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Fractionalized quasiparticles—anyons—bear a special role in present-day physics. At the same time, they
display properties of interest both foundational, with quantum numbers that transcend the spin-statistics laws,
and applied, providing a cornerstone for decoherence-free quantum computation. The development of platforms
for realization and manipulation of these objects, however, remains a challenge. Typically these entail the zero-
temperature ground state of incompressible, gapped fluids. Here we establish a strikingly different approach: The
development and probing of anyon physics in a gapless fluid. The platform of choice is a chiral, multichannel,
multi-impurity realization of the Kondo effect. We discuss how, in the proper limit, anyons appear at magnetic
impurities, protected by an asymptotic decoupling from the fluid and by the emerging Kondo length scale. We
discuss possible experimental realization schemes using integer quantum Hall edges. The gapless and charged
degrees of freedom that coexist with the anyons suggest the possibility of extracting quantum information data
by transport and simple correlation functions. To show that this is the case, we generalize the fusion ansatz
of Cardy’s boundary conformal field theory, now in the presence of multiple localized perturbations. The
generalized fusion ansatz captures the idea that multiple impurities share quantum information nonlocally, in
a way formally identical to anyonic zero modes. We display several examples supporting and illustrating this
generalization and the extraction of quantum information data out of two-point correlation functions. With the
recent advances in mesoscopic realizations of multichannel Kondo devices, our results imply that exotic anyon
physics may be closer to reach than presently imagined.
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I. INTRODUCTION

The search for anyons, and in particular their richer sub-
class of non-Abelian anyons, comprises a multipurpose quest
in present-day physics [1–3]. From a fundamental aspect,
these particles carry quantum numbers that defy the concept
of fundamental particles of isolated constituents of matter.
They furthermore refuse to obey the standard theorems of spin
statistics; the study of their classification and exchange prop-
erties motivated extensions of group theory into fusion and
braiding category theories [4] (see Refs. [5,6] for digestible
reviews). Allowance of this is due to a reduced dimensional-
ity: Anyons typically exist in two spatial dimensions. These
properties result in arguably their most remarkable feature,
namely that a set of (non-Abelian) anyons describe a Hilbert
space which can be explored by in-plane exchange manipula-
tions, braidings. Its state information is stored nonlocally by
the whole set of spatially distributed anyons.

Jointly the above qualities culminate in a promising prac-
tical aspect of the quest, that of performing decoherence-free
topological quantum computation [3,4]. The principal bottle-
neck for the realization of quantum computation hardware
regards suppressing decoherence. Local perturbations destroy
the quantum entanglement needed to perform complex cal-
culations. One solution is performing error correction [7,8].
In an oversimplified explanation, one creates redundancies
by grouping sets of physical qubits in logical ones. Errors in
the former are less impacting in the calculations of the latter.
However, error correction costs a huge overhead to achieve

fault tolerance. Estimates of particular prime-decomposition
algorithms point to ratios of order ∼104 between physical
and logical qubits [9]. The state-of-the-art quantum hardware
relies on superconducting devices, which remain still in the
scale of ∼10s of qubits [10,11]. By virtue of the nonlocality
of the quantum information stored and manipulated with non-
Abelian anyons, the decoherence problem is avoided at its
most fundamental level.

Pursuing and manipulating non-Abelian anyons thus
presents a fundamental, and potentially useful, field of re-
search. Somewhat awkwardly, however, the main challenge of
this search remains a most basic one: What is the ideal breed-
ing ground for non-Abelian particles? Historically, develop-
ments focused on two-dimensional (2D) topological phases,
incompressible (gapped) fluids with, typically, protected edge
modes [1]. The paradigmatic anyon system involves specifi-
cally the composite particles of the fractional quantum Hall
effect (FQHE) [2,12]. Nevertheless, the general focus on
gapped systems led to a prolific development in theory and
experiments on topological order way beyond the FQHE. This
includes spin liquids [4,13–17], topological superconductivity
and symmetry protected phases [18], as well as topological
phases nanowires [19–21] and artificially engineered low-
dimensional structures [22–37].

The gap that protects these topological systems has been
understood as compulsory for the existence of anyons. In-
deed, in the 2D scenarios described above, anyons exist
as dynamical excitations over an isolated ground multiplet.
Anyon-pair creation, braiding, and subsequent annihilation, in
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the non-Abelian case, manipulates the states of this ground
multiplet. These ground states must be isolated from the
remainder of the excited states of the system, if manipulation
by adiabatic anyon exchanges are to take place at all [3]. From
a practical perspective, however, systems where anyons exist
dynamically are not ideal—anyon pairs may, in this case, still
be created due to thermal effects, interfering with intended
braids and leading to errors. In some sense, “universally”
useful non-Abelian anyons must also be bound or confined
to some local structure, such as surfaces, edges, or defects
of order parameters, like superconducting vortices [38]. If
so, this dramatically reduces the number of ideal anyonic
candidate platforms, which would be summarized by topolog-
ical superconductors and some cases of artificially engineered
coupled wires and other networks.

The principle of this “gap dogma” for anyons can be
described as a splitting of the Hilbert space by an energy scale,
with a ground multiplet where the anyons act (nonlocally)
separated from the remainder states. The main goal of this
work is to expand this horizon. Our motivating question is:
Can we extract a state sector from a system in which to
store quantum information, nonlocally, without the need of
an energy gap? We show that the answer for this question
is affirmative. Such an emergent splitting of a Hilbert space
in orthogonal sectors is possible by relying on many-body
competition effects, frustration, leading to non-Fermi-liquid
(NFL) physics. The scenario we propose is based on a multi-
impurity chiral version of the multichannel Kondo effect.

The Kondo effect is a paradigmatic phenomenon of
strongly correlated electrons. Originally motivated by a loga-
rithmic increase of resistivity in certain metals at low tempera-
tures, the phenomenon is (toy) modeled by an electronic fluid
interacting with a magnetic impurity [39–42]. In its simplest
depiction, a fluid containing a single flavor, or channel, of
spinful electrons is put in contact with a spin-1/2 impurity
[Fig. 1(a)]. At low energies, such an impurity is absorbed by
the electron fluid: The impurity magnetic moment is perfectly
screened by the electrons, effectively forming a singlet with
one of them. The other electrons are completely expelled

(b)(a)

(c)

FIG. 1. Three equivalent versions of the Kondo problem: (a) a
bath of spinful electrons (green balls) interacting with a magnetic im-
purity (blue ball) via s-wave scattering (dashed circle) are equivalent
to (b) a 1D radial problem, where particles propagate from infinity
and scatter at the origin containing the impurity. (c) This 1D picture
can be “unfolded,” resulting in a chiral version where electrons move
in a single direction and scatter off the impurity at the origin.

from the impurity, simply becoming free. The only residual
effect on these free conduction degrees of freedom is a phase
shift—due to a hard-core scattering at the screened impurity
position—and they behave as a regular Fermi liquid [43]. A
plethora of ramifications and modifications of this scenario
have been studied in the literature. These include higher-spin
impurities [42,44], Kondo impurity lattices [45–50], coupled
impurities [51–56], and, most important to the present discus-
sion, multichannel versions of the problem [57–62].

The N-channel Kondo (NCK) effect is naively a mod-
ification of the discussion above where several flavors of
fermionic degrees of freedom are in exactly symmetric contact
with a single impurity. This brings, however, remarkably deep
consequences. For our purposes it will suffice to stick to the
spin-1/2 impurity scenario. In this case, the many competing
electronic channels are seen to “overscreen” the spin-1/2
impurity which cannot choose a particular channel to form
a singlet with. Frustrated, the option out for the impurity is
to fractionalize; part of its degrees of freedom are absorbed
by the conduction electrons which then behave as a NFL.
Crucially, the remnants of the fractionalized impurity are com-
pletely decoupled from the Hilbert space of the gapless liquid
and, from the viewpoint of low-energy and long-wavelength
probes [63–66], are localized around the impurity site by an
emergent Kondo length scale ξK .

The onset of NFL behavior and emergent decoupling of
degrees of freedom in the NCK problem has a twofold
signature [67]. First, the correlation functions for electrons
scattering off the impurity display a scattering S matrix with
modulus less than unity. This nonunitarity suggests that part
of the electronic degrees of freedom, at times their total-
ity, is disappearing from the problem after being in contact
with the impurity; naturally they are being transformed into
something else [68] a NFL type of behavior [57]. Second, in
the thermodynamic limit L → ∞, it has been shown that even
at the lowest temperatures a finite entropy remains in the NCK
system. This “impurity entropy” has the form

S(N )
imp = log g(N ), (1)

which is computed in the T → 0 limit, taken after L → ∞. N
is the number of channels, and [58,59,69]

g(N ) = 2 cos

(
π

N + 2

)
. (2)

The order of limits is important [67,70]. The system must be
allowed to thermally access a continuum of states for the onset
of this behavior. For a single channel, nothing is left at the im-
purity as g(1) = 1, but for larger N a distinction immediately
appears. For example, g(2) = √

2, while g(3) = (1 + √
5)/2.

How should these leftover degrees of freedom be interpreted?
Connecting to topological quantum information, we remark
that these numbers correspond exactly, and respectively, to
the quantum dimensions of Ising and Fibonacci anyons. The
quantum dimension da of an anyon a dominates the dimension
of the Hilbert space of a large number of anyons of type a.
The idea that the objects left behind at an overscreened
impurity are very similar to anyons of topological phases
receives strong support from the two-channel case. This prob-
lem has a famous exact solution by Emery and Kivelson in
the anisotropic, so-called, Toulouse point [71]. In this case
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a Majorana zero mode is explicitly shown to be decoupled
from the conduction degrees of freedom at the impurity
position.

