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Emergence of microfrequency comb via limit cycles in dissipatively coupled condensates
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Self-sustained oscillations, limit cycles, are a fundamental phenomenon unique to nonlinear dynamic systems
of high-dimensional phase space. They enable understanding of a wide range of cyclic processes in natural,
social, and engineering systems. Here we show that limit cycles form in coupled polariton cavities following
the breaking of Josephson coupling, leading to frequency-comb emission. The limit cycles and destruction of
Josephson coupling both appear due to interplay between strong polariton-polariton interaction and a dissipative
contribution to the cavity coupling. The resulting nonlinear dynamics of the condensates is characterized by
asymmetric population distribution and nontrivial average phase difference between the two condensates, and by
time-periodic modulation of their amplitudes and phases. The latter is manifested by coherent emission of new
equidistant frequency components. The emission spectrum resembles that of a microfrequency comb, but orig-
inates from a fundamentally different mechanism than that of existing frequency combs. It allows nonresonant
excitation with a power input much below the conventional semiconductor laser threshold. The comb line spacing
is determined by the interaction and coupling strengths, and is adjustable up to multiterahertz frequency. The
work establishes coupled polariton cavities as an experimental platform for rich nonlinear dynamic phenomena.

DOI: 10.1103/PhysRevB.101.085302

I. INTRODUCTION

In nonlinear dynamical systems, self-sustained oscilla-
tions, called limit cycles, may emerge from a stable fixed point
when the system loses stability through Hopf bifurcation [1].
It is fundamentally different from periodic orbits in linear
systems and requires a phase space of at least two dimen-
sions. The oscillation becomes self-sustained; the oscillation
frequency is set by the intrinsic dynamical properties of the
system rather than initial conditions or the driving frequency.
Studies of limit cycles have enabled understanding cyclic
phenomena in nonlinear dynamical systems that are ubiqui-
tous in our world, such as the beating of a heart [2], firing
of nerve cells [3], chemical oscillations [4], predator-prey
interactions [5], airplane propeller whirls [6], and relaxation
oscillations in nonlinear electronic circuits [7]. The control
of such intrinsic instabilities in nonlinear dynamic systems
is not only crucial for many engineering systems but also
might enable efficient neuromorphic computing [8,9] and the
simulation of many-body phase transitions [10]. Here we
demonstrate the emergence of limit cycles in a pair of coupled
semiconductor exciton-polariton (EP) condensates, paving the
way for creation and control of nonlinear dynamic phenomena
in coupled, dissipative many-body systems.

*dengh@umich.edu

Semiconductor microcavity EPs are formed by strong cou-
pling between excitons and photons in high quality cavities
[11]. They combine strong excitonic nonlinearity and robust
long-range coherence, providing a fertile ground for complex
nonlinear wave phenomena [12,13]. In single cavities, spin
switching [14], critical slowing down [15], solitons [16],
exceptional points [17], as well as multimode lasing and beat-
ing among modes [18] have all been observed. With recent
developments in cavity engineering [19], we can now create
multiple, coupled EP sites, where many phenomena that result
from on-site interactions and coherent Josephson coupling
have also been observed, such as Josephson oscillation [20],
dynamical squeezing [21], and phase coupling [22]. While
these phenomena share similarities to other coupled nonlinear
matter-wave systems, microcavity EPs are special in that
they are an intrinsically open, driven system. As a result, in
addition to the coherent Josephson coupling, EP condensates
may also couple dissipatively [23,24] when coupling modifies
the radiation loss rates of the states. Such dissipative cou-
pling has led to weak lasing in a one-dimensional EP lattice
through supposedly a pitchfork bifurcation transition [25].
Richer phenomena that emerge in multidimensional phase
space have also been predicted, including the formation of
limit cycles through the Hopf bifurcation [24], which have not
been reported in experiments to date.

