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Grand-canonical Peierls theory for atomic wires on substrates
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We present a generic grand-canonical theory for the Peierls transition in atomic wires deposited on semicon-
ducting substrates such as In/Si(111) using a mean-field solution of the one-dimensional Su-Schrieffer-Heeger
model. We show that this simple low-energy effective model for atomic wires can explain naturally the
occurrence of a first-order Peierls transition between a uniform metallic phase at high temperature and a
dimerized insulating phase at low temperature as well as the existence of a metastable uniform state below
the critical temperature.
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I. INTRODUCTION

The Peierls instability of a one-dimensional metal coupled
to lattice vibrations [1] is a hallmark of low-dimensional
physics. It is known to play an important role in vari-
ous strongly anisotropic bulk materials and there is a well-
established theoretical framework to describe these quasi-one-
dimensional systems at a fixed electronic density [2–5]. In
particular, the canonical Peierls theory predicts a continuous
transition from a metallic state with a uniform lattice at high
temperature to an insulating state with a distorted lattice at
low temperature.

Atomic wires deposited on a semiconducting sub-
strate [6,7] represent another possible realization of one-
dimensional electronic systems in which the Peierls instability
could play a role. Indeed, the Peierls mechanism was invoked
to explain the metal-insulator transition accompanied by a
structural transition with a doubling of the unit cell observed
in indium wires on a Si(111) surface [8]. Various other expla-
nations have been proposed for this transition, however, and
the relevance of the Peierls mechanism remains controversial.
The common problem with most previous interpretations of
experiments and first-principles simulations is that they do
not consider how the semiconducting substrate modifies the
predictions of the one-dimensional Peierls theory.

Recent experimental evidence and first-principles simula-
tions for In/Si(111) suggest that the metallic uniform state
remains metastable below the critical temperature and that
the transition is first order in this system [9–16]. In Ref. [14]
it was shown that the first-principles simulation results, the
metastability of the metallic uniform state, and the first-
order transition could be understood within a grand-canonical
Peierls theory based on an effective one-dimensional low-
energy model. The indium wires were described by a specif-
ically constructed Hamiltonian of the Su-Schrieffer-Heeger
(SSH) type [17,18] including four electronic bands and three
commensurate lattice distortion modes while the substrate

*yasemin.erguen@itp.uni-hannover.de
†eric.jeckelmann@itp.uni-hannover.de

was treated as a charge reservoir for the wire subsystem.
However, the first-order transition was only obtained under
the assumption that the chemical potential must vary with
temperature to preserve the overall charge neutrality. More-
over, the model was investigated purely numerically and only
for the parameters that were obtained from first-principles
simulations of In/Si(111).

In this paper we present a generic grand-canonical Peierls
theory based on the original SSH model with one electronic
band and one commensurate lattice distortion mode in the
mean-field approximation (dimerization). The substrate only
acts as an electron reservoir and sets the chemical potential
for the wires. Using only analytical results and basic numer-
ical calculations we demonstrate that in a grand-canonical
Peierls system the high-temperature uniform metallic state
can remain thermodynamically metastable below the critical
temperature. Additionally, we show that the structural Peierls
phase transition can be first order as a function of temperature
for a fixed chemical potential. Moreover, we find that the
metal-insulator transition is always first order.

In the next section we introduce the grand-canonical mean-
field approach for atomic wires on semiconducting substrates
based on the SSH model. In Sec. III we recapitulate the
known results for the Peierls transition in the SSH model
at half-filling. Our results for the SSH model in the grand-
canonical ensemble are presented in Sec. IV. Finally, Sec. V
contains our conclusions. Some details are presented in two
Appendixes.

II. GRAND-CANONICAL MODEL FOR THE
PEIERLS TRANSITION

A. SSH model

The SSH model [3,4,17,18] is the standard model for
charge density waves (CDW) on bonds caused by a Peierls
distortion of bond lengths. It consists of a one-dimensional
lattice with L sites (ions) and N/2 electrons of each spin. The
lattice degrees of freedom are treated classically. The position
of site j along the lattice axis is given by x j = ja + u j , where
a is the lattice constant of the uniform lattice configuration
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FIG. 1. Schematic of the uniform lattice configuration (top) and
the two dimerized configurations (bottom) in the SSH model. The
disks represent the sites (atoms) and the linewidths show the strength
of the bond order or hopping term.

(x j = ja) shown in Fig. 1, while u j describes the deviation
from this position. The Hamilton function for the lattice
degrees of freedom (without coupling to the electrons) is

H =
∑

j

P2
j

2M
+ V, (1)

where Pj designates the conjugate momentum of u j , M is
the effective mass of the ions, and V is the lattice elastic
energy. For small deviations uj the lattice elastic energy can
be approximated by a harmonic potential

V = K

2

∑
j

(u j+1 − u j )
2, (2)

with the spring constant K . We will use periodic boundary
conditions uL+1 ≡ u1 and thus sums over the site index j
always runs from 1 to L.

A tight-binding Hamiltonian is used for the electronic
degrees of freedom and it is assumed that the only relevant
hopping terms are between nearest-neighbor sites (includ-
ing the coupling to the lattice deformations). The Hamilton
operator is

H = −
∑
j,σ

t j (c
†
j,σ c j+1,σ + c†

j+1,σ c j,σ ), (3)

where the operator c†
j,σ (c j,σ ) creates (annihilates) an electron

with spin σ (=↑,↓) on site j. The hopping term t j depends on
the distance between the sites j and j + 1, i.e., t j = t (u j+1 −
u j ). In the SSH approach a linear dependence is assumed for
small deviations u j ,

t j = t0 − α(u j+1 − u j ), (4)

with the electron-phonon coupling constant α � 0 and the
value t0 of the hopping for the uniform lattice configuration.
As the sign of the hopping terms can be changed with a
simple gauge transformation c†

jσ → (−1) jc†
jσ , it is sufficient

to consider the case t j > 0 (⇒ t0 > 0).
Note that this linear approximation for t (uj+1 − u j ) is

inconsistent with the quadratic approximation for the lattice
potential (2). As this inconsistency does not change the results
qualitatively, we will keep to the SSH choice in this paper. See
Appendix A for more details.