Under the hypothesis that NCK systems display localized
and fractionalized particles, we remark that it presents also
an ideal platform from the point of view of manipulation. For
this, one relies on mesoscopic realizations of the Kondo prob-
lem. Historically, the Kondo effect originated in the context
of solid-state physics and three-dimensional materials with
free s-d-shell electrons scattering. This scattering, however,
is predominantly dominated by a fully isotropic s-partial-
wave component and, in the single-impurity case, the only
spatial degree of freedom of importance is the radial coordi-
nate [Fig. 1(b)]. The problem is effectively one dimensional
(1D) and, in fact, the key ingredient is just a finite density
of electronic states interacting with a local impurity. These
observations allowed a subsequent extension of the Kondo
effect to a bevy of scenarios, including mesoscopic circuits
and quantum dots [72,73]. Here the Coulomb interaction
in a gated quantum dot leads to a control over electronic
tunneling into or out of the dot which, depending on the
physical realization, effectively behaves as a two-level system,
a pseudospin, like a magnetic impurity. The pseudospin can
be composed of spin degrees of freedom if the charge of the
dot is frozen due to the Coulomb blockade effect [72–74], or
alternatively, it can derive from the charge degree of freedom
when a gate voltage takes the system close to a degeneracy
between two macroscopic charge states [75]. Coupling it to
an electronic reservoir results in a mesoscopic realization
of a charge Kondo problem. Given the speed, precision,
and scaling of present-day microelectronics, on-demand engi-
neered mesoscopic systems with anyonic behavior are worthy
contenders for quantum information applications (as attested
by the recent interest in the pursuit of Majorana fermions in
nanowires [19,20]). The necessary perfect symmetry between
channels presents, however, a challenge for the realization of
the multichannel Kondo effect, in all scenarios. Nevertheless,
it has also been circumvented in the mesoscopic approach,
where the Coulomb blockade has been exploited to achieve a
full independence of electronic reservoirs coupled to a quan-
tum dot [76,77]. Experimental signatures of the two-channel
Kondo effect and, recently, even of the three-channel case are
presently available using a charge pseudospin [78–81].

So far we have argued for the existence of quasiparticle
fractionalization in NCK systems. Furthermore, we reviewed
the experimental relevance and feasibility of NCK in highly
tunable and accessible devices. We may finally concentrate
on our main results. The main deficiency of the points made
above is (i) a candidate scenario where to realize multiple
“Kondo anyons” in a way that (ii) it is possible to extract their
nonlocally stored information. To address these points, we
exploit an unfolded 1D picture of the NCK problem [Fig. 1(c)]
and extend it to a multi-impurity case as displayed in Fig. 2.
We propose an implementation of this geometry via an integer
quantum Hall device. Following the scenario of the impurity
entropy, we discuss how correlation functions, when evaluated
at positions far but surrounding the impurities, display a
normalization factor that depends globally on the effects from
all enclosed impurities. In the case when anyons are confined
to the impurities, this normalization factor depends on their

(a)

(b)

FIG. 2. A chiral multi-impurity model. (a) An electron (green
ball) of a single chirality moves through a set of impurities (blue
balls). The scattering region around each impurity is assumed to
be localized, characterized by a length scale—such as the Kondo
length—which is assumed to be smaller than the interimpurity
separation. The impurity degrees of freedom are thus assumed to be
independent of each other. (b) The impurities may be fused into a
single effective perturbation (dashed blue and yellow region). This
last picture can again be seen in folded or unfolded pictures.

effective fusion channel, giving us access to the nonlocal
anyonic Hilbert space.

The convenience of the 1D realization of the Kondo prob-
lem deserves discussion. It allows the implementation of
conformal field theory (CFT) techniques, arguably one of
the most powerful tools for dealing with strongly correlated
matter, albeit available only in gapless 1D fluids [82]. The
change in correlation functions due to the presence of a
local edge impurity is captured by “boundary conformal field
theory” (BCFT), developed in the seminal works of Cardy
[83–85] (for reviews see, e.g., Refs. [67,86], and references
within). Our present proposal demands, however, an extension
to the multi-impurity scenario. For this we rely on the intuition
that the impurities can be “fused,” to advance some jargon,
in an effective boundary perturbation. In this case, we intro-
duce a multi-impurity fusion ansatz allowing writing elegant
expressions for correlation functions and impurity entropies.
Instead of pursuing a formal demonstration of this ansatz,
we then take a more pedestrian approach: We exploit toy
models of increasing complexity which can, nevertheless, be
solved exactly to provide direct examples of our hypothesized
results. We believe this approach is more pragmatic, allowing
a circumvention of abstract concepts like boundary states.
Our examples consist of multi-impurity versions of scalar
scattering, single-channel Kondo—both Abelian and some-
what trivial scenarios—and culminate on an extension of the
Emery-Kivelson solution [71] of the anisotropic 2CK problem
(at the Toulouse point) to the multi-impurity case.

As a final remark, we call attention to the known re-
lationship between CFT and fusion category theories, used
to describe anyons and topological quantum computation.
The fractionalized particles in NCK differ from anyons in
topological phases in that they are bound to the impuri-
ties, similarly as Majoranas are bound to edges in Kitaev
chains. In the above criterion for “universal utility” of anyons,
they are confined to defects and therefore are not prone to

085141-3



PEDRO L. S. LOPES, I. AFFLECK, AND E. SELA PHYSICAL REVIEW B 101, 085141 (2020)

thermally activated generation of pairs. On the other hand,
these particles cannot be braided. Since we can extract the
quantum information stored in the impurities via correlation
functions, we offer some final remarks regarding an imple-
mentation of measurement-only topological quantum compu-
tation [87] to substitute braiding operations on this system.

The paper is organized as follows: In Sec. II we discuss the
chiral multi-impurity multichannel Kondo model as well as a
preliminary venue to implement it. We explore subtleties of
this proposal and comment on possible ways around them. In
Sec. III we describe the multifusion ansatz which, we argue,
solves the chiral Kondo problem of the previous section.
We comment on the relationship between this ansatz and
fusion category theories, discuss how it affects the spectrum
and correlation functions of chiral multi-impurity problems.
Finally we offer examples of application and realization of the
ansatz. We conclude in Sec. IV with remarks on implementa-
tions of measurement-only computation as well as branching
directions of our work.

II. THE CHIRAL MULTICHANNEL
MULTI-IMPURITY KONDO MODEL

The chiral multichannel and multi-impurity (MCMI)
Kondo model is described by a Hamiltonian with two pieces,
HMCMI = H0 + HK . The first part H0 describes a set of N
spinful chiral electrons,

H0 = − vF

2π

∫
dxψ†i∂xψ, (3)

where ψ is a spinor of components ψi,σ , with i = 1, . . . , N
for channel and σ =↑,↓= ± for spin (our notation will vary
according to necessity). We consider the electrons to be right
movers, for concreteness. The second part of the Hamiltonian
HK contains interactions with a sequence of M magnetic
impurities

HK = g
∫

dx
1

2
(ψ†σψ )(x) · S(x),

(4)

S(x) =
M∑

l=1

δ(x − xl )

⎛
⎝ Sl,x

Sl,y

�Sl,z

⎞
⎠,

where xl < xl+1, g is a coupling constant, and � is an
anisotropy parameter. The impurities have spin-1/2. Spin
anisotropy is irrelevant to the low-energy NFL behavior of
our interest [40,88]. Nevertheless, the spin anisotropy will be
important for the exact solution of the 2CK problem explored
below [71]. In contrast, perfectly symmetric interactions be-
tween the channels and the impurities are crucial to achieve
the NFL low-energy behavior [88]. In practice NFL behavior
occurs at a quantum critical point tuned by symmetry breaking
perturbations and has a finite stability to the latter at finite
energy scales [89–91].

For the single impurity problem, the Kondo effect is char-
acterized by the Kondo temperature TK = 	e−1/g, where 	

is an ultraviolet scale, and an associated long length scale
ξK = h̄vF /(kBTK ). For long distances and low energies, ξK

controls the localization length of the electrons that screen the
impurity [65]. We therefore will be interested in a length scale

hierarchy

|xl+1 − xl | � ξK . (5)

The interest in this “dilute” scenario of Eq. (5) is to work
in a situation in which the impurities do not correlate with
each other. This will be a pivotal point in the calculation of
the spectrum of the MCMI problem. As discussed below,
in this limit, the spectrum calculation follows a sequential
application of the fusion ansatz, frequently and successfully
employed in the determination of the low-energy fixed point
spectrum of the NCK problem [67]. Diluteness, however, is
not enough to guarantee the independence of the local mo-
ments. In principle, long-range RKKY interactions between
the impurities should fully lift the ground state degeneracy.
Nontrivially, we find that it is a feature, due to the chiral nature
of the system, that RKKY interactions vanish identically here.
Intuitively, this can be seen by noting that RKKY interac-
tions between two local magnetic moments require them to
mutually exchange information via conduction electrons. If
the electronic bath is chiral, the information can only flow
in a single direction and no actual exchange coupling can
be established [92]. The final consequence of this decoupled
scenario is that in this limit anyonlike objects are well defined
at each impurity, as in the single-impurity case. These bound
states are isolated from each other and, jointly, they define a
bona fide anyon Hilbert space in which quantum information
may be stored nonlocally. The manipulation of this quantum
information may possibly be done in a noninvasive manner
through nondemolition measurements [87].

Before continuing to our solution of the problem and its
implications, we propose an attempt at realizing the MCMI
Hamiltonian. This proposal contains the main ingredients in
HMCMI. We discuss, however, some of the difficulties we
are aware of, leaving a more refined modeling for future
considerations.