Here, using a pair of tightly confined, single-mode EP cavi-
ties with controlled couplings, we experimentally demonstrate
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limit cycle oscillations, connected to the commonly observed
stable EP lasing most likely via the Hopf bifurcation [26]. The
limit cycle corresponds to a time-periodic modulation of the
amplitudes and phases of the EP condensate. It is a uniquely
nonlinear-dynamic phenomena and fundamentally different
from population oscillation or beating between multiple stable
eigenmodes of the system [18]. It is predicted to result in
asymmetric population distribution, nontrivial phase relation
between the two cavities, and most interestingly, the emer-
gence of equidistant frequency components, in addition to and
distinct from any of the static modes defined by the cavities
[24,27]. We directly identify the limit cycles experimentally
by new, additional frequency lines, with equidistant spacing,
manifested in both spectral measurements and beating in the
first-order coherence function. Moreover, we confirm three
other key features predicted by the theory: asymmetric pop-
ulation distribution between the two coupled cavities, sponta-
neous current reflected in asymmetric emission in the Fourier
space, and a nontrivial phase relation between the two cavities
that is neither zero nor π .

This mechanism of frequency comb generation is funda-
mentally different from the widely studied ones using mi-
croresonators or quantum cascade lasers. The latter are based
on resonantly driven cascaded four wave mixing, and the
comb frequencies are determined by the cavity modes. The

comblike EP emission due to limit cycles has a terahertz line
spacing determined by the nonlinear interaction and coupling
strengths and may enable a nonresonantly pumped, low-power
source of microfrequency combs or terahertz waves.

II. TWO SITES CONDENSATION MODEL

To create the limit cycle state, we use a pair of EP
condensates trapped close to each other. Photon tunneling
between them leads to the Josephson coupling, resulting in the
formation of bonding (B) and antibonding (A) states with split
energies. Correspondingly, the radiation loss of the system
is also modified, leading to different dissipation rates of the
coupled states, which can be described as dissipative cou-
pling between the condensates. The dissipation rate is higher
(lower) when the two condensates are in phase (out of phase)
and emission from the condensates interfere constructively
(destructively) [23]. Consequently, the total coupling becomes
non-Hermitian. The interplay between EP interactions and the
non-Hermitian coupling between the condensates leads to rich
nonlinear dynamic phenomena.

The dynamics of the polariton system is commonly de-
scribed by the nonlinear Gross-Pitaevskii equations that in-
cludes pumping (P), loss (�), and polariton nonlinearities.
To model the dynamics of our system, we include also both

0 0.05 0.1 0.15 0.2 0.25
/

0.8

1

1.2

1.4

1.6

P/

0 0.05 0.1 0.15 0.2 0.25
/

0.8

1

1.2

1.4

1.6

 P
/

-5 0 5
1.544

1.546

1.548

1.55

1.552

1.554

 m

eV

-2 0 2
1.544

1.546

1.548

1.55

1.552

1.554

 m-1

eV

)e()d(

0

0.5

1

0

0.5

1
displacement (a.u.)

A
B

A
B

(b)

(c)

(a)
Stable fixed point (Bonding)

Unstable fixed points

Stable fixed point (Antibonding)

Stable fixed point (Bonding)
Unstable fixed points

Stable fixed point (Antibonding)

E E

J/Г = 2.5J/Г = 0.07

FIG. 1. Bifurcation diagram and the sample properties at low excitation powers. (a),(b) Bifurcation diagrams of Eq. (1) in P − γ parameter
space for J/� = 0.07, 2.5, respectively. For both diagrams, α/� = 0.25, μ/� = 0.05. A standard lasing threshold in the absence of dissipative
coupling is at P = �. For certain values of γ > 0, thresholds for stable and unstable fixed-point solutions emerge as P increases, indicated by
arrows for γ /� = 0.1. (c) A schematic of the sample structure with a bent SWG mirror. Bending of the SWG is simulated by COMSOL and
shown both by the color map in the schematic view and in the side view. The bending is less where there are open slots in the tethering pattern
and vice versa. (d), The real-space photoluminescence (PL) spectrum of the coupled polariton system showing the discrete polariton states at
low excitation powers. Color represents PL intensity. The lowest-energy single-particle state of LPs is the bonding state (B state), while the
first excited single-particle state of LPs is the antibonding state (A state). The next excited single-particle state of LPs is labeled as the E state.
The white dashed line illustrates the potential due to the bending of the SWG shown in (c). (e) The corresponding Fourier space spectrum
showing the B state at k = 0 and the A state at k = ±π/a, where a is the distance between the two coupled sites.
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coherent and dissipative coupling between the two sites, and
obtain the following driven-dissipative coupled EP equation
[24,28]:

