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Exact boundary modes in an interacting quantum wire
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The boundary modes of one-dimensional quantum systems can play host to a variety of remarkable
phenomena. They can be used to describe the physics of impurities in higher-dimensional systems, such as
the ubiquitous Kondo effect, or can support Majorana bound states, which play a crucial role in the realm of
quantum computation. In this work we examine the boundary modes in an interacting quantum wire with a
proximity-induced pairing term. We solve the system exactly using the Bethe ansatz and show that for certain
boundary conditions the spectrum contains bound states localized about either edge. The model is shown to
exhibit a first-order phase transition as a function of the interaction strength such that for attractive interactions
the ground state has bound states at both ends of the wire, while for repulsive interactions they are absent. In
addition we see that the bound-state energy lies within the gap for all values of the interaction strength but
undergoes a sharp avoided level crossing for sufficiently strong interaction, thereby preventing its decay. This
avoided crossing is shown to occur as a consequence of an exact self-duality which is present in the model.
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I. INTRODUCTION

Distinct equilibrium phases of matter are separated by
regions of criticality characterized by diverging length scales
and gapless modes. The critical region may lie in parameter
space where the distinct phases are attained by tuning an
external parameter such as temperature or some other system
parameter such as interaction strength [1,2] but also occurs in
real space at the interface of different systems. A prominent
example of the latter is the existence of gapless modes which
lie at the edges of topological materials [3–5]. In one dimen-
sion, these edge modes are immobile and form bound states
which are localized at the boundaries of the system. Such
boundary bound states are of central importance to a number
of fields, including quantum computation [6–8], magnetic
impurities in higher-dimensional superconductors [9–12], and
solitons in one-dimensional organic conductors [13–15].

In this paper we study a model of a one-dimensional (1D),
spinful, interacting quantum wire with open boundary condi-
tions. The quantum wire has both density-density interactions
and a proximity-induced pairing term. We investigate the ef-
fects of different boundary conditions on the system and focus
in particular on the existence of boundary bound states, states
which decay exponentially away from the end points of the
wire. After reformulating the Hamiltonian via a bosonization
and refermionization procedure the model is solved exactly
using the Bethe ansatz for a subset of the parameters. We find
the many-body eigenstates, derive the Bethe ansatz equations,
and construct the ground-state and low-lying excitations. We
show that for certain boundary conditions, those which break
the time-reversal invariance of the bulk, the model supports
bound states at the boundaries. These boundary bound states,
while being exact eigenstates of the system, do not correspond

*crylands@umd.edu

to solutions of the Bethe ansatz equations, which marks them
as distinct from boundary modes previously studied via the
Bethe ansatz [16–23].

When the interactions are absent, these bound states lie
within the energy gap at zero energy and provide a fourfold-
degenerate ground state. However, when the interactions are
present, this degeneracy is lifted. Owing to a redistribution
of the interacting Fermi sea the bound-state energy is shifted
to nonzero values, leading to a first-order phase transition at
zero temperature. In the ground state these bound states are
occupied if their energy is pushed below the Fermi level,
which occurs for attractive interactions, and are unoccupied
otherwise. The bound-state energy remains within the gap
for all values of the interaction strength but undergoes a
sharp avoided level crossing with the continuum of unbound
states for finite interaction strength. This prevents any possible
coupling of the bound and unbound states and thereby protects
them from decay [24].

II. HAMILTONIAN

We consider the following Hamiltonian describing an in-
teracting 1D quantum wire:

H =
∫ L

0
dx

∑
σ=↑,↓

vF [ψ†
−,σ i∂xψ−,σ − ψ

†
+,σ i∂xψ+,σ ]

+�[ψ†
+,↑ψ

†
−,↓ + ψ−,↓ψ+,↑ − ψ

†
+,↓ψ

†
−,↑ − ψ−,↑ψ+,↓]

+ g‖[ψ†
+,↑ψ+,↑ψ

†
−,↑ψ−,↑ + ψ

†
−,↓ψ−,↓ψ

†
+,↓ψ+,↓]

+ g⊥[ψ†
+,↓ψ+,↓ψ

†
−,↑ψ−,↑ + ψ

†
−,↓ψ−,↓ψ

†
+,↑ψ+,↑]. (1)