The system we have in mind is depicted in Fig. 3, for the
case of a two-channel, two-impurity, chiral Kondo system. We
consider a 2D electron gas in the presence of a strong perpen-

FIG. 3. Chiral, two-impurity, two-channel Kondo device
schematics. The phenomenology of interest can be engineered by
pairs of doubly degenerate integer quantum Hall edges with quantum
dots (QDs). The QDs’ degenerate two-particle energy levels in the
presence of a magnetic field act as effective magnetic impurities
while distinct channels correspond to distinct quantum Hall islands
(red, green). Doping may be used to split the quantum Hall channels
for cross correlation measurements.
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dicular magnetic field B⊥. The role of the chiral channels is
played by edge modes of integer quantum Hall (IQH) phases.
Three main IQH domains are defined by doping: Regions
in the phases of magnetic filling fractions ν = 0, 2, and 4
(green, white, and red, respectively). Every boundary between
domains experiences a jump of �nTKNN = 2 in the TKNN
invariant—Chern number—evincing the existence of two con-
ducting channels at each boundary [93]. These conducting
channels are completely filled Landau levels of spin-polarized
electrons, one with spin up and the other with spin down. So a
given boundary gives us a pair of spinful chiral electrons. The
device displays two such boundaries, the edges between the
green and white regions and white and red regions. Overall,
we thus get two channels of chiral of spinful electrons, fixing
N = 2 in the Hamiltonian.

Inside the white ν = 2 region we lay a pair of quantum dots
(QDs, blue). For more impurities, one may simply imagine
more dots. Proposals for the NCK effect in QDs in the pres-
ence of a magnetic field require using dot states of even charge
[94,95]; we focus on two-particle states. Coulomb repulsion
splits the two-particle states in the dot between a singlet and
triplet. The applied magnetic field, however, Zeeman splits the
triplet state. With an in-plane magnetic field component B‖,
this splitting can be tuned until the |↑↑〉 triplet state becomes
degenerate with the singlet. The result is a two-level system
which can be hybridized by spin flips; proximitizing the QDs
act as magnetic impurities for the spinful IQH edges. The 2CK
phase can only be achieved if the green and red electronic
reservoirs are independent from each other, individually, but
simultaneously and symmetrically, attempting to screen the
impurities. To preclude cooperative impurity screening by the
two channels, electron transfer processes between the reser-
voirs must be suppressed [76,96]. We imagine doing so by
considering the red reservoir to have a large capacitive energy
EC exceeding the temperature T , precluding charge buildup
that could have been absorbed from the green reservoir. As a
final detail, the orange ν = 1 doped region has the purpose
of splitting the two spinful channels, so that their currents
could be measured in separate and cross correlations can be
studied.

While this device captures the main details of the MCMI
Hamiltonian, we point out some possible implementation
subtleties. Since the whole device operation relies on the
IQH effect, the spin degeneracy in the spinful channels is
not guaranteed; in fact it is not expected. The effects of this
asymmetry are discussed in detail in Appendix A. Essentially,
our analysis shows that the absence of spin symmetry is
reflected in a spin-dependent tunneling of electrons from the
edge modes to the QD. This results in induced perturbations,
the most relevant of them being an effective local magnetic
field removing the degeneracy of the impurity. Fortunately,
this term may be tuned via B‖ to zero under the condition of
degeneracy of the two renormalized QD levels, showing some
robustness of our proposal. Unfortunately, the magnetic field
acting on the the conduction electrons remains and cannot
be simultaneously tuned away. In another fortunate twist,
however, this term has a lesser impact in the Kondo effect.
This has been argued in Ref. [97], in relation to a suppression
of the electronic magnetic susceptibility in the scaling limit
(also related to the Anderson-Clogston compensation theorem

in the context of the Anderson model [40]). The possibility of
persistence of 2CK NFL physics in a similar model to ours
has also been been further discussed in Ref. [95]. Turning
shortly our attention to the green and red channels to the QDs,
we note that channel asymmetry would be fairly damaging to
the NFL regime. It can, indeed, be trivially accounted for by
the system geometry in our approach. In case channel asym-
metry persists, an effective temperature scale T ∗ emerges.
As long as the sample temperature is sufficiently larger than
T ∗, which itself is sufficiently smaller than the Kondo tem-
perature scale, these relevant perturbations can be neglected
[77,89–91].

Given the points above, a careful engineering of this device
may be necessary, but many solutions to the problems are
possible. The issue of spin asymmetry, for example, may be
also dealt with by exploiting another quantum number such as
the valley degeneracy of graphene quantum Hall edge modes.
Another possibility would be to rely on the edge modes
of Chern insulators. Finally, designs more closely based on
charge-Kondo approaches usually display more robust signa-
tures. This happens as these systems operate in a tunneling
resonance regime which make the Kondo coupling to be
characterized by the hopping amplitude, rather than exchange
coupling of the spin-Kondo applications, hence enhancing the
Kondo energy scale. The charge Kondo approach, however,
does not display the chiral nature necessary for us, in general.
Modifications of either the standard implementation of the
charge-Kondo to chiral systems, or relaxing the demands on
chirality in our approach would be necessary to match the two
ideas.

A relatively minor caveat of the chiral geometry would
be the generalization of this device to more channels. For
example, designing a model to realize 3CK would be highly
desirable in the future, given the prospects of obtaining Fi-
bonacci anyons at the impurities of the 3CK phase. We will
proceed with our solution and analysis of the model, leaving
a finer device modeling for future ventures.

III. SOLUTION OF THE MCMI PROBLEM

The NCK fixed point (FP) physics is captured by CFT
methods. This is not surprising at the decoupled FP (no Kondo
interactions), which simply contains chiral free fermions. At
the strongly interacting FP, however, the CFT phenomenol-
ogy called for the introduction of a “fusion ansatz,” which
has been extensively verified for single and two impuri-
ties by comparison with numerical RG [52]. Its conse-
quences also agree with the spectrum found via Bethe ansatz
[98,99]. Let us review this discussion, as it sets the con-
text and motivates the introduction of the multifusion ansatz
below.

The CFT approach to the NCK problem involves a se-
quence of conformal embedding identifications. Considering
spin and channels, one has a total of 2N fermions. First, by
non-Abelian bosonization, one identifies the noninteracting
FP with two decoupled CFTs: U(1) × SU(2N )1. This is noth-
ing but a generalized version of spin-charge separation. The
U(1) part corresponds to a charge degree of freedom by means
of a boson field, while SU(2N )1 is a Wess-Zumino-Witten
(WZW) CFT. One then proceeds with a conformal embedding
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based on the level-rank duality [82]

SU(2N )1 = SU(N )2 × SU(2)N . (6)

In this decomposition, the SU(2)N sector contains the degrees
of freedom carrying the spin quantum numbers. This is where
the fusion ansatz takes place. It ascribes the strongly inter-
acting FP to a primary-field fusion of the SU(2)N sector with
a j = 1/2 primary field, corresponding to the impurity. The
U(1) and SU(N )2 sectors remain pristine.

This process is more elegantly captured in the framework
of Cardy’s BCFT [83,84,86]. Recalling the features of BCFT
demands a short detour which will pay off later in this
paper. In this methodology, local perturbations that preserve
conformal symmetry are introduced at the two edges of a
finite-sized (nonchiral length L/2) 1D system. The effects
of these perturbations are abstractly associated with a pair
of boundary states |A〉, |B〉. Phenomenologically, the effect of
boundary conditions can be seen at statistical quantities. We
focus here on two particular ones:

(i) The partition function: By conformal invariance, parti-
tion functions are decomposed in terms of characters associ-
ated with (conformal) towers of primary states/fields �a. If
χa(q) is the character of a chiral theory on a torus, with peri-
odic space of length L and imaginary time with circumference
given by the inverse temperature, the partition function for a
system with boundary conditions A and B reads

ZAB =
∑

a

na
ABχa(q), (7)

where q = e− 2πvF
LT . The multiplicities na

AB are “gluing con-
ditions.” Physically, conformal boundary conditions affect
the spectrum only through na

AB. The characters χa(q) are
determined from the torus geometry, ignoring boundaries.
The latter only enter in the statistical mechanics through na

AB,
determining which conformal tower contribute to ZAB.

(ii) The two-point correlation functions: Let us assume the
chiral unfolded picture with boundary perturbations B at the
origin, the rightmost extremity of a system, and send L →
∞. For complex coordinates z = τ − ix, describing right
movers, the correlations between primary fields evaluated at
points Im(z1) < 0 and Im(z2) > 0 around the impurity are
changed from the standard CFT result only by a multiplicative
constant [85]

〈�a(z1)�a(z2)〉 = 1

(z1 − z2)2ha

〈a|B〉
〈0|B〉 , (8)

where ha is the conformal dimension of the primary �a.
The constant 〈a|B〉/〈0|B〉 is a ratio of amplitudes between
boundary states and the highest weight primary states |0〉, |a〉
of the vacuum, �0 and �a conformal towers.