dψL,R

dt
= 1

2
(pL,RψL,R − γψR,L − μ|ψL,R|2ψL,R)

− i

2
(2ωL,RψL,R − JψR,L + α|ψL,R|2ψL,R). (1)

Here ψL,R is the order parameter of the condensate in the
left (L) and the right (R) site, respectively; ωL,R are the
frequencies of the uncoupled cavity modes; pL,R = PL,R − �

where PL,R is the incoherent pump strength acting on the L, R
site and � is the cavity decay rate; γ is the dissipative coupling
strength; μ is the gain saturation parameter; J is the Josephson
coupling strength; and α is the on-site interaction strength.

Two examples of phase diagrams based on Eq. (1) are
shown in Figs. 1(a) and 1(b) as a function of the pump rate
P and dissipative coupling rate γ , for fixed J/� = 0.07 and
2.5, respectively. With increasing pump rate P, the system
transitions from a thermal state to two possible types of stable
lasing states: weak lasing in an EP state with the lowest decay
rate and lasing in an EP state with the lowest energy—the
bonding state of the coupled EP system. Both are fixed-point
solutions of the coupled system. With a sufficiently large
dissipative coupling strength γ , limit cycle solutions, or comb
states, can exist between the two stable fixed points. We note
that to produce the limit cycles, a large on-site interaction
α � μ is necessary, which can be realized with tight confine-
ment of the EPs [29]. As shown in the figures, for larger J/�
[Fig. 1(b)], the unstable fixed-point domain in the parameter
space becomes small and requires large dissipative coupling
γ , making it harder to realize experimentally. However, de-
creasing J , coherent coupling between the site, would often
lead to a decrease in γ , the dissipative coupling between the
two sites. For fixed J and γ , a relatively large � may facilitate
the creation of the limit cycle state, but it also needs to be
sufficiently low to allow stimulated scattering and formation
of coherent condensates. Therefore optimal values of �, J , and
α exist to achieve a comb state.

The limit cycles, formed at the intermediate pumping, are
typically highly anharmonic, as it is shown in Figs. 2(a)–2(c),
for the symmetric case with pL = pR = p and ωL = ωR = 0.
For small pumping, the limit cycle (LC) is formed in a sym-
metry broken state, with different average occupations of the
L and R sites; see Fig. 2(a). In this case, the system chooses
randomly between two possible LC states. There is a critical
pumping ps, however, where the symmetry is restored. The
period of LC is doubled at this transition. For the parameters
in Fig. 2, ps ≈ 0.76�. Far from the p = ps point, the LC
dynamics results in only one or two strong spectral lines,
while close to this point there are several pronounced lines.

III. EXPERIMENTAL SYSTEM

The GaAs-based microcavity device we use is illustrated
in Fig. 1(c). The top mirror consists of a Al0.15Ga0.85As sub-
wavelength grating (SWG) suspended over a short distributed
Bragg reflector (DBR) of 2.5 pairs of Al0.15Ga0.85As/AlAs.
The bottom mirror consists of a DBR of 30 pairs of
Al0.15Ga0.85As/AlAs layers. The λ/2 AlAs cavity has three
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FIG. 2. Showing the time dependence of the site occupation
numbers in the limit cycle regime, for J/� = γ /� = 0.15, α/μ =
5, and pumpings (a) p = 0.7�, (b) p = 0.76�, (c) p = 0.8�. The
positions and intensities of corresponding spectral lines are shown in
the insets.

stacks of four GaAs quantum wells placed at the electric-field
maxima. The Rabi splitting of 12 meV at 5 K was measured
from the uncoupled single site. The properties of single SWG-
DBR EP systems and polariton lasing in this system have been
studied in detail before [29,30].

