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The results of experimental studies of the Shubnikov–de Haas (SdH) effect in the (013)-HgTe/Hg1−xCdxTe
quantum wells (QWs) of electron type of conductivity both with normal and inverted energy spectrum are
reported. Comprehensive analysis of the SdH oscillations measured for the different orientations of magnetic
field relative to the quantum well plane and crystallographic exes allows us to investigate the anisotropy of the
Zeeman effect. For the QWs with inverted spectrum, it has been shown that the ratio of the spin splitting to
the orbital one is strongly dependent not only on the orientation of the magnetic field relative to the QW plane
but also on the orientation of the in-plane magnetic field component relative to crystallographic axes laying in
the QW plane that implies the strong anisotropy of in-plane g-factor. In the QW with normal spectrum, this
ratio strongly depends on the angle between the magnetic field and the normal to the QW plane and reveals
a very slight anisotropy in the QW plane. To interpret the data, the Landau levels in the tilted magnetic field
are calculated within the framework of four-band kP model. It is shown that the experimental results can be
quantitatively described only with taking into account the interface inversion asymmetry.
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I. INTRODUCTION

Spin-dependent effects in transport, tunneling, optical phe-
nomena are interesting and important not only for understand-
ing the role of these effects in all phenomena [1] but also for
possible application. These effects are largely determined by
the g-factor and its anisotropy, that is, by its dependence on the
direction of the magnetic field relative to the two-dimensional
plane and crystallographic axes. The g-factor anisotropy can
be very strong and important in two-dimensional (2D) struc-
tures based on materials with a large spin-orbit interaction, a
complex spectrum, and in the structures grown on substrates
with a low-symmetric surface. The quantum wells based
on the mercury cadmium telluride, Hg1−xCdxTe, zinc-blende
compounds belong to such a type of structures.

The energy spectrum of HgTe quantum wells (QWs) is
complicated and depends strongly on the quantum well width
(d). For d < dc � 6.3 nm, the conduction band is formed
from electron states and the states of the light hole [2–8].
This type of the spectrum is named normal. At d > dc, the
conduction band is formed from heavy-hole states and such
type of the spectrum is named “inverted.” At d = dc, the linear
in quasimomentum (k) gapless spectrum is realized. Experi-
mentally, the g-factor and its anisotropy was investigated in
the structures both with normal and with “inverted” spectrum
grown on substrates of different orientations [9–13]. In all
the cases it was assumed that the in-plane g-factor (g‖) is
isotropic.

In this paper, we study the angle dependencies of the
amplitude of the Shubnikov–de Haas (SdH) oscillations in
tilted magnetic fields in (013)-HgTe QWs with both types
of energy spectrum. We show that the ratio of the spin to
orbit splitting is strongly anisotropic and this anisotropy is
strongly different for QWs with d > dc and d < dc. Espe-
cially, it concerns the anisotropy of in-plane g-factor. The
paper is organized as follows. The samples and experimental
conditions are described in the next section. The experimental
results and their analysis for the QW of d = 10 nm with
“inverted” energy spectrum are presented in Sec. III. The
surprising finding is that the oscillation picture in the tilted
magnetic field is strongly different for the two cases when the
in-plane component changes its direction on the angle of 180◦.
It points to the strong anisotropy of the in-plane g-factor. In
Sec. IV we describe theoretical model allowing us to calculate
the spectrum of the Landau levels (LLs) in the tilted magnetic
field. Comparison of the data for the QW with d > dc with
theoretical results is performed in Secs. V and VI. The data
obtained for QW with d < dc are inspected and analysed in
Sec. VII. Section VIII is devoted to the conclusions.

II. EXPERIMENTAL

Our samples with the HgTe quantum wells were realized
on the basis of HgTe/Hg1−xCdxTe heterostructures grown by
the molecular beam epitaxy on a GaAs substrate with the
(013) surface orientations [14]. The samples were mesa etched
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TABLE I. The parameters of the HgTe/Hg1−xCdxTe heterostruc-
tures under study.

Number Structure d (nm) x n (Vg = 0) (cm−2)

1 150224 10.0 0.52 1.15 × 1011

2 150220 4.6 0.54 1.60 × 1011

into standard Hall bars of 0.5 mm width and the distance
between the potential probes was 0.5 mm. To change and
control the carrier density in the quantum well, the field-
effect transistors were fabricated with parylene as an insulator
and aluminium as a gate electrode. Three heterostructures
with the inverted energy spectrum (d > dc) and the two ones
with the normal spectrum (d < dc) were measured. For each
heterostructure, several samples were fabricated and studied.
The results for heterostructures of each type were mostly
analogous; therefore, we restrict our presentation to two het-
erostructures listed in the Table I.