By a clever manipulation using conformal invariance and
the so-called S-modular transformation which reverses the
generators of a torus, it is possible to relate gluing conditions
and the amplitudes featuring in the two-point correlation
functions through the so-called Cardy’s equations [86]

〈A|b〉〈b|B〉 =
∑

a

na
ABSb

a, (9)

(a)

(b)

FIG. 4. Fusion ansatz schematics. (a) M chiral fermions are
bounded in a closed system of circumference L. A trivial F boundary
condition is applied on one side and a nontrivial boundary condition
B (in the Kondo case, due to a spin-1/2 magnetic impurity) on the
other side. The boundary condition B is equivalent to fusing an anyon
c to the conduction fermions. (b) Particles in a chiral sector b1 cross
a set of M primary c perturbations. At each interaction the particles
change by fusion with c, emerging at the end as particles of type a.
(c) We reinterpret the sequential fusion of c anyons, exchanging it for
a single anyon ceff that results from a set of equal-anyonic fusions in
parallel.

where Sb
a is a matrix representation of the modular S transfor-

mation [82]. The issue with Cardy’s equations is that, a priori,
one has no information about either of its sides. This is where
the fusion ansatz comes in. It first associates a primary-field
�c to a boundary condition B ≡ B(c). Then it determines that
the distinction between a system with both free boundaries
|F 〉, |F 〉 and one with a single nontrivial boundary |F 〉, |B〉
is given by a change in the gluing condition as

na
FB =

∑
b

Na
bcnb

FF . (10)

Here Na
bc are the coefficients of the regular operator product

expansion, or fusion, algebra of CFT primary fields:

�a × �b =
∑

c

Nc
ab�c. (11)

Manipulating Cardy’s equation together with Verlinde’s
formula [100], one then obtains a nontrivial result: The ratio
of amplitudes that fix the correlation functions are determined
by the modular S-matrix

〈a|B〉
〈0|B〉 = Sa

c /Sa
0

S0
c /S0

0

. (12)

Further extending this analysis allows the determination of
all correlation functions of the NCK problem by fusing the
SU(2)N sector with a c ≡ j = 1/2 primary field due to a
Kondo boundary state |K〉 ≡ |B〉c= 1

2
[cf. Fig. 4(a)]. The point

we approach below is how to implement the BCFT framework
to the MCMI problem.

A. Multifusion hypothesis and relation to non-Abelian anyons

Formulas such as Cardy’s equations, Eq. (9), and the two-
point correlation functions, Eq. (8), contain the full infor-
mation necessary to characterize the physics of the Kondo
FP. The derivation of these formulas, however, relies on the
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existence of a center of inversion in the problem. That is
usually the origin, where the boundary perturbation is applied
and around which one may fold or unfold space (cf. Fig. 1).
This becomes an issue at the MCMI problem, with its spaced
M impurities.

A solution to the MCMI problem would require a novel
implementation of BCFT. Instead of considering a system
with a boundary, one needs to ask what are the effects of sev-
eral conformal-symmetry-preserving localized perturbations.
A much simpler way out arises if one relies instead on a
physical motivation. As long as the impurities are far apart
and do not interact with each other, we may expect that their
effect on the chiral degrees of freedom is independent. Patches
are separated by the impurities and the modes are sequentially
affected as they interact locally with each impurity. This
procedure is captured by a “multifusion” ansatz, as described
by a natural generalization of Eq. (10) reading

na
FM =

∑
b

nb
FM−1Na

bc. (13)

Here na
FM represents the gluing conditions for a chiral system

subjected to a free boundary condition on its left, and M
localized equal perturbations as it moves to its right. This
gluing condition is simply obtained from the same gluing
condition for M − 1 perturbing impurities by use of the
fusion-rule coefficients. Defining M = 0 ≡ F , we may iterate
this equation, leading to

na
FM =

∑
b1,...,bM

nb1
FF

(
Nb2

b1cNb3
b2c · · · NbM

bM−1cNa
bM c

)
. (14)

This equation has a useful consequence. To understand it, we
make connection with anyon physics or, more precisely, with
fusion category theory. Here, bringing anyons a and b together
leads to a set of fusion outcomes c according to the fusion
rules

a × b =
∑

c

Nc
abc, (15)

which index a set of quantum states |a, b; c〉. We can relate a
2D anyon fusion theory to a corresponding CFT related to the
modes at the 2D edges (this correspondence is not one-to-one)
[4,101,102]. In this case, the anyon fusion coefficients are the
same as the primary-field fusion rules in Eq. (11). As is well
known, we can relate the fusion coefficients to the dimension
of the Hilbert space of anyon fusion. For example, fusing M
anyons of type c, we may write

c × c × · · · × c︸ ︷︷ ︸
M

=
∑

c1,...,cM−2,ceff

Nc1
cc Nc2

c1c · · · Nceff
cM−2cceff

=
∑
ceff

dim
[
V ceff

c···c
]
ceff , (16)

where dim[V ceff
c···c] is the dimension of the Hilbert space ob-

tained by (M − 1) fusions of anyons c into the anyon ceff . This
dimension is dominated by the anyon c quantum dimension
dc, the highest eigenvalue of the matrix of entries Nb

ca ≡
(Nc)ab.

With this background, one may use the associativity of the
anyon fusion algebra to obtain

((((b1 × c) × c) × · · · ) × c) =
∑

b2,...,bM ,a

Nb2
b1cNb3

b2c · · · Na
bM ca,

(17)
from one side, and

(b1 × (((c × c) × · · · ) × c))

= b1 ×
( ∑

c1,...,cM−2,ceff

Nc1
cc Nc2

c1c · · · Nceff
cM−2cceff

)

=
∑

c1,...,cM−2,ceff ,a

Nc1
cc Nc2

c1c · · · Nceff
cM−2cNa

b1ceff
a (18)

from another. Returning to the multifusion ansatz it can now
be rewritten as

na
FM ≡

∑
ceff

dim
[
V ceff

c···c
]
na

FBeff
, (19)

where we used the regular fusion ansatz to write

na
FBeff

=
∑

b

nb
FF Na

bceff
. (20)

The two equivalent processes of fusion in Eq. (18) are de-
picted graphically in Figs. 4(b) and 4(c). We exchanged the set
of all impurities by a single effective impurity corresponding
to an anyon ceff . To it one associates a primary field and a
boundary state |Beff〉 which, as before, depends on the primary
field �ceff , the effective boundary perturbation. The cost is an
extra statistical multiplicative factor scaling with the quantum
dimension of the anyons ∼dM−1

c .
Now, for a single effective impurity, we may deploy the

regular toolbox of BCFT. For instance, the partition function
of the system, Eq. (7), becomes

ZFM =
∑

a

na
FMχa(q)

=
∑

a

∑
ceff

dim
[
V ceff

c···c
]
na

FBeff
χa(q)

=
∑
ceff

dim
[
V ceff

c···c
]
ZFBeff . (21)

For a single impurity, the sum and “dim” drop out, returning
the usual result. For multiple impurities, physical processes
are weighted by all the possibilities of outcome from fusion
of all impurities. This leads, for example, to a multiplicative
factor of M in the impurity entropy, in accordance with the
extensive nature of entropy.

The exchange between the sequential fusions to a global
effective fusion from Figs. 4(b) to 4(c) has an impact in the
correlation functions. The effective fusion channel implies
the existence of a convenient basis of conserved quantum
numbers for the computation of correlation functions. The
sequential fusion of the chiral modes leads to scattering into
distinct primary-field superselection sectors. The effective
fusion picture in Fig. 4(c) simply organizes these independent
sectors. For a given one, the two-point correlation function
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reads

〈�a(z1)�a(z2)〉ceff
= 1

(z1 − z2)2ha

〈a|Beff〉
〈0|Beff〉

= 1

(z1 − z2)2ha

Sa
ceff

/Sa
0

S0
ceff

/S0
0

. (22)

In other words, since all fusion channels contribute to the
partition function, one expects correlations to have contri-
butions from all ceff sectors too. Equation (22) are building
blocks of the total fermion correlator. We will interpret these
building blocks as probabilistic outcomes of the correlation
measurement, depending on the fusion channel associated
with ceff . In this case, two-point correlation-function in a given
fusion sector may access topological anyon information, as
entries of the modular S matrices.

In the next section we provide evidence that the multifusion
ansatz is indeed satisfied in cases of interest, most notably the
MCMI problem.

B. Examples

To support the validity of the multifusion ansatz, we con-
sider a few simple examples.

1. Scalar scattering

We start in the simplest scenario of interest: Scalar scatter-
ing of chiral spinless fermions. While this problem does not
relate directly to the Kondo problem, it allows for complete
solution and visualization of the effects of the multifusion
ansatz [in a U (1) scenario], as well as nuances about regimes
of its validity.

Consider a system with finite size x ∈ [−L/2, L/2] and
spinless chiral electrons in the presence of a set of local
potential scatterers

H =
∫ L/2

−L/2
dxψ†

[
−i∂x + 2π

M∑
l=1

V (l )δ(x − xl )

]
ψ. (23)

We assume antiperiodic boundary conditions on the fermions,
ψ (L/2) = −ψ (−L/2), for concreteness, and order the scat-
terer positions as xl < xl+1 with the sole constraint of being
overall confined to a small subregion of the whole system,
i.e., |xM − x1| � L. Otherwise the scatterers are spread apart
in any arbitrary way.

To compute the eigenmodes of this problem and, particu-
larly, their Green’s function, we perform a gauge transforma-
tion

ψ = ei2π
∑M

l=1 V (l )θ (x−xl )ψ̃. (24)

Now, ψ̃ obeys a free Hamiltonian, but has boundary condition

ψ̃ (L/2) = −e−i2π
∑M

l=1 V (l )
ψ̃ (−L/2). (25)

The free fermion ψ̃ admits a momentum space expansion but,
due to the new boundary conditions, momentum quantization
returns

km = 2π

L

[(
m + 1

2

)
−

M∑
l=1

V (l )

]
, m ∈ Z. (26)

Overall, the eigenmode expansion of the original fermions
then reads

ψ = ei2π
∑M

l=1 V (l )θ (x−xl )

√
L

∑
m

eikmxam

= ei2π
∑M

l=1 V (l )[θ (x−xl )− x
L ]

√
L

∑
m

ei 2π
L (m+ 1

2 )xam, (27)

for whose energy state creation and annihilation operators
a†

m, am, we associate eigenenergies Em = km.
We remark on involved length scales. If we introduce a

length scale ξK over which the scattering through each im-
purity occurs, then we would like to assume xl − xl+1 > ξK .
This way we can define a region of size (M − 1)ξK and call
it an effective boundary. For ξK � L and a finite number of
impurities (M � L/ξK ), we can imagine that this effective
boundary barely affects the size of the system, i.e., the effec-
tive system would have a size L′ = L − (M − 1)ξK ≈ L. In
that case, evaluating the field operator at a position x < x1 or
x > xM but with x � L would lead to operators accumulating
a phase difference of roughly αtot = 2π

∑M
l=1 V (l ). In fact, if

the sum of the distance between the impurities is small with
respect to the system size L, one can see that the fermion field
simply “eats” successively the impurities, one at a time from
each site. This is in agreement with an Abelian sequential
fusion of each impurity.