B. Dimerization

In this work we will exclusively consider the mean-field
approximation for a commensurate Peierls distortion of period

two (dimerization) and thus assume that

u j = (−1) ju, (5)

with a constant alternating site displacement u [3,4,17,18].
This corresponds to alternating long and short bonds, as
shown in Fig. 1. This particular lattice distortion is the normal
mode of the classical oscillator system (1) with wave number
Q = π/a and thus the unstable 2kF mode of the Peierls theory
at half-filling [kF = π/(2a) ⇒ Q = π/a]. The displacement
amplitude u is related to the usual Peierls order parameter (or
dimerization parameter) by

� = 4αu. (6)

It will be convenient to work with the dimensionless order
parameter

δ = �

2t0
= 2αu

t0
. (7)

The lattice elastic energy (2) becomes

V = Lt0
πλ

δ2, (8)

with the dimensionless SSH electron-phonon coupling

λ = 2α2

πKt0
. (9)

In Ref. [14] it was shown that λ = 0.37 and 0.18 were realistic
values for the shear and rotary Peierls modes of indium wires
on Si(111), respectively. The lattice kinetic energy can also be
written as a function of the order parameter

EK = Lt0
πλ

δ̇2

ω2
0

, (10)

where δ̇ designates the time derivative of the order parameter
δ and

ω0 =
√

4K

M
(11)

is the bare frequency of amplitude fluctuations of the order
parameter (i.e., the normal mode with wave number Q = π/a)
when the lattice is not coupled to the electrons.

From assumption (5) follows that the hopping terms t j

alternate between two values and thus we can compute the
single-particle eigenstates of the electronic Hamiltonian (3)
exactly. The single-electron eigenenergies are given by

εs(k) = s2t0

√
cos2(ka) + δ2 sin2(ka), (12)

with the band index s = ±1 and the wave number k =
2πz/(La) for integers −L/4 < z � L/4, which implies k ∈
(−π/(2a), π/(2a)]. We see in Fig. 2 that the spectrum con-
tains a gap of width

Eg = 2|�| = 4t0|δ| (13)

centered around the energy ε = 0. Consequently, δ (or �) is
also called gap parameter. At half-filling (and more generally
for a chemical potential |μ| < |�| = 2t0|δ|) the electronic
system is an insulator for δ �= 0 while it is metallic for δ = 0.
The assumption of small position deviations |uj | = |u| used
above can now be formulated quantitatively as the condition
|δ| < 1.

A vanishing order parameter δ = 0 corresponds to a uni-
form lattice structure and a constant density while a finite
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FIG. 2. Dispersion (12) of the single-electron eigenenergies for
� = 2δt0 = 0.8t0. The horizontal dashed lines show the four differ-
ent relative positions of the chemical potential: μ = 0 (half-filling),
0 > μ > −�, −� > μ > −2t0, and −2t0 > μ (see the discussion
in Sec. IV A).

order parameter δ �= 0 corresponds to a dimerized lattice and
a CDW on the bonds. Moreover, in the canonical ensemble
at half-filling, the uniform configuration yields a metallic
state while the dimerized one corresponds to an insulator
as discussed above. As the SSH model in the mean-field
approximation (5) is invariant under simultaneous reflection
(u → −u) and translation ( j → j + 1) transformations, con-
figurations with opposite order parameters (δ and −δ) have
the same energy. Consequently, the ground state is doubly
degenerate in the dimerized phase, as illustrated in Fig. 1.

C. Grand-canonical potential

Our goal is to determine the equilibrium properties of the
SSH model at finite temperature T . For wire-substrate systems
such as In/Si(111), the number of electrons N is not fixed but
the chemical potential μ is set by the substrate, which acts as a
reservoir [14]. Thus we will use the grand-canonical ensemble
for the electronic degrees of freedom but the canonical ensem-
ble for the lattice degrees of freedom because we assume that
the number of sites (atoms) in the chain is fixed.

After tracing out the electronic degrees of freedom we
obtain the grand-canonical potential of the full system per
lattice site

φ = t0
πλ

δ2 − kBT

L

∑
k,s,σ

ln(1 + exp{−β[εs(k) − μ]}), (14)

with 1/β = kBT . In the thermodynamic limit L → ∞ one can
write

φ = t0
πλ

δ2 − μ − kBT ln(2)

− kBT
∫ 2t0

|�|
dεD(ε) ln [cosh(βμ) + cosh(βε)], (15)

where the single-particle density of states is given by

D(ε) = 2

π

|ε|√(
4t2

0 − ε2
)
(ε2 − �2)

(16)

for � < |ε| < 2t0. Using a substitution z = ε/(2t0) one can
easily verify that φ depends only on the two thermodynamical
variables T and μ, the two model parameters λ and t0 (the
latter just sets the energy scale), and the order parameter δ.
We also note that φ is an even function of δ.

Within this mean-field, semiclassical approach the grand-
canonical potential (15) plays the role of the Landau’s free
energy for the order parameter δ of the commensurate Peierls
transition [2]. The actual grand-canonical potential φ(T, μ)
and the stable configurations δ(T, μ) are given by the minima
of (15) with respect to variations of δ. Thus our main goal is
to determine the stable configurations and the related observ-
ables as a function of T and μ, as well as the single remaining
model parameter λ.

In the grand-canonical ensemble the average electronic
density for a given temperature T and chemical potential μ

is given by

ρ = N

L
= 1

L

∑
k,s,σ

f [εs(k)], (17)

with the Fermi-Dirac distribution

f (ε) = 1

1 + exp[β(ε − μ)]
. (18)

In the thermodynamic limit we can write

ρ = 1 +
∫ 2t0

|�|
dεD(ε)

sinh(βμ)

cosh(βμ) + cosh(βε)
. (19)

We see that for μ = 0 the electronic band is half-filled (ρ = 1)
while less than half-filling (0 � ρ < 1) corresponds to μ < 0
and more than half-filling (1 < ρ � 2) to μ > 0. Because the
SSH model is invariant under the particle-hole transformation
c†

jσ → (−1) jc jσ , the results are similar for μ � 0 and μ � 0,
and thus we will discuss the first case only.

