside C−). Disregarding the case [63] wk ∈ C± and using
Cauchy integral theorem, we can shrink [64] C− in Eq. (E7)
to obtain

δS+ = − A

16π2 h̄2mαR

∫
C+

dw (w∗
+ + w∗

−)w, (E11)

so that the terms ±√
R, in Eq. (E8), do not contribute to δS+.

The only remaining singularity of the integrand is located at
the origin and, by the residue theorem,

δS+ = −ς�sdAm

2π h̄2 n+ or δS‖ = −ς�sdAm

2π h̄2 n‖, (E12)

which completes the computation of the in-plane component
of δS.

In order to calculate δSz, it is useful to introduce the
“magnetization” vector M = ς�sdn. In terms of M, one
can straightforwardly establish the “thermodynamic” relation
δSi = ∂�/∂Mi, where � has a meaning of the electronic
grand potential in a unit cell,

� = −T
A

2π i

∫
dε g(ε)

∫
d2 p

(2π h̄)2
tr [GA − GR], (E13a)

g(ε) = log (1 + exp [(ε − ε)/T ]). (E13b)

We further note that, according to Eq. (E12), δSx and δSy do
not depend on Mz. Therefore, equating the second derivatives,
we find

∂δSz

∂Mα

= ∂2�

∂Mα∂Mz
= ∂δSα

∂Mz
= 0, (E14)

where α = x, y. As a result, δSz does not depend on Mx

and My and, thus, can be computed for Mx = My = 0 (or,
equivalently, for nx = ny = 0).

From Eq. (E1) we obtain

δSz = A
∫

d2 p

(2π h̄)2

ς�sdnz

ε+(p) − ε−(p)
( f+ − f−), (E15)

which, for nx = ny = 0, can be integrated over the momentum
angle with the result

δSz = A
ς�sdnz

4π h̄2

∫ ∞

0
pd p

f+ − f−√
�2

sd + (αR p)2
. (E16)

At zero temperature, the integration domain in Eq. (E16) is
reduced to a finite interval p+ < p < p−, where p± are given
by Eq. (25c). After some algebraic practice, we finally arrive
at

δSz = A
ς�sdnz

4π h̄2α2
R

√
�2

sd + (αR p)2

∣∣∣∣p−

p+

= −ς�sdAm

2π h̄2 nz. (E17)

Combining the results of Eqs. (E12) and (E17) into a single
vector form

δS = −ς�sdAm

2π h̄2 n, (E18)

we see that, on average, even for finite values of spin-orbit
coupling strength αR, spins of conduction electrons, in the
equilibrium, are aligned with the local magnetization. More-
over, the spin susceptibility tensor is fully isotropic and is
expressed by a single scalar parameter

δS = −|δS| = −ς�sdAm

2π h̄2 , (E19)

which coincides with that given by Eq. (75) of the main text.
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APPENDIX F: EXPANSION OF M UP TO α2
R

Expansion of Eqs. (C2) up to α2
R = �2

so/2εm provides us with the coefficients

δγ1 = −
[

2τ�so

1 + (2τ�sd)2

]2

[1 + (2nzτ�sd)2], δγ2 = 2

[
τ�so

1 + (2τ�sd)2

]2[
1 − (

1 + 2n2
z

)
(2τ�sd)2

]
, (F1a)

δγ3 =
[

4τ�so

1 + (2τ�sd)2

]2 1 + (2nzτ�sd)2

1 + (2τ�sd)2
ςτ�sd, δγ4 = −2

[
4τ 2�so�sd

1 + (2τ�sd)2

]2 1 + (2nzτ�sd)2

1 + (2τ�sd)2
, (F1b)

δγ5 = −2

[
2τ�so

1 + (2τ�sd)2

]2

ςτ�sd, δγ6 = −
[

4τ 2�so�sd

1 + (2τ�sd)2

]2

(F1c)

of the decomposition that we refer to in Sec. VII A: δM = δγ1I + δγ2P + δγ3U + δγ4U 2 + δγ5P UP + δγ6P U 2P.

APPENDIX G: O(1/�4
so) EXPANSION OF ξi (LIMIT OF STRONG SOC)

The quantities ξi are shown in the plots of Fig. 4 as functions of the spin-orbit coupling strength αR (while keeping both m
and ε constant). Therefore, the right “tails” of the curves can be properly fit using the asymptotic expansion with respect to the
parameter 1/�so. Such expansion can be obtained indirectly, from the expansion in small �sd. Below, for consistency with the
results of Sec. VII B, we list all the contributions to ξi that do not exceed the fourth order in 1/�so,

ξ0 = −δS

S

{(
�sd

�so

)2[
4n2

z + 1 + n2
z

2(τ�so)2

]
+ 6

(
�sd

�so

)4[
1 − 3n2

z

]
n2

z

}
, (G1a)

ξ‖ =
∣∣∣δS

S

∣∣∣τ�sd

{
2 + 1

(τ�so)2 −
(

�sd

�so

)2[
4n2

z − 1 − 7n2
z

(τ�so)2

]
− 4

(
�sd

�so

)4[
1 − 3n2

z

]
n2

z

}
, (G1b)

ξ⊥ =
∣∣∣δS

S

∣∣∣τ�sd

{
1

2(τ�so)2 +
(

�sd

�so

)2[
2n2

z + 1 − 5n2
z

2(τ�so)2

]
+ 2

(
�sd

�so

)4[
1 − 5n2

z

]
n2

z

}
. (G1c)

Note that the expansion with respect to small �sd is different from the expansion with respect to large �so.
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