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Gapless Weyl semimetals (WSMs) are a novel class of topological materials that host massless Weyl fermions
as their low-energy excitations. When the Weyl cone is tilted, the Lorentz invariance is broken and the Lifshitz
transition drives the system from type-I WSMs into type-II WSMs. Here, based on the lattice model, we
perform a systematic numerical study of the effect of on-site disorder on the diagonal magnetoconductivity
in tilted WSMs. We use the self-consistent Born approximation to calculate the disorder-induced self-energy
and then apply the Kubo-Streda formula to calculate the diagonal magnetoconductivity. For the transverse
magnetoconductivity σxx , the disorder is found to exhibit distinct effects in the quantum limit regime and in
the quantum oscillation regime of type-I WSMs, which could be understood from Einstein’s relationship. With
strong disorder, σxx shows a linear relation with the inverse magnetic field 1

B , which exhibits certain robustness
to both the Fermi energy and the Weyl cone tilting. For the longitudinal magnetoconductivity σzz, the strong
disorder can break the positive magnetoconductivity as well as the Shubnikov–de Haas oscillations. By analyzing
the spectral function, we find that the chiral anomaly is still preserved at strong disorder even when the Weyl cone
is overtilted, as there is no gap opening around the Weyl nodes. The implications of our results for experiments
are discussed.
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I. INTRODUCTION

The topological phases of matter are of immense interest
due to their fundamental physics as well as their potential
applications [1–3]. Among the topological phases, three-
dimensional (3D) Weyl semimetals (WSMs), which contain
linear dispersing quasiparticles with distinct chiralities, have
been discovered in experiment and are at the forefront of mod-
ern condensed-matter physics [4–7]. 3D WSMs exhibit many
exotic phenomena that are not present in traditional systems.
Among them, one interesting feature is the chiral anomaly. In
WSMs, the number of Weyl fermions with opposite chiralities
is separately conserved in the absence of any gauge field
coupling. However, in the presence of the nonorthogonal
electric field and magnetic field, the Weyl fermions can be
pumped from one node to the other with opposite chirality,
leading to a violation of separate number conservation laws
and thus the emergence of the chiral anomaly. In experiment,
the observation of negative magnetoresistivity (or positive
magnetoconductivity) was believed to be a signature of the
chiral anomaly [8–12]. Theoretical studies based on the semi-
classical Boltzmann transport theory [13] also supported this
idea. However, whether the conclusion is reliable is still under
heated debate [14–18]. For example, one debate considers
that the negative magnetoresistivity is strongly related to the
current jetting effects [2], i.e., the current becomes narrowly
directly along the applied field, but not to the chiral anomaly.
Moreover, it was reported recently that, in the Dirac semimetal
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Cd3As2 [19–21], the magnetoresistance shows a linear and
nonsaturated behavior when the magnetic field is perpendicu-
lar to the electric field.

The novel type-II WSMs were theoretically proposed
[22,23] and soon demonstrated in the crystals of MoTe2

[24–26], WTe2 [27], and the alloy of MoxW1−xTe2 [28,29].
Unlike type-I WSMs, the linear band dispersions around a
Weyl node in type-II WSMs are significantly tilted. Con-
sequently, the Fermi surface encloses both the electron and
hole pockets, and the density of states (DOS) can be nonzero
even at the Weyl node. Thus for the overtilted Weyl nodes,
the unconventional Fermi surface can mask the contributions
from the Weyl nodes. A nontrivial question is how to detect
the transition from type-I WSMs to type-II and to recover the
concealed Weyl nodes in experiment. The magnetotransport
measurement may provide a possible avenue to investigate
this transition. Indeed, the previous magnetic-optical response
studies revealed that the anomalous resonance absorption
peaks were closely connected to the chiral zeroth Landau
levels (LLs) in type-II WSMs [30–32].

In theory, Abrikosov [33] initially analyzed the magneto-
conductivity in a Dirac semimetal. He considered the long-
range charged impurities scattering, and within the Born
approximation he obtained a linear magnetoresistance when
the chemical potential coincides with the zeroth LL. Recently,
the magnetotransport problem was reexamined in WSMs by
many researchers [14,17,34–36]. In particular, different mod-
els of short-range impurities and charged (Coulomb) impu-
rities have been proposed for the study of transverse mag-
netoconductivity [34,35], with a rich variety of conductivity
scaling regimes being identified. Xiao et al. [36] analyzed
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the effect of the chemical potential and temperature on the
magnetoconductivity in WSMs.