The use of the SWG mirror enables the creation of confined
and coupled EPs. Lateral confinement of the EPs and full
discretization of the EP modes are created and controlled
by the lateral size of the SWG mirror [30], while multiple,
coupled EP sites are created by controlling the placements
of the grating bars and the tethering pattern surrounding the
SWG [31]. The tethering pattern controls the strain release
when the sacrificial layer is removed and in turn controls
the bending of the individual grating bars, as shown by
simulations using COMSOL Multiphysics [Fig. 1(c)]. The
bending of the SWG directly modulates the cavity length and
thus the exciton-cavity detuning, through which we form a
trapping potential for EPs. Controlling the location and shape
of the tethering patterns, therefore, controls both the height
and width of the potential barrier between two sites. This
tunability provides us control over both the on-site interaction
[29] and intersite coupling [31] of the EPs. Specifically, the
length of the grating bar determines the size of the polariton
mode in the single site and therefore controls the on-site
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FIG. 3. Excitation power dependence of the intensity and real-space spectra of the polariton PL near the A and B states. (a) Bottom: Mean
polariton number of the A and B states vs the excitation power for the L site (blue square), R site (red circle), and the sum of the L and R sites
(black diamond). It shows clearly a threshold behavior and degenerate occupation at each site. Top: Relative fraction of the B state (blue plus)
and A state (red cross) population vs the excitation power, showing switching of the dominant state upon transitions to stable weak lasing near
A state followed by the limit cycles, and to stable lasing in the B state. (b)–(e) The real-space spectra at four different excitation powers as
marked in (a), showing the transition from weak lasing, to limited cycles, toward B state lasing. The white dashed line marks the E state—the
next lowest energy state above the B and A states. (f)–(i) Spectrum of each site obtained from (b) to (e), respectively. The solid lines are fits by
equidistant Lorentzians.

interaction strengths. The center-to-center distance controls
the Josephson and dissipative coupling strengths.

In all our experiments, the microcavity sample is kept at
5 K in a closed-cycle cryostat and excited by a continuous-
wave Ti:sapphire laser chopped with electo-optic modulator
at 5 kHz with 5% duty cycle. The pump spot is focused on the
center of the device with a diameter of 2 μm.

Figures 1(d) and 1(e) show the real-space and Fourier-
space photoluminescence (PL) spectra of the EPs at low pump
powers. The states are discretized due to tight confinement,
which also enhances the on-site interaction to the order of
10 μeV due to increased EP density [29]. Bonding (B) and
antibonding (A) states are formed due to Josephson coupling.
Their separation gives the coupling strength J = 0.5 meV.
The Josephson coupling decreases as the pump power in-
creases, because the pump is located at the center of the device
and creates a local carrier population that adds to the potential
barrier between the two sites (see Supplemental Material
Fig. S1 for the narrowing of energy separation between the
bonding and antibonding states [32]). The distance between
the two minima of the effective potential is 6.4 μm, corre-
sponding to the separation of the two cavity sites. The next
lowest energy state, labeled as state E in Fig. 1, is formed from
the first excited state of each uncoupled site. It is 1.4 meV

above state A, far separated from the lasing frequencies of the
stable fixed points or limit cycles.