Here we have two species σ =↑,↓ of left- (−) and right-
(+) moving fermions ψ

†
±,σ , ψ±,σ which are restricted to the

segment x ∈ [0, L], and we have taken h̄ = 1 [25–27]. The
first line is the kinetic energy of the fermions, while the second
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is the pairing term which has a sign difference for pairs about
different Fermi points. Pairing of this form occurs in px-wave
triplet superconductors [28,29], which may be induced via
proximity [7,8,30,31] and leads to a bare energy gap of 2�

. The final lines describe density-density interactions between
fermions with parallel or opposite spins, the g‖ and g⊥ terms,
respectively. Along with this we specify the boundary condi-
tion at x = 0, L which changes the chirality of the particles
but can be chosen to either conserve or flip the spin of
the particle or some more complicated combination thereof.
The first of these is the most natural choice in a quantum
wire [32].

We shall see below that the spin-conserving choice leads
to the spectrum containing boundary bound states; however,
the time-reversal-invariant, spin-flipping boundary condition
does not. These boundary bound states are invariant under
a Z2, combined particle-hole and chirality transformation
ψ

†
±,σ ↔ −ψ∓,σ . This anticommutes with the noninteract-

ing part of the Hamiltonian and so pins the bound states
to zero energy when g‖ = g⊥ = 0. In the interacting case,
however, we show below that this transformation is gen-
eralized to H (δ) ↔ −H (−δ), where δ is the two-particle
phase shift, and so the bound state may no longer lie at zero
energy.

III. BOSONIZATION

Our aim is to provide an exact solution of the Hamiltonian
for a particular choice of g⊥, g‖, which will be achieved by
employing the Bethe ansatz method. The exact solution will
then allow us to study the boundary bound states of the model.
In present form, however, (1) is not amenable to this due
to the apparent lack of particle number conservation caused
by the pairing term. To bring it to a more suitable form we
first bosonize the system, perform a duality transformation,
and then refermionize. The outcome of this series of steps is
that we will have a Hamiltonian in which the pairing term is
replaced with a mass-type term instead. Effectively, this will
be equivalent to a particle-hole transformation for one of the
chiral branches.

We introduce the bosonic fields ψ
†
±,σ = √

Dei[∓φσ −θσ ],
where D = N/L is the average density [33]. Forming symmet-
ric and antisymmetric combinations φ± = [φ↑ ± φ↓]/

√
2 and

θ± = [θ↑ ± θ↓]/
√

2, which govern the charge (+) and spin
(−) degrees of freedom, our Hamiltonian becomes

H =
∑
a=±

va

2π

∫ L

0
dx

1

Ka
[∂xφa(x)]2 + Ka[∂xθa(x)]2

− 4�D sin[
√

2φ−] sin[
√

2θ+], (2)

where v± is the speed of sound and K± is the Luttinger param-
eter of the charge and spin components [25–27]. The relation
between the fermionic parameters g⊥, g‖ and the bosonic
parameters K± must be determined by comparing physical
observables computed in both models and is nonuniversal
except at weak coupling, wherein K± ≈ 1 − (g‖ ± g⊥)/2πvF .

Next, we make a duality transformation on the symmetric
fields φ+ ↔ θ+, whereupon we get the following:

H = v−
2π

∫ L

0
dx

1

K−
[∂xφ−(x)]2 + K−[∂xθ−(x)]2

+ v+
2π

∫ L

0
dxK+[∂xφ+(x)]2 + 1

K+
[∂xθ+(x)]2

− 4�D
∫ L

0
dx sin [

√
2φ−] sin [

√
2φ+], (3)

which is a variant of the double sine-Gordon model
(DSG) [34,35]. The scaling dimension of the pairing term
is κ = K−/2 + 1/2K+, and it is known that for κ = 1 the
DSG model is integrable [36] and enjoys a dual fermionic
description [37–39]. We restrict ourselves to this case and
define the new fermions R†