As we see, the effects of the scalar scatterings on the
operators is twofold. First, the eigenfunctions phases jump
discontinuously at each impurity. Second, their momenta are
shifted. The whole scale discussion above is much simplified
if one takes the thermodynamic limit L → ∞. In this case

ψ (x) = ei2π
∑M

l=1 V (l )θ (x−xl )
∫ ∞

−∞

dk

2π
eikxa(k), (28)

where a(k) = √
Lam and the energies read E (k) = k. The

momentum shifts drop out from our expressions. With this
expression, the two-point Green’s function can be computed
explicitly, reading

G(τ, x, τ ′, x′) = ei2π
∑M

l=1 V (l )[θ (x−xl )−θ (x′−xl )]

z − z′ . (29)

Let us stress that this expression is valid on the plane, i.e., in
the L → ∞, T → 0 limit. In Appendix C we provide a more
in-depth discussion on subtleties related to calculations on the
torus and the thermodynamic limit. For the moment, we just
stress that this is the exact result expected by the multifusion
ansatz. The boundary state amplitudes for this U(1) theory
are controlled by simple phase factors which accumulate
sequentially as impurities are crossed. Fixing the positions of
x and x′ relative to the scatterers shows that they behave as
conformally invariant boundary conditions (that is, they affect
the CFT correlator only by a multiplicative factor). If x < x1

and x′ > xM , we absorb the total phase αtot of the effective
boundary. Notice that, nevertheless, measuring correlations
between points in between the scatterer positions allows each
of the distinct phases V (l ) to be determined separately.
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2. NCK fixed points via CFT

Now we start exploring the problem in the actual Kondo
context. We start with Eqs. (3) and (4) for N channels and
several M impurities. Our goal will be to show that for a spe-
cial choice of coupling constants, and in the thermodynamic
limit, the arguments that lead to the usual fusion ansatz also
lead to the multifusion ansatz.

We set vF = 1 and anisotropy parameter � = 1 and,
again, use complex coordinates for the chiral fermions: ψ =
ψ (x, τ ) = ψ (z = τ − ix). Defining U(1), SU(2), and SU(N )
current operators

J (z) =: ψ†ψ :, �J (z) =: ψ† σ

2
ψ :, JA(z) =: ψ†T Aψ :,

(30)

with SU(N ) generators T A acting on the flavor indices, we
rewrite the Hamiltonian density in Sugawara form as [82,103]

H0 = 1

8πN
J2 + 1

2π (N + 2)
| �J|2 + 1

2π (N + 2)
JAJA (31)

and

HK =
M∑

l=1

gl �J · �Slδ(x − xl ). (32)

Since interactions only couple to the spin sector, we focus on
it. At a finite size L, we Fourier decompose,

�Jn = 1

2π

∫ L/2

−L/2
dxei 2π

L nx �J (x), �J (x) = 2π

L

∑
n

e−i 2π
L nx �Jn.

(33)

The Fourier components satisfy the SU(2)N Kac-Moody alge-
bra [

Ja
n , Jb

m

] = N
n

2
δabδn+m,0 + iεabcJc

n+m. (34)

Defining

�Jn = �Jn + N + 2

2

M∑
l=1

ei 2π
L nxl gl �Sl , (35)

the spin part of the Hamiltonian becomes

Hs = 2π

(N + 2)L

∑
n

�J−n · �Jn + const. (36)

What is the algebra obeyed by �Jn? By computing the commu-
tators,[

J a
n ,J b

m

] = N
n

2
δabδn+m,0

+ iεabc

[
Jc

n+m +
(

N + 2

2

)2 M∑
l=1

g2
l e

i π
L (n+m)xl Sc

l

]
.

(37)

By imposing

N + 2

2
gl = 1 ⇒ gl = 2

N + 2
∀l, (38)

a similar constraint as found in the single impurity case [103],
we recover an SU(2)N Kac-Moody algebra.

For this fine-tuned coupling, the spin sector of the theory
is described by an SU(2) symmetric WZW CFT, just as in the
decoupled problem [67]. The new spin operators

�Jn = �Jn +
M∑

l=1

ei π
L nxl �Sl (39)

show that for this coupling the impurity spins are simply
absorbed by the conduction degrees of freedom. The total
spin is nothing but the n = 0 Fourier component of the spin
current,

�J0 = �J0 +
M∑

l=1

�Sl , (40)

and demonstrates simple angular momentum addition. As in
the single impurity problem, gl = 2/(N + 2) is representative
of the strong-coupling fixed point.

The physical interpretation of these results is straightfor-
ward. In the absence of the impurity, every state is charac-
terized by J2

0 = j( j + 1), or simply spin j. At the strong-
coupling fixed point, this spin changes according to (40). We
have to sum the angular momentum with all the impurities.
Since the fine-tuned—or equivalently, the strongly coupled—
fixed point has a spectrum still controlled by an SU(2)N

theory, the standard truncation of WZW CFTs takes place.
Let us look at an example, the N = 1 single channel Kondo

problem. As usual, the conformal towers (Q, j) for charge and
spin sectors are constrained by gluing conditions enforcing, at
the decoupled fixed point,

(even,Z) ⊕ (odd, 1/2 + Z). (41)

Meanwhile, the strong-coupling gluing conditions change
with the number of impurities. We observe

(even,Z) ⊕ (odd, 1/2 + Z) for M even, (42)

(even, 1/2 + Z) ⊕ (odd,Z) for M odd. (43)

Naturally this suggests that the strongly coupled fixed point
is characterized, far from the impurities, by free electrons up
to phase shifts. These are given by the number of impurities
times π/2.

These results are in agreement with the multifusion ansatz
from the effective boundary CFT picture, from which we can
extract the phase shifts explicitly. Indexing primary fields by
the total spin j, the fusion rules of SU(2)1 read

0 × 0 = 0, 1
2 × 1

2 = 0, 0 × 1
2 = 1

2 . (44)

For an odd number of impurities, this natural truncation of
the SU(2)1 Kac-Moody algebra enforces ceff = 1/2. For an
even number of impurities, ceff = 0. The modular S matrix of
SU(2)1 reads

S =
(

1√
2

1√
2

1√
2

− 1√
2

)
. (45)
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Since fermions are primary fields of spin j = 1/2 and confor-
mal dimension h1/2 = 1/2, Eq. (22) recovers

〈ψσ (z1)ψ†
σ (z2)〉 = 1

z1 − z2

⎧⎪⎨
⎪⎩

S1/2
1/2/S1/2

0

S0
1/2/S0

0
= −1 M odd,

S1/2
0 /S1/2

0

S0
0/S0

0
= 1 M even,

(46)

which displays the π/2 phase shifts for odd number of impu-
rities.

The analysis we just made can be repeated for higher
number of channels, by fixing the proper fusion rules and S
matrices. Since the two-channel and three-channel scenarios
are also independently noteworthy, we will turn our attention
to these cases next.

3. Exact results in the 2CK case

Using the Emery-Kivelson construction [71], we can also
make some explicit progress in the 2CK case. For rigor and
details, we follow more closely the approach of von Delft
et al. [104] Our goal here is twofold. First, we will show that
the multi-impurity problem is consistent with the existence of
localized Majorana fermions at each impurity site. Second,
we will show that we can extract a parity factor from the
electron-electron correlation function that is in agreement
with the multifusion ansatz.

Decoupled Majoranas—The reasoning behind the Emery-
Kivelson approach is as follows. The natural physical degrees
of freedom of the 2CK problem are given by the number of
electrons of given spin and channel

ˆ̃Niσ =
∫

dx

2π
ψ

†
iσ ψiσ (i = 1, 2, σ =↑,↓). (47)

The corresponding states | �̃N〉 = |N1↑,N1↓,N2↑,N2↓〉, how-
ever, are inconvenient due to strong fluctuations of particle
numbers in each flavor. A much more convenient basis is
constructed by an orthogonal transformation

�N ≡

⎛
⎜⎜⎝

N̂c

N̂s

N̂c f

N̂s f

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠
⎛
⎜⎜⎜⎝

ˆ̃N1↑
ˆ̃N1↓
ˆ̃N2↑
ˆ̃N2↓

⎞
⎟⎟⎟⎠ (48)

into charge, spin, charge-flavor, and spin-flavor sectors, which

we write simply as N̂η ≡ Oη,iσ
ˆ̃Niσ .

In this new basis the charge and charge-flavor sectors
decouple, since they are exactly conserved. Once including
the impurity spins, conservation of total angular momentum
also provides a strong constraint. The electronic spin s can
flip by unity only, and only locally due to interactions with
the impurities. Albeit large fluctuations can happen globally,
locally they are mild; large spin fluctuations can only happen
in high-order processes. In contrast with the other degrees of
freedom, however, the spin-flavor s f sector can fluctuate more
wildly. This fluctuation lies at the roots of the NFL behavior
of the 2CK strongly coupled fixed point [104]. Next we see
that the Emergy-Kivelson solution generalizes nicely to the
M-impurity scenario.