IV. SPECTRAL SIGNATURES

We first observe signatures of the limit-cycle state and
estimate the dissipative coupling rate through the power
dependence of the spectral and spatial distributions of the
emission. The power dependence of the real-space spectra is
shown in Fig. 3. The PL spectrum at the low power [Figs. 1(d)
and 1(e)] shows clearly the eigenstates of the system, with
the three lowest ones the B state, A state, and E state.
The bonding state B initially has a larger population than
the state A, because the pump spot is placed at the center of the
device and prefers the B state. As the pump power increases,
the antibonding state A becomes more populated than state B
[Figs. 3(a), 3(b), and 3(f)]. This suggests the onset of weak
lasing at P = � − γ in the state with a lower decay rate [23].
The apparent asymmetry between the two sites, manifested in
different intensities and different numbers of limit cycle lines
visible from each site, is also consistent with the symmetry
breaking in the weak lasing regime [23,24]. With increasing
power, limit-cycle oscillations appear, leading to the appear-
ance of new frequency components [Figs. 3(c), 3(d), 3(g),
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FIG. 4. Experimental (a)–(c) and theoretical (d)–(f) g(1)(τ ) for three different excitation powers, corresponding to Figs. 3(c)–3(e),
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site L and R, respectively. The site with more frequency lines has more revival peaks and narrower g(1)(τ ) linewidths at τ = 0. The simulated
g(1)(τ ) is multiplied by an exponential decay with decay times of 20, 25, 30 ps respectively.

and 3(h)]. We fit the spectrum of each site to equidistant
Lorentzian lines. Above the bifurcation threshold, up to four
equidistant lines are resolved for the right site R (red), and
up to three for the left site L (blue), with fitted line spacing
of 0.19 and 0.27 meV, respectively, which should correspond
approximately to the dissipative coupling rate [24]. We note
that all these frequency lines are near the original A and B
state and far below the E state. At high pump powers, the
PL eventually becomes dominated by the B state and other
frequency components become insignificant, showing the sys-
tem is transitionary toward the single-mode B state lasing
[Figs. 3(e) and 3(h)]. (See the Supplemental Materials for the
case when single-mode B state lasing is reached in the system
[32].) This second transition takes place at P = � + 3γ . This
sequence of transitions agrees with the dissipative coupling
modeled by Eq. (1) and allows us to estimate the dissipative
coupling rate for our system as γ = 0.055 ps−1, or 0.23 meV
(see the Appendix for details). It is consistent with the comb
spacing obtained from the spectral fit.

V. COHERENCE REVIVAL

To verify the uniformity of the mode spacing and phase
coherence between the multiple frequency lines, we measure
the temporal first-order coherence g(1)(τ ) using a Michelson
interferometer. As shown in Fig. 4, g(1)(τ ) features a main
central peak that decays over a few picoseconds, correspond-

ing to the full spread of the multiple frequency lines. At
larger τ , instead of a smooth decay, multiple small peaks are
apparent. Such coherence revivals confirm that the emission
consists of multiple equidistant, coherent frequency lines. On
the R site, where four frequency components are present, a
larger number and more distinct revival peaks are observed
compared to the L site. At low power, a clear revival peak is
measured at 40 ps for both sites, but other revival peaks are
less well resolved due to the low coherence time [Fig. 4(a)].
As the populations in the two sites grow, the coherence time
becomes longer, and the revival peaks become more apparent
[Fig. 4(b)]. At higher powers [Fig. 4(c)], the number of
revival peaks and the complexity in g(1)(τ ) decrease, sug-
gesting the reduction of frequency components as the system
evolves toward the stable fixed point of bonding state lasing.
We compare the experimental g(1)(τ ) with computed results
g(1)

sim(τ ) = g(1)
0 (τ )exp(−τ/τdecay), where g(1)

0 (τ ) is based on
Eq. (1) (see the Appendix for parameter values of the model)
and τdelay corresponds to the decay time of g(1) due to the
Langevin noise. Values of τdecay are obtained from the decay
time of the envelope of the measured g(1)(τ ). The results
are shown in Figs. 4(d)–4(f), which qualitatively capture
the main features of the measured coherence revivals. The
corresponding dissipative coupling rate used in the simulation
is 0.077 ps−1, or 0.32 meV, which is reasonable compared
to the dissipative coupling rate of 0.23 meV estimated from
transition thresholds in Sec. IV.
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FIG. 5. Relative phase measurement between L and R sites at excitation powers of 2 mW (a),(d), 2.3 mW (b),(e), and 2.5 mW (c),(f).
(a)–(c) Interference images from interfering both sites to a magnified single site. (d)–(f) Interference fringes for each site obtained from
(a)–(c) along x = ±3 μm (dots). The solid lines are fits as described in the text. From the fit, we obtain the relative phase difference of
0.51 ± 0.08 π , 0.21 ± 0.06 π , and 0.15 ± 0.04 π respectively.