Equations (15) and (19) are the starting point for studying
thermodynamical Peierls transitions in the SSH model at the
mean-field level. Usually it is assumed that the electronic
density is fixed and the grand-canonical ensemble is used only
for computational convenience [2,5]. Therefore, the value of
the chemical potential is set by Eq. (19) for the desired value
of ρ. In Sec. III we will summarize the results obtained
with this assumption for the Peierls transition at half-filling.
In Sec. IV we will then generalize these results for a fixed
chemical potential.

III. RESULTS AT FIXED BAND FILLING

The conventional Peierls theory assumes a fixed electronic
density ρ. For the dimerized SSH model the band is usually
half-filled (ρ = 1) which corresponds to μ = 0 according
to (19). Here we summarize the most important results for this
case [2–5,17–19]. The grand-canonical potential (15) is then
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FIG. 3. Grand-canonical potential (15) at μ = 0 (half-filling)
[see Eq. (20)] as a function of the order parameter δ for λ = 0.18 and
four different temperatures (from bottom to top): T ≈ 0, T ≈ TP/2,
T ≈ TP, and T ≈ 2TP.

simplified

φ = t0
πλ

δ2 − kBT ln(2)

− kBT
∫ 2t0

|�|
dεD(ε) ln [1 + cosh(βε)]. (20)

For high temperatures (kBT � t0) it can be approximated by

φ = t0
πλ

δ2 − kBT ln(4). (21)

Therefore the uniform metallic configuration (δ = 0) is the
only stable phase at high temperatures.

For low temperatures (T → 0) the grand-canonical poten-
tial (20) yields the ground-state energy

φ = t0
πλ

δ2 −
∫ 2t0

|�|
dεD(ε)ε

= t0
πλ

δ2 − 4t0
π

E (1 − δ2), (22)

where E (m) is the complete elliptic integral of the second
kind. It is well known that this expression is a double-well
potential as a function of δ (|δ| < 1) with two minima at
δ = ±δ0 �= 0 and a local maximum at δ = 0, see the lower
curve in Fig. 3. Throughout this paper we denote with δ0 =
�0/(2t0) = δ(T = 0, μ = 0) the absolute value of the order
parameter for the stable configuration at half-filling and zero
temperature.

For small δ we can expand (22) up to the lowest relevant
order in δ,

φ = t0
πλ

δ2 − 4t0
π

{
1 + 1

2

[
ln

(
4

|δ|
)

− 1

2

]
δ2

}
. (23)

Then one can easily verify that φ has a double minimum for
δ = ±δ0 with

δ0 = 4

e
exp

(
− 1

2λ

)
. (24)

FIG. 4. Order parameter δ as a function of temperature at half-
filling for the electron-phonon coupling λ = 0.18. The horizontal
line shows the zero-temperature value δ0 obtained from the mini-
mization of the ground-state energy (22) while the vertical line shows
the critical temperature (31).

We see that this calculation is valid for weak electron-phonon
coupling because δ0 � 1 ⇔ λ � 1. As an example, for λ =
0.18 we obtain δ0 ≈ 0.0915 from (24) and δ0 ≈ 0.0930 from
the numerical minimization of the energy (22). The condensa-
tion energy of the dimerized state per site [i.e., the difference
between the ground-state energy (23) at δ = 0 and at its
minimum] is

�φ = t0
π

δ2
0 . (25)

The Peierls theory predicts the existence of Raman-active
collective excitations (electronic CDW and lattice vibrations),
which correspond to amplitude oscillations of the order pa-
rameter δ around its equilibrium configuration in the mean-
field approach [2,20–22]. The effective spring constant for
these oscillations is given by the second derivative of φ

with respect to δ at its minimum. Combined with the kinetic
energy (10) this leads to the renormalized (phonon) frequency
for amplitude fluctuations

�2 = πλ

2t0

d2φ

dδ2
ω2

0, (26)

where ω0 is the frequency (11) of the bare phonon mode with
wave number Q = 2kF. For the weak-coupling regime (λ �
1) we obtain using (23) and (24) [3,4,23]

�2 = 2λω2
0. (27)

As the grand-canonical potential (20) has one minimum
at δ = 0 for high temperatures and two minima at ±δ �= 0 at
zero temperature, there is a phase transition at a (mean-field)
critical temperature TP. One can easily determine numerically
the value of the order parameter that minimizes (20) for a
given temperature T . The result for λ = 0.18 is shown in
Fig 4. Clearly there is a continuous transition from the high-
temperature uniform metallic phase to the low-temperature
dimerized insulating phase at a finite critical temperature
kBTP ≈ 0.104t0.

Figure 5 shows that the renormalized phonon fre-
quency (26) calculated numerically from the second derivative
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FIG. 5. Renormalized phonon frequency �/ω0 for the amplitude
mode [see Eq. (26)] as a function of temperature at half-filling
with an electron-phonon coupling λ = 0.18. The horizontal dashed
and solid lines show the zero-temperature frequency (27) and bare
phonon frequency, respectively. The vertical line shows the critical
temperature TP, see Eq. (31).

of (20) at its minimum. We see that the phonon mode becomes
completely soft at the critical temperature already found for
the order parameter in Fig. 4. This vanishing of the amplitude
mode frequency is the signature of the Kohn anomaly in the
phonon spectrum around the wave number Q = 2kF [2–5,20–
22] in a mean-field description of the Peierls transition.

From the necessary condition for a minimum

dφ

dδ
= 0 (28)

one can deduce the self-consistency equation for solutions
δ �= 0,

1 − δ2

2λ
2t0 =

∫ 2t0

|�|
dε

√
4t2

0 − ε2

ε2 − �2

sinh(βε)

1 + cosh(βε)
. (29)

If we approximate the spectrum (12) by linear dispersions
for |ε| � |�| and treat 2t0 as the ultraviolet cutoff, we can

approximate
√

4t2
0 − ε2 ≈ 2t0 in the above integral. In the

weak-coupling regime (λ � 1 ⇒ δ0 � 1) we can then solve
the self-consistency equation for T = 0 and for δ → 0 (⇔
T → TP). In the ground state (T = 0) we obtain

δ′
0 = 2 exp

(
− 1

2λ

)
, (30)

which deviates from the correct result (24) only by a constant
factor e/2. This factor [like the one due to the SSH hopping
term (4), see Appendix A] is only a minor problem because of
the one-to-one correspondence between δ0, δ

′
0 and the single

relevant model parameter λ. Thus one can deduce relations
between observables and δ′

0 using the above approximation
and then substitute the correct value δ0 to obtain a quantita-
tively accurate result. This is especially well illustrated by the
following determination of the critical temperature.