The measurements of the longitudinal (ρxx) and Hall (ρxy)
resistivity were carried out using the dc technique in the linear
regime of response at T = 4.2 K within magnetic field range
0–6 T. Note that the ρxx vs. B dependencies did not depend on
the signs of the magnetic field and the dc current.

The ratio of the spin splitting (�s) to the orbital one (�o)
X = �s/�o was obtained by means of modified coincidence
method [15–18]. The measurements were taken in two config-
urations which are shown in Fig. 1. In the first configuration,
which is widely used be experimentalists, the rotation axis is
perpendicular to the magnetic field and lies in the 2D plane
[Fig. 1(a)]. In the second configuration, the rotator and the
sample are oriented in such a way that the axis of rotation
is normal to the 2D plane and tilted relative to the magnetic
field [see Fig. 1(b)]. This allowed us to investigate the in-plane
anisotropy of spin-to-orbit splitting ratio.

III. TILT-ANGLE DEPENDENCE OF SdH
OSILLATIONS, d > dc

Let us begin with analysis of the results obtained in the
first configuration. The rotation on the angle θ , as shown
in Fig. 1(a), changes the ratio between the normal and in-
plane components (B⊥ and B‖, respectively) of magnetic field;
B⊥ = B cos θ , B‖ = B sin θ , where B is the total magnetic

FIG. 1. Two configurations in which the angle dependencies
were measured. The inset shows the crystallographic exes laying in
the (013) QW plane.

FIG. 2. The magnetic field dependencies of ρxx , ρxy (a) and
the oscillations of dρxx/dB (b). (c) The dependence of the filling
factor ν on positions of the ρxx minima in the reciprocal magnetic
field. θ = 0.

field. If we assume that the spin splitting is proportional to
the total magnetic field �s ∝ B and the orbital splitting is
proportional to the normal component �o ∝ Bperp, then the
angle dependence of the oscillation amplitude in the low
magnetic fields in which the spin splitting of oscillations is
not resolved looks as follows [16,17,19]:

A(θ )

A(0)
= cos[πX (θ )]

cos[πX (0)]
, (1)

where

X (θ ) = �s

�o(θ )
= gμBB

(eh̄B⊥/m)
(2)

with μB as the Bohr magneton and m as effective mass. If
the g-factor is anisotropic, then the spin splitting of the LL
becomes angle dependent as well. In the simplest case it can
be written as follows:

g(θ ) =
√

g2
⊥ cos(θ )2 + g2

‖ sin(θ )2, (3)

and then

X (θ ) = �s(θ )

�o(θ )
= m

m0

1

2 cos θ

√
g2

⊥ cos(θ )2 + g2
‖ sin(θ )2. (4)

So the measurements of the SdH oscillation amplitude at
fixed B⊥ as a function of tilt angle θ give, in principle, a
possibility to find the ratio of the spin splitting to the orbital
one and to obtain the g-factor value.

This method is valid when (i) B⊥ is significantly less than
the field of the onset of the quantum Hall effect (QHE); (ii) the
amplitude of the oscillations is small so that the oscillations of
the Fermi energy are negligible; and (iii) the SdH oscillations
are spin-unsplit.

In this section we analyze the results obtained for the struc-
tures 1 with “inverted” spectrum (d = 10 nm). In Fig. 2(a), we
present the magnetic field dependencies of ρxx and ρxy mea-
sured at θ = 0 for the electron density n = 2.07 × 1011 cm−2.
As seen the amplitude of ρxx oscillations is less than 10% and
ρxy linearly depend on B (the steps of OHE are absent). This
means that the oscillations of the Fermi energy within this
magnetic field range can be neglected. The electron density
found from the period of oscillations in B < 0.7 T under the
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FIG. 3. (a) The dependencies dρxx (B⊥)/dB⊥ for some angles
θ , when the in-plane component appears in the directions [3̄31̄]
and [33̄1]. (b) The angle dependencies of the oscillation amplitude
measured at B⊥ = 0.48 T (symbols) and calculated as described in
the text (curves). The scale shown in the panel (a) by the vertical bars
is the same as in Fig. 6(a). Structure 1, n = 2.07 × 1011 cm−2.

assumption that the Landau levels are twofold degenerate co-
incides with the Hall density nH = −1/eRH . So the conditions
of applicability of Eq. (1) are met.