VI. RELATIVE PHASE

Last, a hallmark of the limit-cycle state is a nontrivial
relative phase φ between the two sites. The dissipative cou-
pling alone favors an out-of-phase relationship between the
two sites with φ = π . At the same time, on-site interaction
changes the instantaneous frequency of each site. Interplay
between these two results in a nontrivial phase φ �= 0 or π

between the two sites when stable limit-cycle oscillations are
formed.

To measure the relative phase φ, we use the emission from
one of the sites as a phase reference to determine the relative
phase between the two sites [33], as the absolute phase of the
polariton condensate is different for every experimental real-
ization. We use a Mach-Zehnder interferometer and magnify
the image from one arm by a factor of 6 compared to the other
arm. For two spatial modes of 2 μm in diameter separated by
7 μm, magnification of about 4.5 is needed in order for the
single site to interfere with the entire system. Our magnifica-
tion ensures that the two sites overlap with the center of the
single site where the phase is uniform. Examples are shown
in Fig. 5. We then fit the interference pattern in each site to
IL,R(x) = IL,R(x)[1 + |g(1)

L,R|cos(kxx + φL,R)], where I (x) is the
Gaussian intensity profile and kx is the spatial frequency of the
fringe pattern due to the angle between two interfering beams.
The relative phase is calculated as φ = |φL − φR|.

As shown in Fig. 5, we obtain φ = 0.51 ± 0.08 π when
the multiple frequency lines appear [Figs. 5(a) and 5(d)].

When the B state brightens up at high powers, the relative
phase changes to φ = 0.21 ± 0.06 π [Figs. 5(b) and 5(e)]
and 0.15 ± 0.04 π [Figs. 5(c) and 5(f)], converging toward an
in-phase relation for single-mode B state lasing. The above
nontrivial phase relationship is also evidenced by the shift of
the k = 0 peak in the power dependence of the k-space PL
spectra as shown in the Supplemental Material [32].

VII. DISCUSSION

The above experimental observations consistently show the
formation of limit cycle oscillations in dissipatively coupled
polariton condensates. The direct manifestation is the emer-
gence of new, additional frequency lines in the spectra. Al-
though the equidistant lines are not fully spectrally separate,
their existence is unmistakable. Their mutual coherence is
confirmed by g(1) measurements.

Three other features all support this interpretation. The
asymmetric population distribution between the two coupled
cavities, corroborated by spontaneous current reflected in
asymmetric emission in the Fourier space, are both incompat-
ible with stable emission from condensates formed in A or B
states. The bonding and antibonding states both have symmet-
ric population distribution between the two sites, in both real
space and k space, which is clearly shown in our data, both
at low pump powers in the linear regime, and at very high
powers when the system converges to stable bonding-state
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lasing corresponding to a stable fixed point. Only in the
limit cycle regime, where the new frequency lines appear, is
the symmetry broken between the two sites. Such symmetry
breaking, especially in k space, is an important characteristic
of the limit cycle phase.

Similarly, the nontrivial phase relation between the two
cavities is also unusual and quite unique to the limit cycle
regime. The two sites are exactly in phase in the bonding state,
and exactly out of phase π in the antibonding state. In phase-
locked multiple mode condensate, the relative phase among
different modes is also zero. It is only due to dissipative
coupling, which introduces dynamic instability between the
bonding and antibonding state, that a limit cycle forms with a
relative phase neither zero nor π between the two sites. Such
a nontrivial phase relation in a coherent condensate has not
been predicted by other mechanisms, and has been considered
a telltale property of the limit cycles.