At the critical temperature one can insert δ = 0 in the self-
consistency equation and thus find

kBT ′
P = 2t0eγ

π
δ′

0 ≈ 1.134δ′
0t0, (31)

with the Euler constant γ ≈ 0.577. This leads to the well-
known relation between the (mean-field) critical temperature
and the zero-temperature electronic gap (13) [2]

kBT ′
c = eγ

2π
E ′

g ≈ E ′
g

3.53
. (32)

We see in Figs. 4 and 5 that the relation (31) yields an
excellent approximation of the critical temperature for an
electron-phonon coupling as large as λ = 0.18. However,
we have to substitute the correct value the zero-temperature
order parameter (24), in lieu of the approximate value (30),
in the relation (31) to obtain this quantitative agreement.
For stronger couplings deviations become significant. For in-
stance, for λ = 0.37 we obtain δ0 ≈ 0.446 which corresponds
to kBTP ≈ 0.505t0 according to (31) but we find numerically
that kBTP ≈ 0.455t0.

IV. RESULTS FOR FIXED CHEMICAL POTENTIAL

We now turn to the general case of a fixed chemical
potential μ < 0. (As mentioned earlier the case μ > 0 yields
similar results.) For high temperatures (kBT � t0) the grand-
canonical potential (15) can be approximated by

φ = t0
πλ

δ2 − μ − kBT ln[2 + 2 cosh(βμ)]. (33)

Therefore, the uniform metallic configuration (δ = 0) is the
only stable phase at high temperatures for any value of μ.

A. Ground-state results

The ground-state results (i.e., for T → 0) are more in-
teresting. The grand-canonical potential (14) yields in the
thermodynamic limit

φ = t0
πλ

δ2 − μρ − 4t0
π

E
(π

2
ρ, 1 − δ2

)
, (34)

where E (φ, m) is the incomplete elliptic integral of the second
kind. The electronic density is ρ = 1 when the chemical
potential lies in the Peierls gap (0 � μ � −|�|),

ρ = 2

π
arcsin

(√
4t2

0 − μ2

4t2
0 − �2

)
∈ (0, 1) (35)

when it is within the valence band (−|�| > μ > −2t0), and
ρ = 0 when it lies below the valence band (μ � −2t0). These
three different relative values of the chemical potential μ are
illustrated in Fig. 2.

We can now examine the zero-temperature phases as a
function of the chemical potential. We note that Eq. (34)
for μ � −|�| is equal to the ground-state energy at half-
filling (22) up to a constant shift −μ. Consequently, φ varies
with δ as at half-filling as long as the chemical potential lies in
the electronic band gap. Thus we know that for μ > −�0 =
−2δ0t0 there are two (possibly local) minima at δ = ±δ0 (as
at half-filling) and no other extrema for larger values of |δ|.
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Similarly to the half-filling case (25) the minima are given at
weak coupling by

φmin = −4t0
π

− μ − t0
π

δ2
0 . (36)

Additionally, we can conclude that there is no extremum for
−|�| < μ < −�0.

For μ < −|�| but |μ| � 2t0 we can expand Eq. (34) up
to the second order in δ. Using the weak-coupling result for
half-filling (24) we find

φ = −4t0
π

− μ − μ2

2πt0
+ 2t0

π
ln

(
2|μ|
�0

)
δ2. (37)

For μ > −�0/2 the coefficient of the quadratic term is neg-
ative and thus there is a local maximum at δ = 0 as for half-
filling. For μ < −�0/2, however, the coefficient of δ2 is posi-
tive. Thus there is a (possibly local) minimum at δ = 0. Com-
paring the energies (36) of the minima at δ = ±δ0 and (37) for
the minimum at δ = 0 we see that the dimerized configuration
has a lower energy for μ > −√

2δ0t0 = −�0/
√

2 while the
uniform configuration becomes stable when μ drops below
this value.

From the necessary condition (28) one can deduce a self-
consistency equation for the extrema of (34) at finite δ.
Assuming again a linear electronic dispersion with a cutoff
2t0 for |ε| � |�|, we obtain solutions that agree with the
above analysis of the potential (34). Moreover, the absence
of any solution of the self-consistency equation for μ < −�0

shows that the dimerized state is unstable in this regime. See
Appendix B for more details.

In summary, the weak-coupling analysis reveals the exis-
tence of four phases at zero temperature. In the first phase
for 0 � μ > −�0/2, which includes the half-filled band case,
the dimerized configuration is stable and the uniform con-
figuration is unstable. In the second phase −�0/2 > μ >

−�0/
√

2 the dimerized configuration is still stable but the
uniform configuration is now metastable. In the third phase for
−�0/

√
2 > μ > −�0 the dimerized configuration becomes

metastable while the uniform configuration is stable. Finally,
in the fourth phase for −�0 > μ the uniform configuration
is still stable and the dimerized configuration is unstable.
Moreover, the order parameter of the (stable or metastable)
dimerized configuration has the same value (24) as the one
found at half-filling down to μ = −�0. Thus the value of
the zero-temperature order parameter as a function of the
chemical potential (μ � 0) is

δ(T = 0, μ) =
{±δ0 for μ > −�0/

√
2,

0 for μ < −�0/
√

2.
(38)

The potential (34) can easily be calculated numerically as
a function of δ for a given chemical potential. The results are
shown in Figs. 6–8 for the finite electron-phonon coupling
λ = 0.18. Figure 6 shows that for μ = −�0/4 the shape of
φ still resembles the double-well potential shown in Fig. 3 for
half-filling. We see clearly that the minima corresponding to
the dimerized configuration are progressively raised (relative
to the potential of the uniform configuration δ = 0) as μ

is lowered until they become metastable (see the curve for

FIG. 6. Grand-canonical potential (15) at zero temperature [see
Eq. (34)] as a function of the order parameter δ for λ = 0.18 and
several values of the chemical potential from μ = −0.25�0 (bottom
curve) to μ = −1.25�0 (top curve) in steps of −0.25�0.