Let us now inspect the SdH oscillations in more detail. To
remove the monotonic part we plot in Fig. 1(b) the depen-
dence dρxx(B)/dB. One can see that the oscillations which
appear at B � 0.3 T start to split at B � 0.7 T. To understand
the degeneracy of the Landau levels with which the observed
oscillations are associated, it is instructive to consider the
filling factor ν = nH/(eBmin/h) plotted against 1/Bmin, where
Bmin is magnetic fields at which the minima in ρxx(B) are
observed. Such a dependence is represented in Fig. 2(c). It
is evident that for 1/B > 1.2 T−1, ν > 10 the filing factor
changes by two and takes the even values therewith. This is
a clear indication of the fact that the oscillations for these ν

are associated with the pairwise merged Landau levels which
are two spin sublevels with the same orbital number. Thus
we infer that the spin splitting �s is less than half the orbital
splitting �o, i.e., X (0) = �s/�o < 0.5.

Let us now consider the oscillations in tilted magnetic
fields. The dependencies of the dρxx/dB⊥ on the normal to
2D plane magnetic field B⊥ for the case when the in-plane
component appears in directions B‖ � [3̄31̄] and B‖ � [33̄1]
are shown in Fig. 3(a) for some tilt angles. It is seen that
the positions of the oscillations in B⊥ are independent of θ

within the experimental accuracy, while the amplitude of the
oscillations varies significantly.

The angle dependencies of the normalized oscillation
amplitude A(θ )/A(0) at B⊥ = 0.48 T are represented in
Fig. 3(b) [20]. The negative sign of A(θ )/A(0) corresponds
to jump of the oscillation phase on π . Particularly striking
is that the angle dependencies of oscillation amplitudes are
drastically different for B‖ � [3̄31̄] and B‖ � [33̄1]. The am-
plitude immediately decreases with the cos θ decrease when
B‖ � [3̄31̄] and does not practically depend on θ when B‖ �
[33̄1] within the actual θ range. All this indicates that the
in-plane g-factor g‖ differs dramatically for two opposite
crystallographic directions [3̄31̄] and [33̄1].

To determine the X (0) values and g-factor anisotropy
g[3̄31̄]/g⊥ and g[33̄1]/g⊥, the A(θ )/A(0) vs. θ data in Fig. 3(b)
were fitted by Eqs. (1) and (4) with the use of X (0) and
g[3̄31̄]/g⊥ (for the solid circles) and g[33̄1]/g⊥ (for the open
ones) as the fitting parameters. The results of the best fit
are shown in Fig. 3(b) by the solid curves [21]. It is seen
that the data for both directions [3̄31̄] and [33̄1] are well
fitted by Eqs. (1) and (4), which allows us to obtain the
�s/�o value for θ = 0, X (0) = 0.37 ± 0.02, and the values
of g[3̄31̄]/g⊥ and g[33̄1]/g⊥ equal to 0.6 ± 0.1 and 0.10 ± 0.05,
respectively.

Thus, the above analysis shows that the ratio of the spin
splitting to the orbital one for θ = 0 is X (0) = 0.37 ± 0.02.
Therewith g‖ depends strongly on the crystallographical di-
rections.

Let us now compare the experimentally found value of
X (0) with theoretical one. To do it we calculate the energies
of LLs in a magnetic field of arbitrary orientation.

IV. THE LANDAU LEVELS IN TILTED MAGNETIC FIELD

Let us choose the vector potential so that only the com-
ponents lying in the plane of the quantum well are nonzero:

Ax = A′
x − Byz, Ay = A′

y − Bxz. (5)

The vector potential components with strokes describe the
magnetic field along the z axis:

Hz = ∂A′
y

∂x
− ∂A′

x

∂y
. (6)

Let introduce creation and annihilation operators:

a+ = λ√
2

(kx + iky) = λ√
2

k+,

a = λ√
2

(kx − iky) = λ√
2

k−, (7)

where

kx = −i
∂

∂x
+ eA′

x

h̄c
, ky = −i

∂

∂y
+ eA′

y

h̄c
, λ =

√
h̄

|eBz| .