There are also several theoretical works about the mag-
netotransport in tilted WSMs [37–41]. Within the low-
energy approximation and by using the semiclassical Boltz-
mann transport theory [37–39], it was revealed that the
chiral-anomaly-induced positive longitudinal magnetocon-
ductivity is still present in type-II WSMs. However, a question
arises that when the Weyl cone is overtilted, the high-energy
states together with the low-energy ones will participate in
the magnetotransport. So the low-energy model may not
correctly capture the closed Fermi pockets. Therefore, to more
accurately analyze the magnetotransport in type-II WSMs, the
tight-binding lattice model is needed to access the full extent
of the band tilting in the momentum space. Another motiva-
tion is that we try to study the effect of on-site disorder on the
magnetotransport in tilted WSMs. To our knowledge, there
are few works discussing this problem [40,41]. In the work by
Wei and et al. [40], the longitudinal magnetoconductivity in
type-II WSMs was considered, with emphasis on the effect of
the range of the impurity potentials. In our previous work [41],
by using the exact diagonalization, the effect of disorder on
the Hall conductivity was studied in tilted WSMs and several
striking signatures were found to distinguish type-I WSMs
from type-II.

Motivated by this theoretical and experimental progresses,
in this paper we investigate the effect of disorder on the
diagonal magnetoconductivity in tilted WSMs. Based on the
minimal lattice model, the self-consistent Born approximation
is used to calculate the self-energy induced by the on-site dis-
order. Then we apply the Kubo-Streda formula to calculate the
transverse and longitudinal magnetoconductivity. Considering
that experimentally the Fermi energy in WSMs is usually
away from zero due to the finite carrier density, it is crucial
to understand the roles played not only by the zeroth LL, but
also by the n � 1 LLs in the magnetotransport. We make a
systematic study of how the diagonal magnetoconductivity is
affected by the on-site disorder, Fermi energy, magnetic field,
and Weyl cone tilting.

Our main results are as follows. For the transverse magne-
toconductivity σxx, disorder can drive the crossover of type-I
WSMs from the 3D Hall state into the diffusive metal state.
More importantly, the effect of disorder is shown to be distinct
in the quantum limit regime and the quantum oscillation
regime of type-I WSMs, which could be understood by Ein-
stein’s relationship. At strong disorder, the linear relationship
of σxx with the inverse magnetic field 1

B shows a certain
robustness, which is not limited in the quantum limit regime
of nontilted WSMs, but also is observed in both type-I and
type-II WSMs for varying Fermi energy. So σxx cannot be
saturated with the magnetic field. However, it is interesting
to find that strong disorder can drive σxx to reach its saturation
value even for the overtilted Weyl cone. For the longitudinal
magnetoconductivity σzz, the strong disorder can break the
positive magnetoconductivity as well as the Shubnikov–de
Haas (SdH) oscillations. By analyzing the spectral function,
we find that the chiral anomaly is still preserved at strong
disorder even when the Weyl cone is overtilted, as there is
no gap opening around the Weyl nodes. In addition, the SdH

oscillation frequency in σzz is studied and exhibits discrete
steps with the Weyl cone tilting. The different behaviors of
σxx and σzz reflect the Weyl cone anisotropy when both the
magnetic field and Weyl cone tilting are present. The obtained
results may deepen the understanding about the interplay
between the magnetic field and disorder in tilted WSMs.

II. MODEL AND METHOD

We start from the model that hosts a pair of Weyl nodes.
The model is constructed on a simple-cubic lattice with two
orbitals on each site. The lattice constant is set as a0 =
1. Without the Weyl cone tilting, the model is assumed to
break the time-reversal symmetry but preserve the inversion
symmetry. This allows for the minimal number of Weyl nodes,
i.e., two with opposite chiralities. Including the tilting term,
the continuous Hamiltonian reads [41–45]

H0(k) = 2t (coskxσx + sinkyσy + sinkzσz )

+ m0(2 − cosky − coskz )σx + 2tzsinkzσ0. (1)

Here the Pauli matrix σ acts on the orbital, and the Wilson
mass term m0 is used to open a finite energy window so as to
avoid the band overlapping. The two Weyl nodes are located
at Kη = (ηπ

2 , 0, 0), with η = ±. When tz = 0, the inversion
symmetry is given as H (k) = σxH (−k)σx. The introduction
of tz makes the Weyl cone anisotropic and breaks the inver-
sion symmetry. Here we choose the Weyl cone tilting in the
kz-direction, perpendicular to the distance between the Weyl
nodes. Such a choice of tz can be easily tuned to feature the
electron and hole pockets in type-II WSMs [46]. Around the
Weyl node Kη, the Hamiltonian H0 is expanded to yield a
low-energy continuous description,

H0η(k) = h̄v(−ηkxσx + kyσy + kzσz ) + h̄vzkzσ0, (2)

with the velocities v = 2t
h̄ and vz = 2tz

h̄ . In the following, we
will use the hopping integral t as the unit of energy and set
m0 = 2.