1,2 = √
Dei[−φ↑,↓−θ↑,↓] and L†

1,2 =√
Dei[−φ↓,↑−θ↓,↑], in terms of which the Hamiltonian can be

written as

H =
∫ L

0
dx

∑
ξ=1,2

vF [L†
ξ i∂xLξ − R†

ξ i∂xRξ ]

+�[R†
1L1 + L†

1R1 − R†
2L2 − L†

2R2]

− 2g[R†
1R1L†

2L2 + R†
2R2L†

1L1]. (4)

Our new Hamiltonian H describes two new species of right-
moving, R†

ξ , Rξ , and left-moving, L†
ξ , Lξ , fermions which

interact via density-density interaction and have a mass term
with � and −�. Along our chosen manifold of K− + 1/K+ =
2 there is only a single free parameter encoding the interac-
tions in the wire which in H is given by g. The relationship
between g and K± can be determined at this stage only at weak
coupling 1/K+ − K− ≈ 2g/πvF . The full relationship will be
discussed further below; however, we will refer to g > 0 as the
repulsive regime, g < 0 as the attractive regime, and g = 0 as
the noninteracting model, with K+ = K− = 1.

As mentioned before this should be accompanied by
boundary conditions at x = 0, L. In terms of the new
fermions the spin-conserving boundary condition mixes the
two species,

R†
1,2(0) = −L†

2,1(0), (5)

R†
1,2(L) = −L†

2,1(L). (6)

This will allow for boundary bound states to appear in the
spectrum. The alternative choice which does conserve the
species is given by

R†
1,2(0) = −L†

1,2(0), (7)

R†
1,2(L) = −L†

1,2(L) (8)

and does not allow for boundary bound states to form. These
boundary conditions are introduced as a point of compari-
son to the more natural and nontrivial case of (5) and (6);
however, it is worthwhile to note that it may be possible
to engineer such boundary conditions through application of
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appropriate boundary fields or perhaps coupling to magnetic
impurities [40]. In both cases the minus sign accounts for the
π phase shift a particle acquires after scattering from a hard
wall [32].

IV. BOUNDARY BOUND STATES

We are now in a position to examine the system us-
ing the Bethe ansatz, first for the spin-conserving bound-
ary condition (5). We begin by considering the single-
particle eigenstates and introduce the notation �

†
ξ (x, θ ) =

ei� sinh (θ )x/vF [eθ/2R†
ξ (x) + ηe−θ/2L†

ξ (x)], where η = (−1)ξ−1

for ξ = 1, 2. In terms of this we can express the single-particle
eigenstates as

|ε(θ )〉 =
∫ L

0
dx

2∑
ξ=1

[Aξ
+�

†
ξ (x, θ ) + Aξ

−�
†
ξ (x,−θ )]|0〉. (9)

Acting on this with the Hamiltonian, we find that this has en-
ergy ε(θ ) = � cosh (θ ) and satisfies the boundary condition
at x = 0 provided �A+ = KL(θ ) �A−, where

KL(θ ) = −1

cosh (θ )

(
1 − sinh (θ )

sinh (θ ) 1

)
(10)

and �A± = (A1
±, A2

±)T . This also satisfies the boundary con-
dition at x = L if e−2i� sinh (θ )L/vF �A− = KR(θ ) �A+, where
KR(θ ) = K−1

L (θ ) = KL(−θ ). Combining these two, we get
e−2i� sinh (θ )L/vF �A− = KR(θ )KL(θ ) �A−, which is the boundary
condition of free fermions. The single-particle rapidities
therefore are quantized according to

e−2i� sinh (θ )L/vF = 1. (11)

We may interpret this equation in the following fashion: The
left-hand side is the total phase shift accrued from the plane
wave in (9) by a particle which travels a distance 2L from one
side of the system to the other and then back to its original
position. The right-hand side provides the additional phase
shift the particle acquires from scattering off of both bound-
aries. In this instance the contributions from both boundaries
cancel each other. In the interacting case considered below,
the right-hand side will be significantly modified to account
for the scattering between particles.

Solutions of this equation constitute single-particle scat-
tering states of the model and have a twofold degeneracy
corresponding to the eigenvectors �A− = (1, 0)T or (0, 1)T .
Note that θ and −θ correspond to the same state, while at θ =
0 the wave function vanishes. We therefore restrict ourselves
to the real part of the rapidity being positive, Re(θ ) > 0, while
the imaginary part may be zero or π , with the latter choice
giving negative-energy particles.