(8)

The operators kx and ky satisfy the following commutation
relation:

[kx, ky] = −i
eBz

h̄
(9)

and therefore

[a, a+] = eBz

|eBz| . (10)

Further we supply that Bz > 0, so [a, a+] = 1. To calculate
the energy spectrum we have used the 8 × 8 Kane Hamilto-
nian which takes exactly into account interactions between
the bands 	6, 	8, and 	7. The interactions with the other
remote bands are taken into account as the second-order
perturbations. An explicit form of the Hamiltonian is given in
Refs. [6,22] for the quantum well grown on the (013) plane.
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To incorporate the magnetic field, the following substitutions
have been made:

k+ → a+i

√
2

λ

ezB+
h̄

, k− → a i

√
2

λ

ezB−
h̄

, (11)

where B± = Bx ± iBy. Moreover, to take into account the
Zeeman effect, the following term has been added to the

Hamiltonian:

HZ = eh̄

m0

(
Hcc 0
0 Hvv

)
, (12)

where

Hcc = 1

2

(
Bz B−
B+ −Bz

)
, (13)

and

Hvv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3κ
2 Bz −

√
3κ
2 B− 0 0

√
6(κ+1)

4 B− 0

−
√

3κ
2 B+ − κ

2 Bz −κB− 0 − (κ+1)√
2

Bz
(κ+1)
2
√

2
B−

0 −κB+ κ
2 Bz −

√
3κ
2 B− − (κ+1)

2
√

2
B+ − (κ+1)√

2
Bz

0 0 −
√

3κ
2 B+ 3κ

2 Bz 0 −
√

6(κ+1)
4 B+

√
6(κ+1)

4 B+ − (κ+1)√
2

Bz − (κ+1)
2
√

2
B− 0 −(

κ + 1
2

)
Bz −(

κ + 1
2

)
B−

0 (κ+1)
2
√

2
B+ − (κ+1)√

2
Bz −

√
6(κ+1)

4 B− −(
κ + 1

2

)
B+ −(

κ + 1
2

)
Bz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

In order to find the eigenvalues and eigenfunctions of
the total Hamiltonian, we divided it into axially symmet-
ric and axially asymmetric parts. On the first step we find
eigenvalues and eigenfunctions of the axially symmetric part.
To do it we use procedure described in Refs. [6,23]. On
the second step we use these eigenfunctions as a basis for
expansion of wave function of the total Hamiltonian. Then
the total Hamiltonian was represented as a matrix on the
basis of these eigenfunctions, which eigenvalues and eigen-
functions represent the solution of our problem. Note that
eigenfunctions of the axially symmetric Hamiltonian have
two quantum numbers: number of the Landau level and sub-
band number. In expansion we usually used 30–50 Landau
levels and 10–15 subbands for the calculation of electron
states in our structures within the interval of magnetic field
used in our experiments. Further increase of the Landau and
subband numbers does not practically change the calculation
results.

The parameters used in the calculations are listed in the
Table II. Values for deformation potentials ac, av , b, d and
elastic constants Ci j were taken from Ref. [24]; parameter B8

is from Ref. [25]; other parameters are from Ref. [4]. All the
values were assumed linearly dependent on x excepting Eg(x)
which is calculated in accordance with Refs. [26,27]. The
valence band offset value equal to the difference of HgTe and
CdTe valence band maximum energy Ev (HgTe) − Ev (CdTe)
is 570 meV [26].

An example of the Landau-level fan-chart diagram calcu-
lated for the different orientations of the magnetic field is
shown in Fig. 4. It is seen that the LLs diagrams calculated
for the same tilt angle θ are dependent on the orientation
of B‖ relative to the crystallographic axes. Moreover, the
diagrams in Figs. 4(d) and 4(e) calculated for the two angles
α distinguished by 180◦ are different. Thus, the Landau-level
spectrum is angle dependent and exhibits the key feature
analogous to that observed experimentally.

V. COMPARISON BETWEEN THEORY AND
EXPERIMENT FOR θ = 0

First, we have calculated the Fermi energy (EF ) which is
equal to 27 meV for n = 2.07 × 1011 cm−2 that corresponds
to the data represented in Figs. 2 and 3. Then we have found
the cyclotron energy and the spin splitting at the energy
close to the Fermi energy as the differences �o = EN+2 − EN

and �s = E2N − E2N−1, respectively, where N is the number
of the LLs numbered in a row starting with N = 1 [see
Fig. 4(a)]. For the actual case of n = 2.07 × 1011 cm−2 and
B⊥ = 0.5 T (see Fig. 3), the Landau levels laying close to the
Fermi level have the numbers N = 16–18 and this estimate

TABLE II. The parameters used in the calculations.