Consider the magnetic field and the quantized LLs. If
the magnetic field acts in the x-y plane, the chiral zeroth
modes become indistinguishable from other LLs [31]. To
better analyze the magnetoconductivity based on the LLs,
we assume the magnetic field to be along the z-direction,
B = (0, 0, B). The effect of the magnetic field is included
in the system by using the Peierls substitution, p → p − eA,
with the vector potential being taken in the Landau gauge of
A(r) = (−yB, 0, 0). In real space, we take the lattice size as
Lx × Ly × Lz, and we impose periodic boundary conditions
for all three directions. The Hamiltonian under the magnetic
field is discretized as [31]

H0 =
∑
r,s,s′

{[
e−iyBc†

r+x,stσ
x
ss′ + c†

r+z,s

(
− m0

2
σ x

ss′ − itσ z
ss′

− itzσ
0
ss′

)
+ c†

r+y,s

(
− itσ y

ss′ − m

2
σ x

ss′

)]
cr,s′ + H.c.

}

+
∑
r,s,s′

c†
r,s2m0σ

x
ss′cr,s′ . (3)

Here r = (x, y, z) is the coordinate on a cubic lattice. To be
commensurate with the lattice structure, a common way is to
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write the magnetic field as B = 2π
Ly

[31,40,41], with the unit

of h̄
ea2

0
.

When tz = 0, the Weyl cone is nontilted and the energy
window spans the region of [−2t, 2t]. When tz �= 0, the Weyl
cone, together with the energy window, is tilted. Note that
we still denote the LLs inside the energy window as the
low-energy LLs and those outside the energy window as the
high-energy LLs [41]. The energies of the low-energy LLs are
obtained directly by using the ladder operators,

εn �=0(kz ) = sgn(n)

√
h̄2v2k2

z + 2h̄2v2|n|
l2
B

+ h̄vzkz, (4)

εn=0,η(kz ) = h̄(−ηv + vz )kz, (5)

with the magnetic length lB =
√

h̄
eB . From Eq. (5), we see that

the Weyl cone tilting can drastically change the properties
of the chiral zeroth LLs. When tz < t , the system lies in a
type-I WSM and the zeroth LLs have opposite velocities and
are counterpropagating. When tz > t , the Lifshitz transition
happens, driving the system to be a type-II WSM, in which
the two zeroth LLs acquire velocities in the same direction.

The disordered impurity potential plays an indispensable
role for the diagonal magnetoconductivity. To include disor-
der, we consider the following form:

Hd =
∑
r,s

εr,sĉ
†
r,sĉr,s, (6)

with εr,s denoting the impurity potential produced at site r and
orbital s. We assume εr,s to be uniformly distributed in the
range of [−W

2 , W
2 ], with W being the disorder strength. Such

a model is widely used to mimic the random on-site disorder
potential in the Dirac/Weyl semimetal systems [40,43,44,47–
49]. As the disorder configuration does not preserve the time-
reversal symmetry, both the charge and magnetic disorder
are included. For a given disorder, its average value is zero,
〈εr,s〉 = 0.

The disorder-averaged Green’s function of the system is
defined as

ḠR(ε) =
〈

1

ε − (H0 + Hd ) + i0+

〉
= 1

ε − H0 − � + i0+ .

(7)

Here the self-energy � is introduced to represent the effect
of disorder. Within the framework of the self-consistent Born
approximation, the self-energy is calculated as [40,47,50,51]

�(ε) =
∫ W

2

− W
2

ε2dε

W
〈ri|ḠR(ε)|ri〉

= W 2

12

∫
MBZ

dk
(2π )3

1

ε − Hk − � + i0+ , (8)

with the integration being performed over the magnetic Bril-
louin zone (MBZ). Although the translational symmetry is
broken by the magnetic field in real space, it will get restored
by the Peierls substitution within the magnetic supercell. In
Eq. (8), the self-energy is independent of the momentum and
is given as a function of the energy. The imaginary part of the
self-energy is directly related to the inverse relaxation time
by 1

τn
= 2

h̄ |Im�nn|. In the Born approximation, � is solved

directly and without self-consistency by neglecting � in the
right-hand side of Eq. (8) [43,50]. Here we take the standard
iterative steps to calculate � self-consistently and set the
convergence precision between two consecutive steps to be
10−6.

After obtaining the self-energy � and the disorder-
averaged Green’s function ḠR(ε), we use the Kubo-Streda for-
mula to calculate the diagonal conductivity in the disordered
system [52,53],

σαα (ε) = e2h̄

πV

∑
k

Tr[v̂αImḠR(ε)v̂αImḠR(ε)], (9)

where V is the volume of the magnetic unit cell and v̂α =
1
ih̄ [r̂α, H0] is the velocity operator along the α direction. We
will focus on the transverse magnetoconductivity σxx and the
longitudinal magnetoconductivity σzz. In experiment, σxx is
related to the configuration of the perpendicular electric field
and magnetic field, E ⊥ B, while σzz refers to the configu-
ration of the parallel electric field and magnetic field, E//B,
where the chiral anomaly appears. In this work, we consider
the zero-temperature case.