μ = −0.75�0), and are finally suppressed (see the curve for
μ = −1.25�0).

Figure 7 shows the behavior of φ around δ = 0 in more
details. We clearly see that the local maximum at δ = 0
becomes a minimum when the chemical potential decreases
from −0.49�0 to −0.495�0. The small deviation from the
weak-coupling boundary value −�0/2 is due to the finite
value of λ. The deviation grows larger with λ, for instance
the boundary value reaches μ = −0.43�0 for λ = 0.37.

Finally, the existence of metastable states is illustrated in
Fig. 8. Clearly we observe an absolute minimum of φ at finite
δ and a local minimum at δ = 0 for μ = −0.625�0 while for
μ = −0.750�0 there is an absolute minimum at δ = 0 and a
local minimum at finite δ. This agrees with the weak-coupling
critical value μ = −�0/

√
2 ≈ −0.71�0 for the boundary

between dimerized and uniform phases. Moreover, we see in
Fig. 8 that the order parameter of the (stable or metastable)
dimerized state (i.e., the position of the minimum with δ �= 0)

FIG. 7. Grand-canonical potential (15) at zero temperature [see
Eq. (34)] as a function of the order parameter δ around δ = 0 for
λ = 0.18 and several values of the chemical potential from μ =
−0.485�0 (bottom curve) to μ = −0.505�0 (top curve) in steps of
−0.005�0.
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FIG. 8. Grand-canonical potential (15) at zero temperature [see
Eq. (34)] as a function of the order parameter δ � 0 for λ = 0.18
and several values of the chemical potential from μ = −0.375�0

(bottom curve) to μ = −0.875�0 (top curve) in steps of −0.125�0.

does not vary with μ in agreement with the weak-coupling
prediction.

Therefore, the numerical results for the finite electron-
phonon coupling λ = 0.18 in Figs. 6–8 confirm the weak-
coupling analysis. In particular, we have found a dimerized
phase with a metastable uniform state for −�0/2 > μ >

−�0/
√

2 at zero temperature.

B. Finite-temperature phase diagram

We now turn our attention to the still unexplored case T >

0 and μ < 0. From the necessary condition for extrema (28)
one can deduce the self-consistency equation for the minima
and maxima of the grand-canonical potential (15) at finite δ,

1 − δ2

2λ
2t0 =

∫ 2t0

|�|
dε

√
4t2

0 − ε2

ε2 − �2

sinh(βε)

cosh(βμ) + cosh(βε)
.

(39)

The solutions δ(T, μ) can be easily computed numerically but
it is difficult to determine the phase boundary of a continuous
transition. However, if δ(T, μ) vanishes continuously, the
critical values of T and μ must satisfy the self-consistency
equation

2t0
2λ

=
∫ 2t0

0
dε

√
4t2

0 − ε2

ε

sinh(βε)

cosh(βμ) + cosh(βε)
. (40)

The (T, μ) phase diagram for the SSH model in the mean-
field approximation can be determined numerically using
these two equations. The result is shown in Fig. 9 for the
electron-phonon coupling λ = 0.37 [corresponding to δ0 =
0.446, �0 = 0.891t0, and kBTP(μ = 0) ≈ 0.455t0]. Results
are qualitatively similar for weaker λ. We see that the grand-
canonical phase diagram is much richer than for the Peierls
transition at fixed band filling (for instance, for μ = 0). It
consists of two main phases, the dimerized phase (noted D
or D′) and the uniform phase (labeled U or U′). We denote
TP(μ), or equivalently μP(T ), the boundary line between these
two phases. Each phase is made of two sectors. In the main
sectors (D or U) only one state (dimerized or uniform) is

FIG. 9. Phase diagram (μ, T ) of the SSH model in the mean-field
approximation for an electron-phonon coupling λ = 0.37. The black
solid and dashed lines show the phase boundary TP(μ) between the
dimerized phase (labeled D or D′) and the uniform phase (labeled U
or U′). The uniform configuration is metastable in the sector labeled
D′ while the dimerized state is metastable in the sector labeled U′.
The solid line indicates the continuous phase transition between
the sectors D and U while the dashed line indicates the first-order
transition between the sectors D′ and U′ with metastable configu-
rations. The dot-dashed line indicates the position of the first-order
metal-insulator transition within the dimerized phase. Circles show
the zero-temperature boundaries predicted by the weak-coupling
analysis. Vertical lines indicate the values of μ and the temperature
ranges considered in Figs. 10 to 12.

stable. In the smaller sectors D′ and U′ the other state is
metastable. We denote TD(μ) [or μD(T )] the boundary line
between the sectors U and U′, where the metastable dimerized
configurations vanish. Similarly, TU(μ) [or μU(T )] denotes
the boundary line between the sectors D and D′, where the
metastable uniform configuration vanishes. The dimerized
and uniform phases coexist only on the boundary between
the sectors D′ and U′. The coexistence terminates at a critical
point (Tc, μc). We could not estimate this point analytically
but from the solution of the self-consistency equation (39)
we obtain the position kBTc ≈ 0.25t0 and μc ≈ −0.48t0 for
λ = 0.37.

The transition between the sectors D and U is continuous
while it is first-order between the sectors with metastable
configurations D′ and U′. Note that the boundary of the sector
D at finite T and μ is given by the solutions of the self-
consistency equation (40) while the boundary of the sector
U is determined by the solution of the self-consistency equa-
tion (39) with the highest temperature for a given chemical
potential. The boundary between the sectors D′ and U′ is given
by the solutions of (39) with the same potential (15) as the
uniform configuration δ = 0.