Parameter CdTe HgTe

Eg (eV) 1.606 −0.303
Ev (eV) −0.57 0
� (eV) 0.91 1.08
F −0.09 0
Ep (eV) 18.8 18.8
γ1 1.47 4.1
γ2 −0.28 0.5
γ3 0.03 1.3
κ −1.31 −0.4
B8 (eV Å2) −22.41 –
a (Å) 6.48 6.46
ac (eV) −2.925 −2.380
av (eV) 0 1.31
b (eV) −1.2 −1.5
d (eV) −5.4 −2.5
C11 (1011 din/cm2) 5.62 5.92
C12 (1011 din/cm2) 3.94 4.14
C44 (1011 din/cm2) 2.06 2.19
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FIG. 4. (a) The Landau-level fan chart calculated for the case
when the magnetic field is directed perpendicularly to the QW plane.
The arrows show the orbital and spin splitting. The right panels are
the Landau levels in the vicinity of the Fermi level (the dotted lines)
for n = 2.07 × 1011 cm−2 at θ = 0◦ (b) and θ = 63◦ for α = 0◦

(c), 90◦ (d), and 270◦ (e). The solid and dashed lines are related to
different “spin” sublevels. The energy is measured from the bottom
of the conduction band at B = 0.

gives �o � 2.68 meV, �s � 1.55 meV that corresponds to
the spin-to-orbit splitting ratio X calc(0) = 0.58. Recall that
X exp(0) � 0.37 (see Sec. III). The difference between X calc(0)
and X exp(0) is radical not only quantitatively but qualita-
tively. Really, when X (0) > 0.5, the different spin sublevels
of the neighboring LLs with different orbital numbers should
merged in low magnetic fields and the only odd minima in
ρxx(B) should be observed in this case. When X (0) < 0.5 the
different spin sublevels with one and the same orbital number
are merged and the only even minima in ρxx(B) should be
observed. As Fig. 2(c) shows, at B⊥ < 0.7 T we observe even
minima that accords well with X exp(0) = 0.37 < 0.5, while
the theory predicts X calc(0) = 0.58 > 0.5 which should lead
to observation of the odd minima. We assume that two factors
can be responsible for such a difference between X exp(0) and
X calc(0). Let us consider the first one.

Experimentally, the used method gives the ratio of the
spin splitting to the orbital one. The orbital splitting �o =
h̄ωc = h̄eB/m is determined by the effective mass at the Fermi
energy. The studies of m as a function of QW width and
electron density [28] show that the m value in the structure
under consideration is equal to (0.015 ± 0.002) m0 at n =
2.07 × 1011 cm−2, while the above calculation gives mcalc =
0.0216 m0 [see Fig. 5(a)]. There was supposed in Ref. [28]
that such a difference between theory and experiment may
result from many-body effects which are not taken into ac-
count in the theory used. If one supposes that the many-body
effects lead only to decrease in the effective mass but do not
change the g-factor, then one should correct the calculated
value of X calc(0) by the following way X corr(0) = X calc(0) ×
mexp/mcalc = 0.58 × mexp/mcalc � 0.4 ± 0.03. As seen such a
correction gives well coincidence with the experimental value
X exp(0) = 0.37 ± 0.02.

Another reason for the difference between X exp(0) and
X calc(0) may be the result of the fact that the interface inver-

FIG. 5. (a) The calculated (solid curve) and experimental (sym-
bols) electron density dependencies of the effective mass. The dashed
line is a guide to the eye. (b) The calculated ratio of the spin splitting
to orbital one X (0) as a function of parameter g4 which controls the
contribution of interface inversion asymmetry.

sion asymmetry was not taken into account yet in the calcula-
tion described in Sec. IV. Such a type of asymmetry is natural
for the zinc-blende heterostructures due to lack of inversion
symmetry in parent materials. As shown in Refs. [23,29–
31] it can modify the energy spectrum significantly. To take
this effect into account we used an additional term in the
Hamiltonian as suggested by Ivchenko [32]. This term leads
to an additional mixing of the 	8 and 	7 states at the interfaces
and for the actual case can be written as follows:

Hi = dU

dz

1√
3

A8×8, (15)

where A8×8 is a numerical matrix which explicit form is given
by Eq. (5) in Ref. [23], the function U (z) depends only on
jump in the semiconductor composition at the boundary. As
earlier we have assumed it is a linear function of the Cd
content x,

U (z) = g4[1 − x(z)], (16)

where g4 is the parameter responsible for the mixing strength.
The results of the calculations are shown in Fig. 5(b), where
X calc(0) is plotted as a function of the value of the parameter
g4. It is seen that taking into account only the interface
inversion asymmetry with g4 = 0.45–0.53 eV Å also gives a
good agreement with the experimental value X exp(0). It should
be noted, however, that it does not improved the agreement
between theory and experiment as to the effective mass—its
value only slightly depends on g4 [28].