III. TRANSVERSE MAGNETOCONDUCTIVITY

A. Fermi energy

First of all, we investigate the variation of the transverse
magnetoconductivity σxx with the Fermi energy ε, as the
Fermi energy is usually away from zero due to the finite carrier
density in real samples. For weakly tilted type-I WSMs, two
regimes need to be distinguished [17,36]: the quantum limit
regime and the quantum oscillation regime. The former refers
to the regime of ε < ε1v , with

εnv = 2

lB

√
2n

(
t2 − t2

z

)
(10)

being the vertex energy of the dispersive n-LL. In this regime,
the Fermi energy is located on the lowest zeroth LL and
thus all charge carriers are confined on the zeroth LL. The
latter refers to the regime of ε1v < ε < 2(t − tz ) so that the
Fermi energy is located on the n � 1 LL. In this regime,
besides the zeroth LL, the n � 1 LLs also contribute to the
magnetotransport.

In Fig. 1, with the magnetic field B = 2π
60 , σxx is plotted

for different disorder strength W . In Fig. 1(a), we consider
the nontilted WSM of tz = 0. Note that ε1v is indicated by the
arrow. In the quantum limit regime, when the Fermi energy
ε is around zero, σxx is vanishingly small. As ε increases,
σxx remains unaffected. Further increasing ε to beyond the
critical εc, σxx becomes finite, meaning that the system at
higher filling is driven into the diffusive metal state. So we
can use σxx as an order parameter to determine the continuous
phase transition from the 3D Hall state to the diffusive metal
state. The calculated phase diagram in the parametric space
of (W, ε) is plotted in Fig. 2(a). It shows that εc decreases
linearly with W , suggesting that the increase of disorder can
extend the diffusive metal state to the lower-energy regime.
When W ∼ 4.2, εc tends to be zero so that all states occu-
pying the zeroth LL are driven into the diffusive metal state.
The phase diagram clearly reflects the competition between
the Fermi energy and disorder in type-I WSMs. The linear
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FIG. 1. The transverse magnetoconductivity σxx vs the Fermi
energy ε for different disorder strength W . Part (a) is for the nontilted
WSM of tz = 0, and (b) is for the overtilted WSM of tz = 1.5. In (a),
ε1v is indicated by the arrow to distinguish the quantum limit regime
and the quantum oscillation regime. The legends are the same in both
figures, and the magnetic field is set as B = 2π

60 .

phase boundary can be qualitatively explained by the fact that
the magnetoconductivity is closely related to the DOS g(ε),
σxx(ε) ∼ g(ε) [see Eq. (11) below]. Indeed, as can be seen in
Fig. 1(a) at weak disorder W = 0.2, the DOS is less affected
by disorder, so σxx retrieves the sawtooth shape of the DOS
in the clean type-I WSMs [34,41]. With increasing disorder,
the n � 1 Landau states are scattered into the quantum limit
region. In this case, the lowest scattered states that cause the
transition into the diffusive metal state have to come from
n = 1 Landau states, and thus the movement of the states,
which determines the critical εc, would be proportional to the
disorder strength W .

As the disorder-induced scatterings play the decisive roles
in forming the drift current along the electric field direction,
σxx increases with weak disorder. This can be seen in the re-
sults of W = 0.5 and 1 in Fig. 1(a). However, the oscillations
in σxx are suppressed by strong disorder W � 2. The reduction
and eventual disappearance of the oscillations are ascribed
to the change of the DOS as it is smoothed by disorder. In
experiment, more oscillations in σxx may be detected under
the low magnetic field in a clean WSM sample [19,20], as the
energy separation between the neighboring LLs decreases for
the low field.

More importantly, in Fig. 1(a) we observe that σxx is
enhanced by disorder in the quantum limit regime, but is
suppressed by strong disorder in the quantum oscillation

0.0 0.5 1.0
0

2

4

W
tz

3D Hall state

diffusive metal state

0 1 2 3 4
0.0

0.4

0.8

ε

W

3D Hall state

diffusive metal state

(a)

(b) 

FIG. 2. The phase diagram separating the 3D Hall state from the
diffusive metal state. Part (a) is in the parametric space of (W, ε)
when tz = 0 and (b) is in (tz,W ) when ε = 0. The uncertainty arises
from determining the exact position of the phase transition. The
magnetic field is set as B = 2π

60 .

regime. So the effect of disorder on σxx is distinct in the two
regimes of type-I WSMs and could be understood with the
help of Einstein’s relationship,

σxx(ε) = e2Dg(ε), (11)

in which D is the diffusion coefficient and g(ε) is the DOS.
In the quantum limit regime, the disorder-induced scatterings
dominate the magnetotransport along the external electric
field. Thus the diffusion coefficient D gets enhanced with
disorder and σxx increases. In the quantum oscillation regime,
the disorder-induced LL broadening dominates the system,
which in turn makes the DOS g(ε) decrease with disorder [34]
and correspondingly σxx decreases. Such a behavior can be
regarded as an important feature of disorder in 3D WSMs.