To be able to rotate the basis as in Eq. (48), we bosonize
the fermions,

ψiσ (x) = κiσ√
a0

e−i�̃iσ (x), (49)

�̃iσ (x) ≡
(

ˆ̃Niσ − 1

2

)
2πx

L
+ φ̃iσ (x), (50)

where a0 is a UV cutoff and antiperiodic boundary conditions
were chosen on a finite-size system. Our convention will be
that zero-mode pieces are singled out from the lower case bo-
son variables φ̃iσ , but included in the capitalized ones, as �̃iσ .
The Klein factors obey [κiσ , N̂ jσ ′] = δi jδσσ ′κiσ , {κiσ , κ jσ ′ } =
2δi jδσσ ′ , and κ

†
iσ κiσ = 1. The bosons also obey equal-time

commutation relations

[�η(x),�η′ (y)] = iπδηη′sgn(x − y). (51)

In the boson language, it is straightforward to change basis
as �η ≡ Oη,iσ �̃iσ . Fixing Klein factors is slightly trickier but
not different from as in Ref. [104]. For example, it is possible
to convince oneself that

κ
†
s f κ

†
s ≡ κ

†
1↑κ1↓, (52)

as well as

κs f κ
†
s = κ

†
2↑κ2↓, (53)

κ
†
s f κ

†
c f = κ

†
1↑κ2↑, (54)

where κη are the new Klein factors obeying {κη, κ
†
η′ } = 2δηη′ ,

[κη, N̂η′ ] = δηη′κη, and [κη,�η′ ] = 0. The definition of new
Klein factors is possible as the physical Hilbert space where
the Hamiltonian acts is restricted to contain only states that
satisfy the gluing conditions and are closed under the pairwise
action of Klein factors. We remark, crucially, that the number
of Klein factors arising from the conduction electrons does
not change with the number of impurities. This is of course
natural, but has implications, as usually the localized impurity
Majoranas stem from properties of these Klein factors. Af-
ter the considerations above, the two-channel multi-impurity
Hamiltonian becomes

H0 = �L

2

∑
η

N̂ 2
η +

∑
η

1

2

∫
dx

2π
(∂xφη )2, (55)

HK,z = gz

M∑
l=1

[∂xφs(xl ) + �LN̂s]Sl,z, (56)

HK,⊥ = g⊥
2a0

M∑
l=1

(κ†
s f ei�s f (xl ) + κs f e−i�s f (xl ) )

× (Sl,−κ†
s ei�s (xl ) − Sl,+κse

−i�s (xl ) ), (57)

where g⊥ ≡ g, gz = �g, �L = 2π/L. We explicitly sepa-
rated the z couplings from the “perpendicular” couplings
of the Kondo interaction in Eq. (4) and, with the hindsight
of the CFT-based calculation from the previous section, we
took the interactions to be equal in strength at all impurities.

We succeeded in separating the charge and flavor-charge
degrees of freedom from the spin ones. To move on, the spin
and spin flavor can be decoupled by a unitary transformation
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at the Toulouse point gz = 1. This unitary transformation
reads, in the present scenario U = U1 · · ·UM , where

Ul = eigzSl,z�s (xl ). (58)

In applying U to the Hamiltonian, one has to take into account
an ordering of the impurity positions, as well as the anomalous
chiral boson commutation relations (51). A careful considera-
tion of this point and refermionization in terms of

ψη(x) = κη√
a0

e−i(N̂η− 1
2 ) 2πx

L e−iφη (x) (59)

leads to the Hamiltonian H ′ = UHU−1,

H ′
0 =

∑
η

∫
dx

2π
ψ†

η i∂xψη, (60)

H ′
K,⊥ = g⊥

2

M∑
l=1

[
ei

πxl
L ψ

†
s f (xl ) + e−i

πxl
L ψs f (xl )

]
(dl − d†

l ).

The complex fermions dl here read

dl = κ†
s Sl,−eiπ (

∑M
m=l+1 Sm,z ). (61)

The Jordan-Wigner-like strings appear here after the consider-
ation of boson commutations relations mentioned above. They
are an encouraging surprise. Both the Klein factor and the spin
strings are absolutely crucial to guarantee anticommutation
between fermions defined at distinct impurities, as well as
canonical anticommutation with their conjugates. Also we
notice again the finite-size oscillatory factors which would
lead to commensurability effects. Taking the L → ∞ limit
and introducing a Majorana basis

ψη = χ1
η + iχ2

η√
2

, dl = al + ibl√
2

, (62)

we obtain the final form of the problem:

H ′
0 = i

2

∑
η,a=1,2

∫
dx

2π
χa

η (x)∂xχ
a
η (x), (63)

H ′
K,⊥ = ig⊥

M∑
l=1

χ1
s f (xl )bl . (64)

As usual, the 2CK problem at the Toulouse point is described
by a set of four independent fermionic fields, only one of
which remains coupled to the impurity. This coupling is now
of a single-particle nature, and is written most naturally in the
Majorana basis. The problem is exactly solvable. Above all,
we note the existence of M decoupled Majorana fermions al ,
one at each impurity. The standard picture of a single impurity
is again reproduced in series, suggesting the validity of the
multifusion ansatz.

Solving for the eigenmodes of this problem displays other
signatures of the multifusion ansatz. For example, it can
be shown that the bl Majorana modes are absorbed by the
conduction electrons. Details of this calculation and analysis
can be found in Appendix D.

Correlation function and parity factors—Upon scattering
at a spin-1/2 impurity, electrons in the 2CK regime are
completely transformed into collective degrees of freedom
associated with the spinor representation of an underlying

SO(8) symmetry, evident due to the four complex fermions,
or eight Majoranas in the free problem [105]. The simplest
consequence of this is that electron-electron correlation func-
tions vanish identically for an odd number of impurities. We
will, therefore, consider an even number of impurities, and
ask ourselves if we can extract information from two-point
correlation functions that is in agreement with the multifusion
expectation.

Consider the correlation function

〈ψiσ (z)ψ†
jσ ′ (z′)〉

= 1

a0
〈κiσ κ

†
jσ ′e−i�̃iσ (z)ei�̃ jσ ′ (z′)〉

= 1

a0
〈κiσ κ

†
jσ ′e−iOiσ,η�η (z)eiOjσ ′ ,η′ �η′ (z′)〉. (65)

To extract any information related to the fusion channel of
the effectively decoupled impurity Majoranas al , we have to
perform the same set of manipulations as in the transformed
Hamiltonian discussed above. This is a delicate procedure. We
must perform the U unitary transformation at the Toulouse
gz = 1 point, but ought to be careful with commutation re-
lations being defined at equal times. Only the spin sector
is affected by this procedure, so we focus on Oiσ,s = σ/2.
Assuming x < x1 and x′ > xM , we have

Ue−i σ
2 �s (x)U−1 = e−i σ

2 �s (x)−i πσ
2 Sz,imp ,

(66)
Uei σ ′

2 �s (x′ )U−1 = ei σ ′
2 �s (x′ )−i πσ ′

2 Sz,imp ,

where Sz,imp = ∑M
l=1 Sl,z. Since the impurity spin is not con-

served by itself, however, one has to be careful before plug-
ging these results back in the correlation function. A way
around this is to remember that the al fermions are fully
decoupled from the Hamiltonian (64). So we write

e−i πσ
2 Sz,tot =(−1)

σ
2

∑M
l=1(d†

l dl − 1
2 )

=(−1)
σM

4

M∏
l=1

(2ialbl )
σ
2 . (67)

We define the parity of the state of M fused Majoranas of
type a

Pa = (2i)M/2
M∏

l=1

al , (68)

i.e., their fusion channel, and similarly, Pb = (2i)M/2 ∏M
l=1 bl .

This gives
∏M

l=1 (2albl ) = PaPb.
Note finally that the Klein factors enforce the spin and

channel labels to be equal in the correlation function, giving
two identical factors of the form e−i πσ

2 Sz,tot , that (Pa,b)2Oiσ,s =
Pa,b and that Pa can commute through the Hamiltonian.
Also, the charge, flavor, and spin channels are decoupled and
their correlations can be obtained from the operator product
expansions of the corresponding vertex operators. We obtain
the final expression

〈ψ jσ (z)ψ†
jσ (z′)〉 ∝ Pa

(z − z′)3/4
〈e−iO jσ,s f �s f (z)[Pb(τ )]σ/2

× eiOjσ,s f �s f (z′ )[Pb(τ ′)]σ/2〉, (69)
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where we used O2
jσ,c + O2

jσ, f + O2
jσ,s = 3/4. We achieved the

goal of extracting exactly the parity operator Pa from the
correlation function. We cannot, unfortunately, make more
rigorous progress than this. The extra power of 1/4 hides in
the remaining correlation function where the b-parity opera-
tor and remaining bosonic exponentials are not expected to
commute. If one accepts some educated guesswork, however,
we may resort to adapting the—rigorous, albeit ignoring
Klein factors and decoupled Majorana sectors—arguments of
Maldacena and Ludwig here [105]. In their work, which goes
beyond the Toulouse limit, the effect of an impurity scattering
in the strongly coupled 2CK regime is connected to a change
in boundary conditions whereby the spin-flavor boson flips
sign. If we generalize this to our many-impurity scenario, we
expect

�s f (z)|Im(z)=xl −ε = (−1)l�s f (z)|Im(z)=xl +ε . (70)

Together with our results, it is not far fetched to presume that
one may absorb the b-Majorana parities into the �s f bosons
by a change in their boundary conditions. At the end one
would simply have the CFT result for the vertex operator
correlator

〈e−iO jσ,s f �s f (z)[Pb(τ )]σ/2eiOjσ,s f �s f (z′ )[Pb(τ ′)]σ/2〉→ 1

(z − z′)1/4
.