Thus, comparison of only X exp(0) with the theoretical
results does not give an unambiguous answer to the question
which factor, mass renormalization or interface inversion
asymmetry, gives the main contribution to the difference
between theory and experiment.

VI. IN-PLANE ANISOTROPY OF g-FACTOR, d > dc

For a detailed experimental study of the in-plane
anisotropy of the Zeeman splitting we measured the SdH os-
cillations in the configuration shown in Fig. 1(b). The rotator
and the sample were set in such a way that the axis of rotation
was normal to two-dimensional gas and tilted relative to the
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FIG. 6. (a) The B⊥ dependencies of dρxx/dB⊥ for the different
angles α measured at θ = 66.5◦. (b) The normalized oscillation
amplitudes A(66.5◦, α)/A(0) plotted against the angle α. The triangle
shows A(66.5◦, 0)/A(0) measured in the first configuration [see
Fig. 3(b)]. The bar in panel (a) is the same as shown in Fig. 3(a).

magnetic field by the angle θ . This angle determines the ratio
of the normal to in-plane component of the magnetic field. At
fixed magnetic field B, the rotation in this case changes the
direction of B‖ with respect to crystallographic axis but does
not change the ratio B‖/B⊥ = tan θ .

In Fig. 6(a) we represent dρxx/dB⊥ as a function of B⊥ for
different α at θ = 66.5◦, where α is the angle between the B‖
direction and the axis [100] as shown in Fig. 1(b). As seen the
positions of the oscillations are practically independent of α,
while the oscillation amplitudes change dramatically, so that
the oscillation phases jump on π at certain angles: between
α = 0◦ and 20◦ and near α ≈ 180◦. The angle dependence
A(θ = 66.5◦, α)/A(0) for B⊥ = 0.48 T is plotted in Fig. 6(b).
Using it we find from Eq. (1) the ratio of the spin splitting
to the orbital one X (66.5◦, α) which is plotted against α in
Fig. 7(a).

The difference between X (66.5◦, α) and X(0) can be inter-
preted qualitatively as the contribution of in-plane magnetic
field to the spin splitting. If we assume that the effective
g-factor is still described by the expression Eq. (3) even for
such a complex spectrum, then we can obtain the g-factor
anisotropy g‖(α)/g⊥ as follows:

g‖(α)

g⊥
= 1

tan(θ )

√[
X (θ, α)

X (0) cos(θ )

]2

− 1. (17)

The result of such a data treatment is shown in Fig. 7(b). It is
seen that the in-plane g-factor extremely anisotropic. So the
g‖/g⊥ value is close to 0.65 for α ≈ 90◦, while at α ≈ 270◦ it
is equal to zero within the experimental error.

Let us compare these data with the results of theoretical
calculations. In Fig. 7(a), we present the results of calculations
of X (66.5◦, α) and X (0) carried out for this structure for
the different g4 values. It is evident that the calculations
performed without taking into account the interface inversion

FIG. 7. (a) The ratio of the spin-to-orbit splitting for θ =
66.5◦ plotted against the angle α. Symbols are obtained from the
A(66.5◦, α)/A(0) data shown in Fig. 6(b) by using Eq. (1). The solid
curves and dashed lines are the dependencies X (66.5◦, α) and the
X (0) values, respectively, calculated for the different values of the
parameter g4. (b) The in-plane anisotropy of g-factor, g‖(α)/g⊥. The
circles are the data, and the curve is the calculated dependence for
g4 = 0.45.

asymmetry, i.e., with g4 = 0, give X (66.5◦, α) and X (0)
which significantly exceed the experimental data. Therewith
the angle dependence X (66.5◦, α) is very weak, which indi-
cates the weak anisotropy of the in-plane g-factor.