We may also construct zero-energy boundary bound states
of the model. Taking θ = iπ/2 and Aξ

− = 0 in the above
expression for an eigenstate, we have a state which decays as
e−�x/vF and satisfies the boundary conditions at both x = 0, L,
provided A2

+ = −iA1
+. Explicitly, this is

∫ L

0
dx e−�x/vF {[R†

1(x) − L†
2(x)]+i[R†

2(x) − L†
1(x)]}|0〉.

From this we can see that the bound state is invariant un-
der the previously mentioned Z2 transformation, R†

1,2(x) ↔
−L†

2,1(x), which preserves the boundary conditions (5)
and (6). The same transformation performed on the unbound
state, (9), results in a change in sign of the energy. The
coherence length of the bound state is given by ξ = vF /�.

A similar zero-energy bound state localized on the right-
hand boundary can also be constructed by taking θ = −iπ/2,
instead giving a state which decays as e−�|L−x|/vF . Both bound
states occur at the poles of the boundary S matrices, KL and
KR, but, importantly, are not solutions of the quantization con-
dition (11). If, instead, we choose the boundary conditions (7)
and (8), we have that KL = KR = 1. Evidently, this has no
poles and does not support bound states, but nevertheless, the
spectrum is also determined by (11).

V. NONINTERACTING MODEL

Before proceeding to the fully interacting model, it is
instructive to construct the ground state and excitations of
the free model which follows a similar methodology. The N-
particle eigenstates when g = 0 are merely products over the
single-particle states, (9), with rapidities θ j, j = 1, . . . , N .
The energy of this state is the sum over single-particle en-
ergies

∑N
j ε(θ j ). In the thermodynamic limit, N, L → ∞,

this sum can be changed to an integral
∑N

j → L
∫ �

0 dθρ0(θ ),
where � is a cutoff imposed on the rapidities and ρ0(θ ) is
the distribution of rapidities in the state. This distribution is
defined in the standard way as [41–44]

ρ0(θ j ) = n j+1 − n j

L(θ j+1 − θ j )
(12)

where n j are the integer quantum numbers of the state.
They arise from taking the logarithm of (11) such that n j =
� sinh (θ j )L/vF . Note that n j may be positive or negative
depending on the imaginary part of θ j but must all be distinct
and nonzero in order to have a nonvanishing wave function.

The ground state is constructed by taking the values nj =
− j, so that it consists of negative-energy particles with no
holes. Using this along with (12), we find that the ground-state
distribution in the thermodynamic limit is

ρ0(θ ) = �

πvF
cosh (θ ) − δ(θ )

L
. (13)

Here we have subtracted off a δ function so that the distribu-
tion is defined for θ � 0 and the hole at θ = 0 is accounted
for. The cutoff is then fixed by using D = ∫ �

0 dθρ0(θ ),
where D = N/L is the density. From this we have that � =
ln (2πvF D′/�), with D′ = D + 1/L. The ground-state energy
density is then simply given by

ε0 = −
∫ �

0
dθ ρ0(θ )� cosh θ (14)

= −π h̄vF

2
D′2 − �2

2π
ln

(
2πvF D′

�

)
+ �

L
. (15)

In the noninteracting model the ground state (and all other
states) enjoys a large degeneracy coming from the amplitude
of the wave function which takes the form [⊗M

j=1(0, 1)T ] ⊗
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[⊗N−M
j=1 (1, 0)T ] for M � N/2. This degeneracy coming from

the decoupling of the species is completely lifted in the
interacting case.

The excitations above this ground state consist of either
removing a negative-energy particle at, say, θ = θh + iπ , from
the ground state or adding a positive-energy particle on top
of this at θ = θp. In the former case we modify ground-
state quantum numbers so that one of the integers, n j , is
missing. The distribution is then modified to include this
hole, ρ0(θ ) → ρ0(θ ) − δ(θ − θh)/L. For either, the energy
increase is � cosh (θh,p), and the particle number is changed
by δN = ±1. Particle-hole excitations, i.e., a state with both
types of excitations, leave the particle number unchanged and
have a minimum energy of 2�, which is the energy gap of the
noninteracting system.