The above effects of disorder still hold true when the Weyl
cone is weakly tilted. To see the influence of the Weyl cone
tilting on the disorder-induced phase transition from the 3D
Hall state to the diffusive metal state, we consider σxx(0), the
magnetoconductivity of the zero-energy state. In Fig. 2(b), the
calculated phase diagram is plotted in the parametric space
of (tz,W ). It shows that the critical disorder Wc decreases
nonlinearly with tz. When tz → 1, Wc tends to zero. This is
because when the Weyl cone tilting increases, more electronic
states may be scattered onto the zero-energy state, making the
3D Hall state more susceptible to the diffusive metal state.

For type-II WSMs, the results of σxx are plotted in Fig. 1(b)
showing tz = 1.5. As both the low-energy and high-energy
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FIG. 3. The transverse magnetoconductivity σxx vs the inverse
magnetic field 1

B in tilted WSMs for different disorder strength W .
We set the parameters as tz = 0.4, ε = 1 in (a) and tz = 1.5, ε = 0 in
(b). In (a) of the curve W = 1, the linear relationship σxx ∝ 1

B is fitted
in the high-field regime and the power dependence of σxx ∝ B−1.45

is fitted in the low-field regime. The insets in (a) and (b) show the
dependence of σxx on W for certain magnetic field B. The legends
are the same in both figures.

LLs contribute to the magnetoconductivity, σxx is pushed to
a much larger value of several tens of e2

h . So the type-II WSM
can be regarded as a diffusive metal even in the clean case [see
also the inset of Fig. 3(b)]. It is worth emphasizing that the
high-energy LLs can be well described by the lattice model,
but they cannot be included in the low-energy 2 × 2 or 4 × 4
linearized model [37–39]. For weak disorder, σxx increases
with W and is consistent with the above analysis in Fig. 1(a).
For strong disorder, σxx decreases monotonously with W ,
as in type-II WSMs, and the finite DOS around the band
center decreases continuously by the disorder-induced scat-
terings [41].

B. Magnetic field

Next we investigate the influence of the magnetic field. In
Fig. 3, σxx is plotted as a function of the inverse magnetic
field 1

B for different disorder strength W . Here we choose
1
B in order to better see the linear behavior of σxx. In the
numerical calculations, the minimum magnetic field can reach
B ∼ 2π

100 , as the low-field limit corresponds to an excessively
large magnetic supercell with large Ly, making the numerical
calculations intractable.

In type-I WSMs, from Eq. (10), the vertex energy ε1v

increases with the magnetic field. Thus for the Fermi energy
0 < ε < 2(t − tz ), the relationship of ε > ε1v can be reversed
as ε < ε1v . This means that the magnetic field may drive the
crossover of the system from the quantum oscillation regime
into the quantum limit regime. Consequently, according to
the analysis in the previous section, the effect of disorder
on σxx may be changed. This is demonstrated in Fig. 3(a)
showing tz = 0.4 and ε = 1, where for the strong disorder
W � 2, when B < Bc (with Bc ∼ 0.14 being the critical
value), σxx decreases with W and when B > Bc, σxx increases
with W .

For all curves in Figs. 3(a) and 3(b), σxx decreases with the
magnetic field and is nonsaturated. The decrease of σxx is due
to the deflection of the electron trajectories by the transverse
Lorentz force. The nonsaturated behavior is consistent with
the experimental observations in 3D Dirac semimetal Cd3As2

[19–21]. For the weak disorder of W = 1 in Fig. 3(a), in the
high-field quantum limit regime, where only the zeroth LL
contributes to the magnetoconductivity, σxx is proportional to
1
B , as can be seen by the fitted straight line. In the middle-
field regime, the nonmonotonic behavior of σxx is exhibited,
which is in line with the result in Ref. [36]. In the low-field
regime, the power dependence of σxx is shown and we fit the
data as σxx ∝ B−1.45. The fitted exponent of 1.45 is close to
1.67 found in Ref. [36].

At strong disorder, if the disorder-induced LL broadenings
are larger than the separations between the neighboring LLs,
the Landau quantizations are wiped out [34]. Consequently,
significant impacts on the magnetoconductivity may be in-
duced. The numerical results in Fig. 3(a) show that at strong
disorder, the excellent linear relationship of σxx with 1

B is not
limited in the quantum limit regime of type-I WSM, but it can
also be seen in the quantum oscillation regime. In Fig. 3(b),
the linear behavior in the whole magnetic field regime is also
seen even in the overtilted tz = 1.5 WSMs. From these results,
we suggest that at strong disorder, the linear 1

B behavior of σxx

can be found in type-I and type-II WSMs for the uniformly
distributed disorder, which broadens the understanding about
the linear behavior of σxx.