Figure 9 reveals that the sector boundaries at
low temperature [μD(T → 0) ≈ −0.87t0, μP(T → 0)
≈ −0.586t0, and μU(T → 0) ≈ −0.385t0] are close
to the ground-state results of Sec. IV A [μD(T = 0) =
−�0 ≈ −0.891t0, μP(T = 0) = −�0/

√
2 ≈ −0.630t0, and

μU(T = 0) = −�0/2 ≈ −0.446t0], although deviations are
clearly visible for the electron-phonon coupling λ = 0.37
used here. For smaller electron-phonon couplings, such as
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FIG. 10. Grand-canonical potential (15) as a function of the
order parameter δ � 0 for λ = 0.37, μ = −0.5�0 ≈ −0.446t0, and
several temperatures kBT = 0.005�0 ≈ 0.00446t0 (black solid line),
kBT = 0.225�0 ≈ 0.201t0 (blue dashed line), and kBT = 0.45�0 ≈
0.401t0 (red dotted line).

λ = 0.18, the phase diagram determined numerically using
Eqs. (39) and (40) agree quantitatively with the ground-state
boundaries given in Sec. IV A.

In the phase diagram in Fig. 9 we also see that the sys-
tem moves rapidly through the four sectors if one changes
the chemical potential at fixed but low temperature. In par-
ticular, the system undergoes a first-order transition at the
critical value μP(T ). This could explain the sensitivity of
the In/Si(111) system to the chemical doping of the sub-
strate [13,24–26], which corresponds to changing the chem-
ical potential in our model.

To understand this phase diagram better we discuss the
evolution of the system when temperature is raised at a fixed
chemical potential in more details. There are three unusual
scenarios that can happen depending on the value of the chem-
ical potential: μU(T = 0) > μ > μc, μc > μ > μP(T = 0),
and μP(T = 0) > μ > μD(T = 0). The variations of the
grand-canonical potential are illustrated in Figs. 10–12 for

FIG. 11. Grand-canonical potential (15) as a function of the or-
der parameter δ � 0 for λ = 0.37, μ = −0.625�0 ≈ −0.557t0, and
several temperatures kBT = 0.05�0 ≈ 0.0446t0 (black solid line),
kBT = 0.15�0 ≈ 0.134t0 (blue dashed line), and kBT = 0.25�0 ≈
0.223t0 (red dotted line).

FIG. 12. Grand-canonical potential (15) as a function of the
order parameter δ � 0 for λ = 0.37, μ = −0.75�0 ≈ −0.668t0, and
several temperatures kBT = 0.005�0 ≈ 0.00446t0 (black solid line),
kBT = 0.1�0 ≈ 0.0891t0 (blue dashed line), and kBT = 0.2�0 ≈
0.178t0 (red dotted line).

these three cases. For comparison, the variation of the free
energy with temperature can be seen in Fig. 3 for the usual
continuous Peierls transition at a fixed band filling. This
scenario remains qualitatively valid as long as the uniform
configuration is unstable at low temperature, explicitly for
μ > μU(T = 0) with μU(T = 0) ≈ −0.385t0 for λ = 0.37 in
the phase diagram in Fig. 9.

We consider first μ = −0.5�0 ≈ −0.446t0, which lies
between μU(T = 0) ≈ −0.385t0 and μc ≈ −0.48t0. We see
in the phase diagram in Fig. 9 that for this value of μ the
system is dimerized with a metastable uniform phase at low
temperature but moves from the sector D′ to the sector D
with increasing T because the metastable uniform configura-
tion vanishes for temperatures higher than kBTU(μ) ≈ 0.11t0.
Then the system undergoes a continuous transition to the
uniform phase U at a critical temperature kBTP(μ) ≈ 0.307t0.
The grand-canonical potential (15) shown in Fig. 10 changes
accordingly, from a function with absolute minima for finite
δ and a local minimum at δ = 0 for a temperature lower
than TU(μ), to the usual double-well shape for a temperature
between TU(μ) and TP(μ), and finally to a single-well shape
for a temperature higher than TP(μ).

Second, we examine the case of a chemical potential μ =
−0.625�0 ≈ −0.557t0, which lies between μc ≈ −0.48t0
and μP(T = 0) ≈ −0.586t0. We see in the phase diagram in
Fig. 9 that the system is again dimerized with a metastable
uniform phase at low temperature for this value of μ. How-
ever, it now undergoes a first-order transition from the sector
D′ to the sector U′ at the critical temperature kBTP(μ) ≈
0.102t0. As the temperature increases further the system
moves into the sector U because the metastable dimerized
configurations vanish above kBTD(μ) ≈ 0.165t0. The grand-
canonical potential (15) in Fig. 11 changes accordingly, from
a function with absolute minima for finite δ and a local
minimum at δ = 0 for a temperature lower than TP(μ) to a
function with an absolute minimum at δ = 0 and local minima
for finite δ between TP(μ) and TD(μ), and finally exhibits the
usual single-well shape for a temperature higher than TD(μ).
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Third, we discuss the case of μ = −0.75�0 ≈ −0.668t0,
which lies between μP(T = 0) ≈ −0.586t0 and μD(T =
0) ≈ −0.87t0. In that case the system remains within the
uniform phase for all temperatures but moves from the sector
U′ to the sector U as the temperature is raised because the
metastable dimerized state vanishes for temperatures higher
than kBTD(μ) ≈ 0.087t0. Accordingly, Fig. 12 shows that the
grand-canonical potential (15) changes from a function with
an absolute minimum at δ = 0 and local minima at finite δ for
a temperature below TD(μ) to the usual single-well shape for
high temperatures.

The above discussion completely describes the structural
transition, which is uniquely determined by the order param-
eter through Eq. (6). The order parameter also determines the
size of the electronic gap Eg that is open by the Peierls lattice
distortion through Eq. (13). The vanishing of δ(T, μ) implies
the closing of this gap and thus in a Peierls transition at fixed
band filling the metal-insulator transition occurs simultane-
ously to the structural transition and is also continuous. At
a fixed chemical potential, however, the metal-insulator tran-
sition occurs when the chemical potential reaches the upper
edge of the valence band, i.e., when μ = Eg/2 = −�(T, μ).
Thus this transition can take place at a lower temperature
than the structural transition and in this case it is first order,
as the gap jumps from 0 to Eg at this point. We have found
that this scenario occurs in the sector D of the dimerized
phase for all chemical potentials 0 > μ > μc. The critical
temperature for the metal-insulator transition is shown in
Fig. 9 and is in fact slightly lower than TP(μ) for a given μ. As
the structural transition is first order for μ < μc, we conclude
that the metal-insulator transition is first order for all 0 > μ >

μP(T = 0) in the dimerized SSH model in the mean-field
approximation.