VIII. CONCLUSION

In conclusion, we demonstrate a limit cycle transition in a
pair of dissipatively coupled nonlinear polariton condensates.
Signatures of the limit cycle transition are measured, includ-
ing the generation of equidistant new frequency components,
corresponding coherence revivals in g(1)(τ ), asymmetric dis-
tribution in both real and Fourier space, and a nontrivial
relative phase that is neither zero nor π . These signatures
are distinct from those of multistate lasing, four-wave mixing
among the static eigenmodes of the polariton system, or weak
lasing.

Our results also allow us to estimate the dissipative cou-
pling rate. From the excitation dependence of the transi-
tion, we infer a dissipative coupling rate about one-tenth of
the cavity decay rate, or γ ∼ 0.23 meV, consistent with the
comb line spacing of 0.19–0.27 meV as well as the value
of 0.32 meV based on simulation of the coherence revival
features in g(1)(τ ).

The multiple, equidistant lines resulting from the limit
cycle oscillation resemble a microfrequency comb. Such a
comb allows nonresonant or electrical excitations [34] with
very low input power, as it takes place near the polariton las-
ing threshold without electronic population inversion. Future
work to modify the quality factor and interaction strength
of the microcavities may result in narrower linewidth of
individual comb lines and greater line spacing. Scaling up
the system to a lattice of condensate may provide a platform
for efficient neuromorphic computing [8,9] and simulation of
many-body phase transitions [10].

Note added. After the submission of this work, limit cycle
in a pair of coupled vertical cavity surface emitting lasers was
reported [35].
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APPENDIX: NUMERICAL SIMULATION

We numerically solved Eq. (1) using a fourth-order Adams-
Bashforth-Moulton predictor-corrector method with small ini-
tial populations in both sites. Note that the initial condition
does not affect the final state which converges to the limit-
cycle solution. To account for the effect of noise, we multi-
plied exponential decay functions to the simulated g(1)(τ ). The
parameters used for Figs. 3(d)–3(f) were � = 0.5 ps−1, γ =
0.077 ps−1, ω = 0, J = 0.077 ps−1, α = 1.15 ps−1, and μ =
0.015 ps−1. It is important to note that α used in the simulation
is the polariton interaction strength multiplied by the polariton
population. Considering the polariton population obtained
experimentally, one requires the polariton interaction strength
to be about 10 μeV, which is in agreement with previous
reports in GaAs polariton systems. We changed the pumping
strength P to account for the strength of the excitation power
assuming other parameters do not change significantly above
the lasing threshold. We used P = 0.524, 0.548, 0.627 ps−1

respectively. We also gave a 1% difference in pumping
strength between two sites to account for the asymmetry in
experiments.

The dissipative coupling strength can be estimated by the
observed thresholds. It is convenient to express Eq. (1) based
on a pseudospin vector defined as S = 1

2 (�† · σ · �), where
� = (ψ1, ψ2)T and σ is the Pauli vector,

dSx

dt
= (p − μS)Sx − γ S − αSzSy,

dSy

dt
= (p − μS)Sy + JSz + αSzSx,

dSz

dt
= (p − 2μS)Sz − JSy,

dS

dt
= (p − μS)S − μS2

z − γ Sx,

where Sx = 1
2 (ψ∗

2 ψ1 + ψ∗
1 ψ2), Sy = i

2 (ψ∗
2 ψ1 − ψ∗

1 ψ2),
Sz = 1

2 (|ψ1|2 − |ψ2|2), S = 1
2 (|ψ1|2 + |ψ2|2). Then the

nontrivial fixed point A state becomes stable when p = −γ

and Sx = −S, Sy = Sz = 0, S = (γ + p)/μ. This happened
at the pump power of about 2 mW in the experiment
[Fig. 3(b)]. The threshold for the stable fixed point B state
is when p = 3γ and Sx = S. This corresponds to the pump
power of about 3 mW when the system stabilized to the
B state with weak satellite peaks [Fig. 3(e)]. Assuming
� = 0.5 ps−1 and P is a linear function of pump power, the
estimated dissipative coupling strength is about 0.055 ps−1

which is reasonable considering the value we used for the
simulation.
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