For the case of Coulomb disorder, the situation becomes
a bit more complicated, but similar linear behavior was also
obtained from the analytical calculations at zero temperature
in nontilted WSMs when only the zeroth LL contributes to the
magnetoconductivity [33,34,36]. At nonzero temperature with
Coulomb disorder, different regimes are revealed, depending
on the relative magnitudes among the temperature T and 


[34], where 
 is the distance between the zeroth and n = 1
LL. The linear behavior still holds when T is much smaller
than 
 [34]. However, in other regimes the linear behavior no
longer persists [34], while in Ref. [36] it was reported that the
linear magnetoconductivity is very robust against changes of
temperature as long as the charge carriers come mainly from
the zeroth Landau level.

In addition, in the insets of Fig. 3, σxx is plotted as a
function of W for certain magnetic field. It is interesting to
find that in both type-I and type-II WSMs, σxx gets saturated
when disorder is strong enough. The saturated behavior of
σxx may also be explained by Einstein’s relationship, where
strong disorder causes the dynamical equilibrium between the
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FIG. 4. The relative longitudinal conductivity �σzz in WSMs for
different disorder W with the Fermi energy set as ε = 0. (a) �σzz vs
B when tz = 0.4. (b) �σzz vs tz when B = 2π

20 . The critical values of
tc1 and tc2 are indicated by the dotted lines. The legends are the same
in both figures.

increasing diffusive coefficient and the decreasing DOS. So
strong disorder can drive σxx to reach its saturation value in a
WSM system, no matter what tz is.

IV. LONGITUDINAL MAGNETOCONDUCTIVITY

A. Chiral anomaly

As the longitudinal magnetoconductivity σzz occurs for
the parallel electric field and magnetic field, E//B, the non-
conservative electron density in different Weyl nodes and
the chiral anomaly will be induced, which in turn changes
the corresponding local Fermi energy in the Weyl node Kη

as [54]

εη = [
ε3 + 3

2ηh̄
(
v2 − v2

z

) 3
2 e2τvE · B

] 1
3 , (12)

where τv denotes the internode relaxation time. Note that the
Weyl cone tilting has been included in the above equation.

We consider the relative longitudinal conductivity of
�σzz = σzz−σm

σm
, where σm = σzz(B = 2π

100 ) is the conductivity
of the minimum magnetic field that we can reach in the nu-
merical calculations. Since the magnetic field is small enough,
using σm as the reference to calculate �σzz would give the
results that are qualitatively valid. With tz = 0.4 and ε = 0,
�σzz is plotted as a function of the magnetic field B in Fig. 4(a)
for different disorder strength W . For weak disorder W � 2,

the positive magnetoconductivity is clearly observed in �σzz.
However, the positive magnetoconductivity is suppressed at
W = 3, and even turns out to be negative at strong disorder
W � 4. It also shows that at high magnetic field, �σzz tends to
be saturated. This observation is consistent with the previous
results of the B-independent conductivity in the strong field
limit [16,55], but it is quite different from the nonsaturated
behavior of σxx studied in the previous section.

To see the effect of the Weyl cone tilting tz on �σzz, in
Fig. 4(b) we plot �σzz as a function of tz at the fixed magnetic
field B = 2π

20 . For weak disorder W = 1, �σzz is positive at
tz = 0 and then increases with tz. When tz crosses the first crit-
ical point tc1, �σzz gradually decreases, and when tz crosses
the second critical point tc2, �σzz becomes negative. Note that
the transition of �σzz from positive to negative is continuous
and does not happen at the Lifshitz transition point of tz = 1,
where the WSM system changes from type-I to type-II. So
there are no qualitative changes of �σzz around tz = 1, which
is in line with the semiclassical study of σxx

σzz
and log10( σ−σB=0

σB=0
)

in tilted WSMs [38]. With the increase of W , both the
critical tc1 and tc2 move to the weaker values, as shown
by the dotted lines in Fig. 4(b). For the strong disorder W � 4,
the negative �σzz is clearly seen for all tz.

In Fig. 4(b), the observed negative �σzz at large tz and
weak W is supported by another work based also on the
lattice model [40], but is in sharp contrast with the positive
�σzz in the previous work based on the low-energy model
[37–39]. We may also attribute the negative �σzz to the fact
that the lattice model incorporates the contributions to the
magnetoconductivity from the low-energy Landau states as
well as the high-energy ones. According to this, the important
question of whether the chiral anomaly in tilted WSMs is
preserved at strong disorder cannot be simply judged from the
sign of �σzz.