The possible reasons for the discrepancy between X calc(0)
and X exp(0) were discussed in Sec. V. The first reason is
associated with a smaller value of mexp in comparison with
mcalc. It was shown that taking into account the electron mass
renormalization can lead to a decrease in X calc(0) and thus to
a good agreement with X exp(0). Our estimates show that such
accounting for the renormalization of X calc(θ, α) reduces the
value of X calc(66.5◦, α) in mcalc/mexp times also, but it does
not lead to an increase in anisotropy of in-plane g-factor.

The second reason is related to the interface inversion
asymmetry. The calculation of X (66.5◦, α) with taking it into
account for several values of parameter g4 are represented
in Figs. 7(a) and 7(b). As clearly seen, with an increase of
the parameter g4, the calculated X calc(0) and X calc(66.5◦, α)
values become closer to the experimental ones and almost
coincide with them when g4 = 0.45 eV Å.

The above comparison of theoretical calculations with
experimental data shows that the taking into account interface
inverse asymmetry is necessary to obtain strong, compa-
rable with experiment, anisotropy of X calc(66.5◦, α). This,
however, does not mean that the mass renormalization does
not play any role and therefore the value g4 = 0.45 eV Å
obtained when only the interface inversion asymmetry is
taken into account should not be considered as determined
reliably.

The above results were obtained for the structure with
d = 10 nm > dc in which the conduction band is formed from
the heavy-hole states. The natural question arises: What role
does the inversion of the spectrum at d > dc play in the giant
anisotropy of the in-plane g-factor? To elucidate this question
we turn now to analysis of the data obtained for the structure
2 with normal band ordering.
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FIG. 8. (a) The dependencies of the normalized oscillation am-
plitude A(θ )/A(0) at B⊥ = 1.01 T. The symbols are the data, the
curve is the dependencies calculated from Eq. (1) for X (0) = 0.39
and g‖/g⊥ = 0.81. (b) The ratio of the spin splitting to orbital one
X (0) plotted against the g4 value.

VII. IN-PLANE g-FACTOR ANISOTROPY IN THE
STRUCTURE WITH d < dc

To find the in-plane g-factor anisotropy in the structure with
d < dc all the measurements described above were carried out
for the structure 2 with d = 4.6 nm (see Table I). Since the
analysis of the results is analogous to that described above for
the structure 1 we present the key data only.

The dependence of the oscillation amplitude on the angle
θ obtained in the first configuration (the rotation axis lies in
the 2D plane and is perpendicular to the magnetic field) is
presented in Fig. 8(a). The data shown by the open and solid
circles are obtained when the in-plane B component appears
in the direction [100] and [1̄00], respectively. One can see
that the angle dependencies of relative amplitude A(θ )/A(0)
for both directions coincide with each other within the exper-
imental error. The formula Eq. (1) describes well both sets of
the data with the parameters X (0) = 0.39 and g‖/g⊥ = 0.81.
The error is estimated as ±0.02 for both parameters.

The theoretical value of X (0) calculated with neglecting
the interface inversion asymmetry is equal to X calc(0) = 0.46
that is greater than 0.39 found experimentally. As discussed
in Sec. V the two factors, renormalization of the effective
mass and interface inversion asymmetry, can be the reasons
for this discrepancy. The first factor can be excluded because,
contrary to the structure 1 with d = 10 nm, the effective
mass measured for structure 2 at n = 2.5 × 1011 cm−2 prac-
tically coincides with the calculated one: mexp = (0.0225 ±
0.002) m0, mcalc = 0.0222 m0. As for the role of the second
factor, X calc(0) coincides with X exp(0) when g4 � 0.2 eV Å
[see Fig. 8(b)]. It should be noted that this value is seemingly
less than that for structure 1 with d = 10 nm and strongly less
than g4 obtained in Ref. [23] where the valence band spectrum
is investigated.

Let us inspect the data measured in the second configura-
tion. The oscillation curves measured at θ = 59◦ for different
angles α and the α dependence of the normalized oscillation
amplitude at B⊥ = 1.01 T are shown in Figs. 9(a) and 9(b),
respectively. As seen the α dependence of the oscillation
amplitude for this structure is much weaker than that for the
structure 1 (see Fig. 6) that points to the relatively weak
anisotropy of the in-plane g-factor directly. The last is il-
lustrated by Fig. 10 in which the dependencies X (59◦, α)

FIG. 9. (a) The B⊥ dependencies of dρxx/dB⊥ for the different
angles α measured for a fixed angle θ = 59◦. (b) The normalized
oscillation amplitudes A(59◦, α)/A(0) plotted against the angle α for
B⊥ = 1.01 T. The triangle shows A(59◦, 0)/A(0) obtained in the first
configuration [see Fig. 8(a)]. Structure 2.

and g‖(α)/g⊥ obtained from the data presented in Fig. 9
are shown. It is seen that the in-plane g-factor anisotropy
is really weak in the structure 2 with d < dc. In the same
figure, the results of theoretical calculation are shown. One
can see that the satisfactory agreement between theory and
experiment for the angle dependencies X (59◦, α) is achieved
with g4 = (0.1 ± 0.05) eV Å.