On top of this state we may add either one or two bound
states with no change in the energy, meaning that the ground
state has a further fourfold degeneracy. Unlike the typical
degeneracy associated with a free model discussed above, the
addition of bound states changes the total fermion number to
Ntotal = N + nB, with nB being the number of bound states in
the system. Consequently, the total fermion parity, defined as
P = (−1)N+nB , may be changed by their inclusion.

In the interacting model we will see that by adding particles
or holes to the ground state the distribution is shifted. This
leads to a change in the dispersion relation of the excitations as
well as the energy gap. The same is true when bound states are
added to the system; the ground-state distribution is shifted,
and their associated degeneracy is lifted.

VI. MANY-BODY EIGENSTATES

In the interacting model the many-particle eigenstates
can be constructed in the standard Bethe ansatz fash-
ion [42,44]. The N-particle scattering eigenstate of energy
E = ∑N

j=1 ε(θ j ) is given by

|�ε〉 =
∑
�ξ,�σ ,Q

∫ L

0
dx A

�ξ
�σ [Q]�(xQ)

N∏
j=1

�
†
ξ j

(x j, σ jθ j )|0〉, (16)

where �(xQ) are Heaviside functions which are nonzero only
for a particular ordering of particles, e.g., x1 < x2 < · · · < xN .
The orderings of particles are labeled by Q, which are ele-
ments of the symmetric group of N objects SN . We sum over
all such orderings as well as combinations �σ = (σ1, . . . , σN ),
with σ j = ±, and �ξ = (ξ1, . . . , ξN ), with ξ j = 1, 2. The co-

efficients A
�ξ
�σ [Q] are the amplitudes for one specific choice

of Q, �σ , and �ξ and are related to each other by products
of the boundary S matrices KL,R [see the text above (10)
for the analogous condition in the noninteracting case] and
two particle S matrices Si j . These two-particle S matrices
act on the internal space of the ith and jth particles and are
determined to be

Si j (θi − θ j ) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 sinh [θi−θ j ]
sinh [θi−θ j−iδ]

sinh [−iδ]
sinh [θi−θ j−iδ] 0

0 sinh [−iδ]
sinh [θi−θ j−iδ]

sinh [θi−θ j ]
sinh [θi−θ j−iδ] 0

0 0 0 1

⎞
⎟⎟⎟⎠, (17)

where δ = 2 arctan (g/2vF ) is the two-particle phase shift. In
deriving this relationship between the phase shift δ and the
interaction strength we have chosen a specific regularization
of the δ function interaction in the model. The functional form
of δ(g) depends upon this and is therefore not universal except
at small g, where δ ≈ g/vF [45], with positive and negative
δ corresponding to the repulsive and attractive regimes, re-
spectively. However, the relationship between δ and K± is
universal and is given by [39,46]

K− = 1 − δ

π
, K+ = 1

1 + δ/π
, (18)

where we are restricted to δ ∈ [−π, π ].
As in the noninteracting case, the particle rapidities are

quantized by applying the boundary conditions at x = 0, L.
This leads to an eigenvalue problem, similar to (11), to deter-
mine θ j ,

e−2i� sinh (θ j )L/vF A−[1] = Zj (θ j )A−[1], (19)

with

Zj (θ j ) = S j j−1(−θ j − θ j−1) · · · S j1(−θ j − θ1)KR(θ j )

× S j1(θ j − θ1) · · · S jN (θ j − θ1)KL(θ j )

× S jN (−θ j − θN ) · · · S j j+1(−θ j − θ j+1) (20)

and where A−[1] is the amplitude for the configuration x j < xk

for j < k and σ j = −1 ∀ j. This can be interpreted in the
same way as the noninteracting model. The eigenvalues of the
object Zj (θ j ) are the total phase shift acquired by the particle
as it traverses the system, scattering off all other particles
and both boundaries as it does so. In the noninteracting limit
two-particle S matrices become identities, and we recover
Zj (θ j ) = KR(θ j )KL(θ j ) = 1.