To investigate the above question, we use the criterion that
the chiral anomaly could still be present as long as the Weyl
nodes remain gapless [14–17]. If the Weyl nodes are gapless,
the chiral symmetry of the Weyl fermions is preserved, while
if the Weyl nodes are gapped, the Weyl fermions acquire
mass and the chiral symmetry is broken. Here we try to
make judgments by calculating the spectral function A(kz, ω)
from the disorder-averaged Green’s function ḠR in Eq. (7)
[56],

A(kz, ω) = − 1

π
ImḠR(kz, ω). (13)

The contour plots of A(kz, ω) for the disordered WSMs are
given in Fig. 5. For tz = 0.4, in Fig. 5(a) (weak disorder, W =
1), the Weyl nodes can still be seen, although the spectrum
broadening is present. In Fig. 5(b) (strong disorder, W = 4),
in addition to the further spectrum broadening, the low-energy
n � 1 LLs move to the band center. For the chiral zeroth
LLs, the η = −1 branch is still distinguishable, but another
η = 1 branch is blurred by strong disorder as the DOS of the
η = −1 branch is larger than that of η = 1 in the clean case
[41],

gn=0,η=−1(ε) ∝ 1

|v − vz| > gn=0,η=1(ε) ∝ 1

v + vz
. (14)
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FIG. 5. Contour plot of the spectral function A(kz, ω) for the
disordered WSMs when B = 2π

60 . The Weyl cone tilting is tz = 0.4
in (a) and (b), tz = 1.3 in (c) and (d). The disorder strength is W = 1
in (a) and (c), W = 4 in (b) and (d).

Evidently, as disorder increases, more states are scattered to be
around zero energy, driving the system into the diffusive metal
state. This is consistent with the previous analysis about σxx.
Similar conclusions can also be derived from Figs. 5(c) and
5(d) for the overtilted case tz = 1.3, although the Weyl nodes
are concealed in the high-energy states. As there is no gap
opening around the Weyl nodes, we come to the conclusion
that the chiral symmetry is preserved in the tilted WSMs and
thus the chiral anomaly will not be broken by strong disorder.

B. Shubnikov–de Haas oscillations

It is worth noting that in the previous work [40], the SdH
oscillations in the longitudinal magnetoconductivity were ex-
hibited at zero Fermi energy and can be attributed to the
complicated Fermi surface in their model. In our model, when
the Fermi energy is zero, as in Eq. (12), the chiral anomaly
will cause the local Fermi energies in the two Weyl nodes to
be symmetric to the zero energy, ε+ = −ε−. Thus when the
magnetic field changes, no net LLs cross the Fermi surface
and no oscillations are observed in �σzz, as in Fig. 4(a).

To see the SdH oscillations, a necessary condition is the
asymmetric local Fermi energies, ε+ �= ε−, which requires
a nonvanishing Fermi energy, ε �= 0. Here we set ε = 0.2
and plot the relative �σzz as a function of the magnetic
field B in Fig. 6. In Fig. 6(a), it is shown that at weak
disorder W � 2, the oscillations are evidently present, with
the amplitude growing with magnetic field. When disorder
increases, the oscillations are suppressed due to the reduction
in the relaxation time [40]. At strong disorder W � 4, the
oscillations disappear completely and the results are similar
to Fig. 4(a). Therefore, to observe the SdH oscillations in σzz

experimentally, a clean WSM sample is needed, which is the
same requirement as that in σxx.
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FIG. 6. The SdH oscillations in the relative longitudinal conduc-
tivity �σzz in WSMs, with the Fermi energy set as ε = 0.2. (a) �σzz

vs the magnetic field for different disorder W for the tilting parameter
tz = 0.4. (b) The frequency of the oscillations vs tz for W = 1. The
upper inset gives �σzz vs 1

B while the lower inset is the FFT analysis
with one peak frequency for tz = 0.4.

We perform further analysis of the SdH oscillations in
�σzz at weak disorder of W = 1. According to the Lifshitz-
Kosevich formula [20,57], the relative magnetoconductivity
is periodic with the inverse magnetic field 1

B , and a sinusoidal
relation is given by

�σzz ∝ cos

[
2π

(
F

B
+ ϕ

)]
, (15)

where F is the frequency and ϕ is the phase shift. Note that
the frequency will not be changed by the choice of σm at
the nonvanishing magnetic field. In Fig. 6(b), we plot the
frequency F extracted from the fast Fourier transformation
(FFT) as a function of the Weyl cone tilting tz. To extract
F , we take tz = 0.4 as an example. In the upper inset of
Fig. 6(b), �σzz is plotted versus the inverse magnetic field
1
B , and then in the lower inset of Fig. 6(b), the FFT results
are given. From FFT, the single fundamental frequency for
tz = 0.4 is extracted directly as F = 0.41 h̄

a2
0e

. The occurrence
of the single oscillation frequency is due to the simple Fermi
surface in our model. If the Fermi surface is complicated, the
number of the oscillation frequency may be two [20] or even
more [40].