This way, the electronic two-point function for an even num-
ber of impurities would reduce to

〈ψ jσ (z)ψ†
jσ (z′)〉a = Pa

z − z′ , (71)

and this would be in agreement with the multifusion ansatz.
The fusion rules for SU(2)2 read

0 × 0 = 0, 1 × 1 = 0, 1
2 × 1

2 = 0 + 1,

1 × 1
2 = 1

2 , 0 × 1
2 = 1

2 , 0 × 1 = 1. (72)

The corresponding S matrix is

S =

⎛
⎜⎝

1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2

⎞
⎟⎠. (73)

For an odd number of impurities, ceff = 1/2 and as S1/2
1/2 = 0,

the correlation function should vanish. For an even number
of impurities, however, ceff = 0 or ceff = 1, corresponding to
Pa = 1 or Pa = −1, respectively. This can be written as

〈ψ jσ (z1)ψ†
jσ (z2)〉 = 1

z1 − z2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S1/2
1/2/S1/2

0

S0
1/2/S0

0
= 0 M odd,

S1/2
0 /S1/2

0

S0
1/2/S0

0
= 1 M even,

S1/2
1 /S1/2

0

S0
1/S0

0
= −1 M even.

(74)

The coefficient M-even cases is nothing but Pa, as mentioned.
The factor of −1 in the ceff = 1 channel suggests a π/2 phase
shift associated with a two-channel screening of a spin-1
effective particle. The two values of Pa, and consequently
of the correlation function, suggest a double ground state
degeneracy, due to the free Majoranas. In sum, the 2CK
problem has been worked out rigorously here, to the point

where Pa is extracted from the correlation function. This is
the main signature expected from the multifusion ansatz. The
most noteworthy lesson here comes from contrasting with the
1CK case. In the 2CK problem we see that even for a fixed
number of impurities, two distinct solutions appear for the
correlation function. These solutions, corresponding to two
anyon fusion channels, come in the form of simple phase
shifts, but that stems from the fact that the two outcomes of the
fusion 1/2 × 1/2 = 0 + 1, namely 0 and 1, are still Abelian
anyons.

4. 3CK and Fibonnaci anyons

We finish our discussion by pointing the nontrivial conse-
quences if we push this picture to the 3CK scenario. Now,
the low energy theory is expected to be controlled by an
SU(2)3 WZW CFT. We emphasize again the existence of
a relationship between this CFT and Fibonacci anyons, first
alluded in the introduction. While we cannot solve the 3CK
problem exactly, we may rely on our ansatz, supported by
the strong-coupling fixed point results of Sec. III B 2. The
modular S matrix reads

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
1 − 1√

5

√
1 + 1√

5

√
1 + 1√

5

√
1 − 1√

5√
1 + 1√

5

√
1 − 1√

5
−
√

1 − 1√
5

−
√

1 + 1√
5√

1 + 1√
5

−
√

1 − 1√
5

−
√

1 − 1√
5

√
1 + 1√

5√
1 − 1√

5
−
√

1 + 1√
5

√
1 + 1√

5
−
√

1 − 1√
5

⎞
⎟⎟⎟⎟⎟⎟⎠.

(75)
The fusion rules for SU(2)3 are more cumbersome. For sim-
plicity, we focus on the 1/2 × 1/2 = 0 + 1 fusion rule, which
is unchanged in comparison with the 2CK case above, and
M = 2 impurities. The prefactors of the correlation functions,
however, are now completely different. If the impurities fuse
to ceff = 0, we just have a trivial boundary condition and a
unity prefactor. If, however, ceff = 1, the correlation function
prefactor now reads −(

√
5 − 1)/(

√
5 + 1). Not only they are

different in sign, but also in modulus. There is no full con-
version of electronic degrees of freedom into other collective
modes. Scattering by an odd number of impurities does not
need to vanish in this case.

IV. SUMMARY AND OUTLOOK

We proposed a chiral multichannel and multi-impurity
Kondo model as a venue for realizing quasiparticle fractional-
ization and anyon-related physics. Contrasting with platforms
based on standard topologically ordered phases, our system
is gapless. Our anyonic modes are separated from the con-
duction electron fluid due to inherent frustration present in
the multichannel Kondo effect, leading to residual strongly
correlated and spatially localized fractionalized degrees of
freedom.

The implementation described here is a promising plat-
form for manipulation of topological quantum information.
Through a multifusion adaptation of the boundary conformal
field theory fusion ansatz, we have shown that impurity-
anyon fusion channels leave signatures in two-point corre-
lation functions. While the static impurity fractional parti-
cles cannot be braided, the signatures left on correlation
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(a)

(b)

FIG. 5. Simplified picture of the chiral Kondo model (a) and
its overscreened anyon low-energy picture (b). Switches between
impurities allow the extraction of electrons at any particular position.
This allows the measurement of correlation functions extracting
information about a fusion channel of a desired sequence of anyons
at their corresponding impurities.

functions provide the very requirements for the implementa-
tion of measurement-only topological quantum computation
[87]. In this methodology, anyon braiding is substituted by
measurements of anyon charges, which in this context mean
simply the result of a fusion channel. No direct interaction
between impurities is necessary for the manipulation of the
information. Computations are determined in a probabilistic
fashion, determined by the result of repeated measurements
of fusion outcomes. These depend only on the interaction
between the conduction electrons and each impurity, and can
be selected through switches, as illustrated in Fig. 5.

If the building blocks of the correlation function (associ-
ated with fixed fusion channel ceff ) can indeed be separately
measured, a simplified protocol for quantum information ma-
nipulation can be devised. One starts with a system of M
impurities, equipped with the possibility to inject an electron
before the lth impurity and extract it after the mth (m > l)
impurity [red dashed line in Fig. 5(b)]. This allows us to
measure the fusion outcome of all anyons in the segment from
l to m. Our 1D setup is limited to measuring the fusion of
anyons along connected segments. Still, this allows interest-
ing operations such as state teleportation. While success in
achieving teleportation by such method is only probabilistic,
the number of measurements returning failed processes is
exponentially suppressed [87]. To realize effective braiding of
the anyons using measurements of fusion outcomes requires
us to go beyond our purely 1D system [87,106], effectively
allowing us to measure the fusion outcome of nonconsecutive
anyons on the line. For this purpose we envision adding
external coherent connectors on our chiral channel, extracting
an electron from one point and reinjecting it from another.

Chiral multichannel Kondo systems then provide an excit-
ing venue for studying quasiparticle fractionalization. They
satisfy the standard primitives for the realization of topologi-
cal quantum computation [87]: They display (i) non-Abelian
particles whose (ii) fusion channel may be determined by
correlation function measurements. Furthermore, the anyons
are bound to defects, which offers a beneficial extra protec-
tion of the information from thermal proliferation of anyon
pairs [38]. In comparison, anyons in fractional quantum Hall

systems systems may satisfy properties (i) and (ii), but are
not protected from thermal fluctuations. Majoranas in topo-
logical superconductor nanowires do display all properties
above, but offer no path towards universal gates by braiding.
The Kondo approach we put forward displays all qualities
discussed above. Here the three-channel Kondo case will
be pivotal, given the suggestive signatures of it displaying
Fibonacci anyons—which do braid to universal gates. Real-
izing Fibonacci particles is a daunting task; all proposals we
are aware of require challenging fine tuning and/or hard-to-
realize ingredients [30,33,34,107]. In fact, even the engineer-
ing of Majorana zero modes in nanowires presents a challeng-
ing goal. In contrast, two-channel and three-channel Kondo
phenomenology has already been reported in devices based
on charge implementations of the impurity pseudospin [81].

Our work lays the foundation for the implementation of
quantum computation in Kondo systems. Yet, several im-
portant extensions of this work can be envisioned. As note-
worthy topics we mention a more detailed modeling for a
device realization, a better microscopic description of the
multifusion ansatz, and establishing a relation of the two-
point correlation functions to accessible observables such as
conductance or tunneling measurements. For these latter two
points, we have been exploring a large-number-of-channels
perturbative calculations which, preliminarily, are in agree-
ment with the results here described [108]. This limit provides
interesting insight, as the spins are perturbatively free from
the conduction channels and play the roles of the free anyonic
modes themselves. The measurement of fusion-channel-fixed
correlations is a more subtle issue. If possible, we still note
that such measurements can be challenging in some scenarios,
demanding interferometry. An example is the two-channel
Ising case, whose correlation functions were demonstrated to
change only by a phase, depending on the fusion channel.
Remarkably, we saw that the most interesting and useful
Fibonacci three-channel case involves a suppression of the
correlation function in modulus, not just in phase, alleviating
the requirement of interferometry. In a recent proposal for
Fibonacci anyons, a conductance that depends on the fusion
outcome exactly as given by Eq. (22) was proposed [33].

The realization of platforms for topological quantum com-
putation is a grand challenge from the point of view of
condensed matter physics, quantum phases, and quantum
information. By relying on frustration, strong correlation,
and localization effects, multichannel Kondo systems func-
tion in a regime totally different from gapped topological
order. Still, they display several of the desired properties of
standard anyon systems. This paradigm shift presents several
advantages but, most importantly, surmountable and exciting
challenges.
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APPENDIX A: CHIRAL DEVICE TOY MODEL

To study the spin asymmetry effects in the proposed device,
we focus on a single effective impurity and a single channel
and consider a simplified Anderson-impurity phenomenolog-
ical model H = H0 + H1, where

H0 = U

(∑
σ

f †
σ fσ − 1

)2

+
(∑

σ

εσ f †
σ fσ − (ε↑ + ε↓)/2

)
,

(A1)

H1 =
(∑

σ

tσ f †
σ cσ,0 + H.c.