C. First-order Peierls transition

With a view to understanding the first-order transition
in In/Si(111), the most interesting part of the phase dia-
gram is the region with a chemical potential between μc

and μP(T = 0). As discussed above, this leads to a first-
order transition from the dimerized insulating phase at low
temperature to a metallic uniform phase at high temperature
with a metastable uniform configuration below the critical
temperature. This agrees with the experimental observations
for In/Si(111) [9–16]. Therefore, we examine the physical
properties of the SSH model in that regime using the param-
eter λ = 0.37 and μ = −0.625�0 ≈ −0.557t0 corresponding
to the second case discussed above in the previous section.

As discussed in Sec. II the order parameter δ(T, μ) =
�(T, μ)/(2t0) determines both the lattice deformation u
through Eq. (6) and the electronic gap Eg through Eq. (13).
Figure 13 shows the order parameter δ as a function of
temperature through the first-order transition. We see that δ

diminishes first progressively as the temperature rises from
T = 0 to kBTD(μ) ≈ 0.165t0, above which the dimerized state
becomes unstable and δ drops to zero. However, the dimerized
state is thermodynamically stable only up to the lower crit-
ical temperature kBTP(μ) ≈ 0.102t0 and thus the first-order
structural and metal-insulator transition takes place already at
this temperature. This is in strong contrast to the continuous

FIG. 13. Order parameter δ as a function of temperature for λ =
0.37. The vertical lines indicate the critical temperature kBTP(μ) ≈
0.102t0 and kBTD(μ) ≈ 0.165t0 for μ = −0.625�0 ≈ −0.557t0. The
solid black and red dashed lines show δ for the thermodynamically
stable dimerized phase [T < TP(μ)] and the metastable dimerized
state [TP(μ) < T < TD(μ)] at this value of μ, respectively. The blue
dotted line shows δ(T ) at half-filling (μ = 0).

Peierls transition at half-filling (μ = 0), which is also shown
in Fig. 13.

Another interesting physical quantity is the frequency of
the Raman-active amplitude oscillations of the order param-
eter [2,20–22], which can be measured experimentally for
In/Si(111) [14,15]. Figure 14 shows the renormalized phonon
frequency �(T )/ω0 calculated from Eq. (26) as a function
of temperature through the first-order transition. We see that
the frequency of the thermodynamically stable state dimin-
ishes progressively as the temperature rises from to T = 0 to
kBTP(μ) ≈ 0.102t0. At this critical temperature the phonon
frequency jumps to a lower value and then changes again

FIG. 14. Renormalized phonon frequency �/ω0 [Eq. (26)] as
a function of temperature for λ = 0.37 and μ = −0.625�0 ≈
−0.557t0. The vertical lines indicate the critical temperature
kBTP(μ) ≈ 0.102t0 and kBTD(μ) ≈ 0.165t0. The solid black line
shows � in the thermodynamically stable phases with a jump at T =
TP(μ). The green dotted and red dashed lines show the frequency for
the metastable uniform configuration below TP(μ) and the metastable
dimerized configurations for TP(μ) < T < TD(μ), respectively.
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smoothly as the temperature increases further. [For μ close
to μc the frequency can also jumps up at TP(μ)]. This jump
of �(T ) corresponds to the abrupt transition from oscillations
around the dimerized configurations to oscillations around the
uniform configuration. This variation of the phonon frequency
with the temperature is in strong contrast to the complete
phonon softening found in a continuous Peierls transition at
fixed band filling and shown in Fig. 5.

In Fig. 14 we also show the phonon frequencies for os-
cillations around the metastable configurations. They pro-
long smoothly the curves �(T )/ω0 obtained for the stable
configurations. Note that amplitude oscillations around the
dimerized configurations have the wave number Q = 2kF =
π/a but they appear at Q = 0 in experiments below the critical
temperature TP(μ) because of the folding of the Brillouin
zone due to the lattice dimerization. Oscillations around the
uniform configuration always correspond to Q = 0.

V. CONCLUSION

We have investigated the grand-canonical Peierls transition
in the SSH model in the mean-field approximation. We have
found that the phase diagram is much richer than for the
Peierls theory at fixed band filling. This could explain the
sensitivity of the transition in In/Si(111) to chemical doping
of the substrate [13,24–26]. Notably, we have found a first-
order Peierls transition from the insulating dimerized phase
to the metallic uniform phase when temperature is raised
at a fixed chemical potential. Moreover, the uniform phase
remains metastable below the critical temperature. These
findings agree with experimental evidence and first-principles
simulations for In/Si(111) [9–16]. Therefore, we think that
this grand-canonical Peierls theory is the appropriate basis for
describing the quasi-one-dimensional physics realized in the
In/Si(111) system.

The SSH model is a minimal model for a commensurate
Peierls transition and we have investigated its phase diagram
using a basic mean-field approach. Thus we briefly discuss
some effects that we have neglected and possible extensions
of the present work.

Our approach neglects spatial fluctuations of the lattice
distortion u j . Away from half-filling (μ �= 0) the lattice is
probably unstable with respect to incommensurate Peierls
distortions, such as

u j = ũ cos(Q ja + φ), (41)

with appropriate amplitude ũ and wave number Q as well
as an arbitrary phase φ. (The wave number would be Q =
2kF in the Peierls theory at fixed band filling [2]). However,
these incommensurate distortions have a much lower critical
temperature than the dimerization. Moreover, the coupling
between atomic wires and the periodic substrate lattice should
render them even less energetically stable. Thus we do not
expect them to play any significant role as long as μ > −�0,
but they could become relevant in the sector U of the uniform
phase at very low temperature.

A more interesting effect of spatial fluctuations of the
order parameter is that the dimerized phase could be un-
stable with respect to the formation of domain walls be-
tween both dimerized configurations (so-called solitons). The

theoretical modeling of solitons is a key feature of the SSH
model [3,4,17,18] and the existence and properties of solitons
in the In/Si(111) system are still debated [27–33]. Therefore,
it would be interesting to extend the grand-canonical Peierls
theory to describe solitons.