In Fig. 6(b), we observe that the frequency F exhibits
discrete steps with the Weyl cone tilting tz and decreases
gradually. The behavior of F can be understood as follows.
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When tz increases, the LLs, together with the local Fermi
energy, will move to zero energy [see Eqs. (10) and (12)].
The appearance of the frequency step is because the minor
change of tz cannot cause the LLs to cross the local Fermi
energy. But when tz increases a lot, if the decrease of the Fermi
energy surpasses the movment of the LLs, �εη > �εnv , fewer
LLs are driven to cross the local Fermi energy by changing
the magnetic field, and therefore the oscillation frequency F
decreases. The behavior of F is similar when tz > 1, meaning
that the SdH oscillations are well kept in type-II WSMs. So for
the SdH oscillations, there is again no qualitative difference
between type-I and type-II WSMs.

V. DISCUSSIONS AND CONCLUSIONS

Compared with the uniformly distributed disorder model,
there is another important disorder model of the Gaussian dis-
tribution. As the two disorder models share certain similarities
in determining the physical properties of the 3D Dirac/Weyl
semimetal system, the uniformly distributed disorder model
used here is reliable. For example, in the Dirac semimetal sys-
tem in Ref. [48], it is found that the critical exponent z, char-
acterizing the correlation in time, has the same value in the
two disorder models. In another work on WSM systems [49],
the authors do the numerical calculations with the uniformly
distributed disorder model and perform the renormalization-
group (RG) analysis with a Gaussian distribution. They sug-
gested that the critical exponent z obtained from the RG
analysis is in agreement with the numerical findings.

For the real WSM material WTe2 [27], the hopping integral
is taken as t = 0.1 eV and the lattice constant is a0 = 10 Å.
Then we estimate the disorder strength W = 1 to be ∼0.1 eV,
and the magnetic field unit h̄

ea2
0

∼ 656 T. In our numerical
calculation, the smallest magnetic field is 0.0628 unit, cor-
responding to a real value of 40 T, and we use up to 200 T
in the calculations. Such colossal fields in condensed-matter
systems should allow for many interaction effects enhanced
or induced by a magnetic field. For example, the gap would
be generated via the magnetic catalysis effect [58]. Here we
do not consider such effects, but only use very large magnetic
fields to simplify the numerical calculations and work in the
regime where only a few LLs are filled.

We have so far ignored the Zeeman term due to the
magnetic field. Its effect is to split the spinless bands into
ε↑ = ε + 1

2 gμBB and ε↓ = ε − 1
2 gμBB [15], with g being the

Landé factor and μB is the Bohr magneton. If ε1v − 1
2 gμBB >

0, the quantum limit regime is still present in WSM1, with the
critical line driven by disorder in Fig. 2(a) moving downward
as εc → εc − 1

2 gμBB. If ε1v − 1
2 gμBB < 0, the vertex energy

of n = 1 LL crosses zero energy. In this case, the system

may behave a bit like a type-II WSM. The other conclusions
on the magnetoconductivity obtained in this work, such as
the linear relationship with 1

B , the chiral anomaly, and the
SdH oscillations, are under the condition of strong disorder
and remain unchanged with the varying Fermi energy. We
speculate that these conclusions will not be affected by the
Zeeman effect.

Finally, we make some comparisons with the effect of
disorder on the Hall conductivity σxy in WSMs. (i) σxy can
be nonzero even in the clean case [59], as it is due to the
electron moving around a circle by the Lorentz force, while
for the diagonal magnetoconductivity σxx and σzz, disorder is
an indispensable factor in forming the magnetotransport. (ii)
At weak disorder, σxy exhibits a certain robustness in type-I
WSMs, and the robustness is broken successively from the
higher LLs to the lower ones [41]. For σxx and σzz, the robust-
ness to disorder is absent. (iii) At strong disorder, σxy is com-
pletely suppressed in both type-I and type-II WSMs, as the
Hall states carrying opposite Chern numbers are annihilated
with each other [41]. For σxx and σzz, their magnitudes cannot
be suppressed completely, due to the different mechanism
caused by disorder. Instead, the numerical results suggest that
strong disorder can drive σxx to reach its saturation value, and
σzz to reach a rather large negative value.

To summarize, in this work, based on the minimum lattice
model and quantized LLs, we have studied the effects of disor-
der on the transverse and longitudinal magnetoconductivity in
tilted WSMs. As the lattice model correctly describes the low-
energy LLs as well as the high-energy ones, it goes beyond
the semiclassical theory and can capture the main physics
related to the magnetotransport. We find that there exists an
evident difference of σxx with disorder between type-I and
type-II WSMs, while for the linear behavior in σxx, the chiral
anomaly, and the SdH oscillations in σzz, there are no evi-
dent differences between type-I and type-II WSMs. Although
only the WSM model of the minimum number of nodes is
considered, the obtained results are quite reliable as long as
the focus is on the bulk physics. The effect of multiple nodes
can be accounted for by simply multiplying the results of the
single-node model by the number of pairs of nodes. There are
also several open questions on the magnetotransport in WSMs
that are left for future works, such as the effect of the mass
term [17,60] and the chiral anomaly at strong disorder. More
theoretical and experimental works about magnetotransport in
WSM systems are expected in the future.
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