)
. (A2)

This model has close similarities to that of Ref. [95]. The
dispersion of c fermions is unimportant in comparison with
other energy scales, so we focus only on the impurity site.
Under this consideration, we discretized space in a lattice,
with cσ,0 corresponding to an electron at the origin with spin
σ . The two energy levels of the QD are being modeled by
a fermionic representation of associated Hubbard operators
given by fσ [95]; in practice, states |±〉 = f †

±|0〉 correspond
to the triplet and singlet states forming the lowest two energy
levels of the dot. The interaction energy U removes the other
triplet states of the problem, which correspond to the doubly
and unoccupied levels of fermions f . We ignored the Zeeman
splitting for the cσ electrons, but consider its consequences
as a spin-dependent tunneling amplitude tσ . To be general,
however, we do need to include an imperfect accidental
degeneracy of the relevant impurity energy levels εσ . The
particle-hole transformation, as implemented by cσ,0 → c†

σ,0

and fσ → − f †
σ , preserves this Hamiltonian but for a flip εσ →

−εσ . In the particle-hole symmetric limit, we have single
occupation of both fermions:

∑
σ c†

σ,0cσ,0 = ∑
σ f †

σ fσ = 1.
At large U , an effective Hamiltonian can be computed by a

Schrieffer-Wolff transformation [41]. We leave the details for
Appendix B, to preserve the flow of the discussion. Neglecting
fluctuations of particle number, the effective Hamiltonian
reads

H ≈ H0 + H2

= U (n f − 1)2 + ε0(n f − 1)

− B0Sz + (2εz + B0)Sz

+ gzSzSz + g⊥(SxSx + SySy). (A3)

As in the main text, g⊥ = g and gz = �g. Here εσ = ε0 + σεz

and εz corresponds to the unrenormalized Zeeman splitting of
the dot singlet and triplet; then

S = 1
2 c†

0σc0, S = 1
2 f †σ f , (A4)

and

B0 =
∑

σ

σ t2
σ ε−σ

(ε−σ + U )(ε−σ − U )
, (A5)

gz = 2
∑

σ

Ut2
σ

(U + ε−σ )(U − ε−σ )
, (A6)

g⊥ = 2
∑

σ

Ut↑t↓
(U + ε−σ )(U − ε−σ )

. (A7)

Two points call our attention in these equations. First, the
previously alluded spin asymmetric couplings between the
two spinful channels and the QD are explicitly manifest. As
mentioned, a spin anisotropy is not expected to affect the NFL
low-energy physics. More worrying is the effective magnetic
field term B0, which threatens to break the bound state that
overscreens the impurity at the origin. From a field theory per-
spective, however, the magnetic field coupling to the impurity
dominates over the coupling to the conduction electrons [97].
Fortunately, this term may be tuned via B‖ to zero under the
condition of degeneracy of the two renormalized QD levels.
Setting B0 = −2εz leads to, in the large U limit,

εz ≈ (t2
↑ − t2

↓ )ε0

2U 2
. (A8)

For equal hybridization amplitudes t↑ = t↓, there is no spin
asymmetry or splitting renormalization; the accidental de-
generacy must be tuned exactly to guarantee the absence of
the effective magnetic field. If the hybridization amplitudes
are spin dependent, however, we may still tune the effective
magnetic field for the impurities away by the real applied
magnetic field which controls εz. Note also that even in the
extreme asymmetric situations, when one of the tσ is set to
zero, the Kondo couplings are well established, showing some
robustness in our proposal.

APPENDIX B: SCHRIEFFER-WOLF TRANSFORMATION

Defining the generator S satisfying [H0, S] = H1, the cor-
rection to the Hamiltonian is given by H2 = 1

2 [S, H1]. The
generator reads

S =
∑
σ,α

tσ
�α

σ

nα
−σ c†

σ,0 fσ − H.c., (B1)

where �α
σ = [(1 − σ )ε↑ + (1 + σ )ε↓]/2 + αU , for α = ±,

are the energy differences for double to single and single
to zero occupations. The terms nα

−σ = sgn(α)(n−σ ) + θ (−α),
where nσ = f †

σ fσ , act as projector operators [41]. We com-
pute the effective Hamiltonian under the approximation of
substituting

∑
σ c†

σ,0cσ,0 = ∑
σ f †

σ fσ = 1 (and consequently
n+n− → 0). This neglects, to lowest order, particle density
fluctuations at the impurity site. If we recovered the particle-
density fluctuations, the effective magnetic field terms in H2

would contain cross terms between spin and particle densities
fluctuations around the single occupation mean value. Since
we find that B0 can tune the impurity splitting to zero anyway,
and that which is the most important perturbation [97]. We
consider the lowest approximation in fluctuations for simplic-
ity of analysis. The result we find is displayed in Eq. (A3).

The Hamiltonian we find is slightly different from that of
Ref. [95], although the models are closely related. While part
of the difference arises from us taking the zero density fluc-
tuation limit, which we stress is not necessary, we do found
some other differences. We found, in particular, effective local
magnetic field contributions both to the impurity and to the
conduction electrons, independently of the approximation.
We believe this discrepancy stems from a careful normal or-
dering and anticommutation bookkeeping during Schrieffer-
Wolff/second-order perturbation theory calculation.
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APPENDIX C: SCALAR SCATTERING
GREEN’S FUNCTIONS

The two-point correlation (Green’s) functions can be ob-
tained by elementary methods. In a finite-size and finite-
temperature torus, it reads

Gtorus(τ, x, τ ′, x′)

= 1

Lβ
ei2π

∑M
l=1 V (l )[θ (x−xl )−θ (x′−xl )− x−x′

L ]

×
∑
m,n

ei 2π
L (m+ 1

2 )(x−x′ )e−i 2π
β

(n+ 1
2 )(τ−τ ′ )

iωn − km
. (C1)

It is instructive to consider this expression both in the thermo-
dynamic and zero-temperature limits, in which cases the sums
can be performed exactly. In the former case, we have

lim
L→∞

Gtorus(τ, x, τ ′, x′) = π

β

ei2π
∑M

l=1 V (l )[θ (x−xl )−θ (x′−xl )]

sin π
β

(z − z′)
,

(C2)

while in the latter

lim
T →0

Gtorus(τ, x, τ ′, x′)

= π

L

ei2π
∑M

l=1 V (l )[θ (x−xl )−θ (x′−xl )]e
2π
L (

∑M
i=1 V (l ) )(z−z′ )

sinh π
L (z − z′)

. (C3)

It is known in the context of the NCK problem that the
anyonic behavior of the overscreened impurity only develops
in the thermodynamic limit, followed by a low temperature
limit. The order of the limits is important [67,70]. Some
phenomenon reminiscent of that also appears here. In the
expressions above, one sees already that in the L → ∞ limit,
the behavior of the correlation function is that of absorbing a
simple prefactor correction that changes discontinuously with
the number of impurities between the points x and x′. Taking
the zero-temperature limit first leaves us with an expression
that remembers that the system is defined in a cylinder and
has to display the periodicity-correcting factors which arise
due to the momentum shifts.

The scalar scattering problem, however, does not display
impurity dynamics and interaction effects. As a consequence,
the order of limits discussed above is less stringent when one
finally computes the correlation function in the plane (both
L → ∞ and T → 0). Independently of the order of limits, we
obtain the result displayed in the main text:

Gplane(τ, x, τ ′, x′) = ei2π
∑M

l=1 V (l )[θ (x−xl )−θ (x′−xl )]

z − z′ . (C4)

As discussed in the main text, this result could be have been
found directly computing the zero-temperature correlation
function from Eq. (28).

APPENDIX D: 2CK EIGENMODES AND
MULTI-IMPURITY ABSORPTION

Here we display some extra details on the analysis of
the 2CK problem with multiple impurities. Namely, our goal
is to prove that the Majorana modes are all absorbed by

the conduction electrons at each impurity site, and consider
the associated phase shifts. Similar results are effective in
the single-impurity case, and we show here that they also
generalize for many impurities.

To start, we decompose the field operators according to
[109,110] (we drop the labels, from now on only χ1

s f → χ

is part of the discussion)

χ (x) =
∑

k

ϕk (x)ck, bl =
∑

k

ul
kck . (D1)

The wave functions satisfy the Schrödinger equations

i∂xϕk (x) + ig⊥
∑

l

2πδ(x − xl )u
l
k = kϕk (x), (D2)

ig⊥ϕk (xl ) = kul
k, (D3)

under the local constraints ϕ
(−)
k,l = ei2δϕ

(+)
k,l , where ϕ

(±)
k,l ≡

limε→0 ϕk (xl ± ε) and

tan δ = 2πg2
⊥

k
. (D4)

In the decoupled limit, δ → 0, while in the strong cou-
pling limit, δ → π/2. The latter happens as g2

⊥ ∼ TK �
	, where 	 is the characteristic energy scale of the free
modes. Carefully sewing the solutions through the impurities
results in

ϕk (x) = e−ik(x−x1 )ϕ
(−)
k,1

[
1 + (1 − ei2δ )

M∑
l=1

θ (x − xl )e
−i2lδ

]
.

(D5)

In the strong coupling limit, δ = π/2, and the conduction-
electron field operators are excluded from the impurity
positions—as the term in brackets guarantees. At those points,
the impurity Majoranas take over, complementing and com-
pleting the states. To evince this, we define

χ̃ (x) ≡ χ (x)

[
1 + 2

M∑
l=1

(−1)lθ (x − xl )

]

= (−1)l+1
∑

k

e−ik(x−xl )ϕ
(−)
k,l ck, (D6)

which is finite at the impurity sites in the strong coupling limit.
In fact, by the impurity Majorana field operator expansion, we
have the operatorial identity

bl ≈ (−1)l

πg⊥
χ̃ (xl ), (D7)

proving that this identity, which was true in the single impurity
case [109,110], also remains true here. Finally, note the phase
buildup

χ (L → ∞) = e−i2Mδe−i2kLχ (−L → ∞)

→
δ→π/2

e−iMπ e−i2kLχ (−L → ∞). (D8)

For an even number of impurities, no phase is gathered (except
from the one gained from translation), while for an odd
number of impurities one always picks up an overall π total
phase. Notice that the spin-flavor Majorana operators are not
the original physical degrees of freedom. They are, instead,
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highly correlated collective modes, not directly related to
any obvious measurement (such as the tunneling currents

of our focus). Yet, this boundary condition flip has useful
consequences when discussing correlations [105].
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