Before to conclude brief mention should be made of
comparison between experiment and theory concerning the
absolute g-factor values (Table III). In order to obtain the
absolute experimental g-factor values, the experimental cy-
clotron effective mass was used. The theoretical values were
extracted from the Landau-level fan chart at the Fermi energy
corresponding to n = 2.07 × 1011 cm−2 and 2.5 × 1011 cm−2

with the use g4 = 0.45 eV Å and 0.1 eV Å for structures 1
and 2, respectively. One can see that the theory describes the
data for the structure 2 with “normal” energy spectrum satis-

FIG. 10. (a) The ratio of the spin-to-orbit splitting for θ =
59◦ plotted against the angle α. Symbols are obtained from the
A(59◦, α)/A(0) data shown in Fig. 9(b) by using Eq. (1). The solid
curves and dashed lines are the dependencies X (59◦, α) and X (0),
respectively, calculated for the different g4 values. (b) The anisotropy
of in-plane g-factor. The circles are the data, and the curves are the
theoretical dependencies calculated with the same g4 values as in the
panel (a).
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TABLE III. Effective mass and g-factora: Experiment versus theory.

Structure 1 (d > dc) Structure 2 (d < dc)

Experiment Theory Experiment Theory

X (0) 0.37 ± 0.02 0.37 0.39 ± 0.02 0.42
m/m0 0.015 ± 0.002 0.0216 0.0225 ± 0.002 0.022
g⊥ 50 ± 3 36.1 33 ± 2 35.5

g[100]
‖ 16 ± 4 13.9 27 ± 3 26.6

g[1̄00]
‖ 17 ± 2 13.9 26 ± 3 26.6

g[031̄]
‖ 32 ± 3 21.7 25 ± 3 25.2

g[03̄1]
‖ 4 ± 2 1.87 28 ± 3 27.1

aThe absolute g-factor values are listed in the table.

factorily. As for the structure 1 with “inverted” spectrum, the
discrepancy between absolute values calculated and obtained
experimentally is clearly evident despite the fact that the rela-
tive values X (θ, α) and g‖(α)/g⊥ are described perfectly (see
Fig. 7). Numerically, the reason for the difference between
theory and experiment for g-factor is the difference in effective
masses which experimental value almost one and a half times
less than the theoretical one that was already discussed in
Sec. V.

VIII. CONCLUSION

The Shubnikov–de Haas effect in the conduction band was
investigated in the (013)-Hg1−xCdxTe/HgTe quantum wells
both with normal and “inverted” energy spectrum. Analyzing
the oscillations measured for the different orientations of
magnetic field relative to the QW plane and crystallographic
directions we have obtained the anisotropy of the ratio of the

spin splitting to the orbital one. The data relevant to the QWs
with normal and “inverted” energy spectra differ significantly.

For the QWs with “inverted” spectrum, it has been shown
that this ratio is strongly dependent both on the orientation of
the magnetic field relative to the QW plane and on the orien-
tation of the in-plane component of magnetic field relative to
crystallographic axes laying in the QW plane. As for the QW
with normal spectrum, this ratio being essentially dependent
on the angle between the magnetic field and normal to the
QW-plane reveals only weak anisotropy in the QW plane.

To interpret the data obtained, the Landau levels in the
tilted magnetic field have been calculated within the frame-
work of the four band kP model. It has been shown that
the experiment results can be quantitatively described only
with taking into account interface inversion asymmetry. This
allows us to estimate the value of the parameter g4 respon-
sible for the interface inversion asymmetry contribution. It
is several times smaller than that obtained for the valence
band in Ref. [23]. In our opinion, this could indicate that the
approximation in which the sole parameter g4 is responsible
for the interface inversion asymmetry contribution to the
spectra both of conduction and valence bands is not good
enough and the more accurate approach is needed.
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