Besides spatial fluctuations, thermal and quantum lat-
tice fluctuations are important in low-dimensional sys-
tems [2,4,34–36]. It is well known that a spontaneous sym-
metry breaking such as the dimerization cannot occur at finite
temperature in a one-dimensional systems with finite range in-
teractions because of thermal fluctuations. However, it is also
well established that true finite-temperature phase transitions
may take place in quasi-one-dimensional systems made of a
higher dimensional array of (weakly) coupled chains because
the fluctuations are suppressed by the ordering perpendicular
to the chains [19,34,35]. In atomic wires on substrates, both
this coupling between wires and the coupling of the wires to
the substrate suppress fluctuations and thus will allow for a
Peierls transition at finite temperature. Nevertheless, it will
be necessary to extend the present work to include interwire
coupling combined with thermal and quantum fluctuations to
study the phase transition and the system properties in the
critical regime more accurately. Their effects can be studied
in SSH-like models using sophisticated numerical methods
such as quantum Monte Carlo simulations [37–39]. However,
we think that our results for the first-order transition and the
metastable states away from the critical point (Tc, μc) will re-
main qualitatively valid when they are taken into account. The
main combined effects of interwire coupling and fluctuations
will be to reduce the various temperatures calculated within
the mean-field semiclassical approach, as it was found for the
Peierls theory at fixed band filling [2,22,35,36].

Electronic correlation effects are also neglected in the SSH
model as they do not play a determinant role in the Peierls
theory. Typically, one assumes that the Coulomb repulsion
between electrons only renormalizes the model parameters
such as the electron-phonon coupling [3]. However, it is
known that they can be important for a correct description
of important aspects of the Peierls physics [4,40,41], such
as the insulating dimerized phase with domain walls away
from half-filling (soliton lattice) [42,43] or the possible Lut-
tinger liquid properties of the metallic phase just above the
critical temperature [6]. Therefore, it could be interesting
to study the grand-canonical Peierls transition in general-
izations of the SSH model including the electron-electron
interaction explicitly.

In summary, our study of the Peierls transition in the
grand-canonical ensemble reveals a rich phase diagram, which
includes a first-order Peierls transition between regions with
metastable uniform and dimerized states as well as a region
with a first-order metal-insulator transition at a lower temper-
ature than the continuous structural transition. Various aspects
neglected in the present work should be investigated next but
we are confident that our main findings will remain relevant.
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APPENDIX A: HOPPING TERM

The SSH linear approximation for the hopping term (4)
is not consistent with the harmonic approximation for the
lattice elastic energy (2) because second-order contributions
of the lattice displacements u j to the electronic energy are
thus neglected. As an example, consider a (more accurate)
exponential dependence of the hopping terms on the distance
variation between sites [44,45]

t (u j+1 − u j ) = t0 exp[−α(u j+1 − u j )/t0]. (A1)

Expanding up to second order yields

t (u j+1 − u j ) = t0 − α(u j+1 − u j ) + α2

2t0
(u j+1 − u j )

2. (A2)

This agrees with the SSH hopping term (4) up to first order in
the displacements u j but the second order term is completely
neglected in the SSH model. Using the second-order expan-
sion (A2) and the dimerized configuration (5), we recover the
electronic dispersion (12) but with

t̃0 = t0

(
1 + 1

2
δ2

)
(A3)

substituted for t0. An analysis similar to the one carried out
in Sec. III leads to similar results, in particular the zero-
temperature order parameter is given by

δ̃0 = �̃0

2t0
= 4 exp

(
− 1

2λ

)
(A4)

in the weak-coupling limit. This differs by a constant fac-
tor e−1 from the SSH result (24). Therefore, disregard-
ing the second-order term in (A2) leads to a quantitatively
incorrect result.

This factor does not play any role in the qualitative in-
vestigation of the SSH model properties, however, because
there is a one-to-one relation between the order parameter
and the only model parameter λ. As the renormalization of
the bare hopping term (A3) is otherwise negligible in the
weak-coupling limit, this allows us to express all observables

directly as a function of δ̃0 rather than λ and to verify that
the (weak-coupling) model properties depend on δ0 [for the
hopping term (4)] exactly as on δ̃0 [for the hopping term (A2)].
Therefore, the different prefactors in Eqs. (24) and (A4)
[as well as (30)] must only be taken into account when
comparing to numerical simulation of the SSH model [14],
first-principles simulations, or experimental results.

APPENDIX B: ZERO-TEMPERATURE
SELF-CONSISTENCY EQUATION AWAY FROM

HALF-FILLING

From the general self-consistency equation (39) one ob-
tains for T → 0

1 − δ2

2λ
2t0 =

∫ 2t0

�

dε

√
4t2

0 − ε2

ε2 − �2
, (B1)

where � is the largest of |�| and |μ|. Assuming again a linear
electronic dispersion with a cutoff 2t0 for |ε| � |�| and |δ| �
1, we obtain the same self-consistency equation for � = |�|
as for half-filling and thus the same result (30) for the solution
δ′

0. Thus there are two (possibly local) minima at ±δ′
0 for 0 �

μ � −�′
0 = 2δ′

0t0 and no extrema with |�| > |μ| > �′
0. For

� = |μ| the self-consistency equation becomes

ln

(
�′

0

|�|
)

= acosh

( |μ|
|�|

)
� 0. (B2)

Obviously there is no solution with |μ| > |�| > �′
0. Con-

sequently, there are no extrema with δ �= 0 for any μ <

−�′
0. We see that the above equation possesses solutions

±�′ �= 0 starting from �′ = 0 for μ = −�′
0/2 and increasing

continuously up to �′ = �′
0 for μ = −�′

0. One can check
numerically that these solutions of the self-consistency equa-
tion correspond to local maxima. Thus this analysis confirms
the existence of simultaneous minima for the uniform and
dimerized configurations when −�′

0/2 > μ > −�′
0 in agree-

ment with the discussion of Eq. (34) in Sec IV A. Moreover,
the absence of any solution of the self-consistency equation
for μ < −�′

0 shows that the dimerized state is unstable
in this regime.
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