Before discussing the solution of this eigenvalue equation
we examine the case where bound states are present also. In
the same manner as (16) we may also construct many-particle
eigenstates which include either or both bound states at the
edges of the system. Adding these on top of the previously
constructed N-particle eigenstate, we have

|�ε〉B =
′∑

�ξ,�σ ,Q

∫ L

0
dx A

�ξ
�σ [Q]�(xQ)

N+1∏
j=0

�
†
ξ j

(x j, σ jθ j )|0〉, (21)

where x0, xN+1 are the coordinates for the bound states at the
left and right boundaries and the sum over orderings now
extends to elements of SN+2 because there are N + 2 particles
in total. In addition, the primed sum indicates that we sum
over all possible flavor combinations but we restrict ourselves
to σ0 = σN+1 = + and θ0 = −θN+1 = iπ/2. Note that the
coherence length of the bound state remains unchanged in the
presence of interactions ξ = vF /�, as is the case for Majorana
bound states [47,48].

The energy of this eigenstate, being the sum of single-
particle energies, has the same form as that in which there are
no bound states, E = ∑N

j=1 ε(θ j ). However, θ j are coupled
together, and their allowed values are shifted by the presence
of the bound states. In particular when there are bound states
at both of the edges, the boundary conditions impose Eqs. (19)
and (20) but with the boundary matrices replaced with KL,R →
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KB
L,R, where

KB
R (θ j ) = SN+1(−θ j + iπ/2)KR(θ j )SN+1(θ j + iπ/2),

KB
L (θ j ) = S0 j (θ j − iπ/2)KL(θ j )S0 j (−θ j − iπ/2). (22)

Alternatively, one may consider a bound state at only one of
the boundaries by replacing only one of KL,R.

VII. BETHE ANSATZ EQUATIONS

The spectrum of our model can be determined by obtaining
the eigenvalues of the operator Zj (θ j ) ∀ j. This can be solved
by means of the off-diagonal Bethe ansatz method, and in fact,
it maps directly onto the solution of the inhomogeneous XXZ
model with certain open boundary conditions [22]. To make
use of this solution and simplify the calculation somewhat
we modify the right-hand boundary so that it is given by
K ′

R(θ ) = KR(θ − iδ) [49]. This reduces to the previous case in
the noninteracting limit and also generalizes the relationship
between the two boundaries to KR(θ ) = KL(−θ + iδ), which
is known as boundary crossing invariance [20]. With this mod-
ification we find that the particle rapidities θ j are quantized
according to

e−2i� sinh (θ j )L/vF =
∏
σ=±

M∏
α=1

sinh [θ j − σμα + iδ/2]

sinh [θ j − σμα − iδ/2]
, (23)

where the parameters μα are known as Bethe parameters
which describe the flavor degrees of freedom. They are de-
termined by the following equations:

[
cosh2 [μ j + iδ/2]

cosh2 [μ j − iδ/2]

]2−nB ∏
σ=±

M∏
β �=α

sinh [μα + σμβ + iδ]

sinh [μα + σμβ − iδ]

=
∏
σ=±

N∏
k=1

sinh [μα + σθk + iδ/2]

sinh [μα + σθk − iδ/2]
, (24)

where, as before, M � N/2 is an integer. We consider only
positive values of θ j, μα , and furthermore, all rapidities and
Bethe parameters must be distinct, θ j �= θk , μα �= μβ , and
nonzero; otherwise, the corresponding wave function van-
ishes [42,50]. The set of equations given in (23) and (24) is
the Bethe ansatz equations.

The first term on the left-hand side of (24) is the combined
phase shift a particle accumulates after scattering off both
boundaries and any bound states which are attached to them. If
we were to consider the alternative boundary condition given
by (7) and (8), which does not mix the flavors, this term would
be absent. Interestingly, this has the same effect on the Bethe
parameters and therefore spectrum as the presence of both
bound states, i.e., nB = 2. The next term on the left-hand side
is due to the interaction with other particles within the bulk of
the system. These terms vanish upon taking δ = 0, whereupon
we recover (11).

The Bethe equations also reduce to (11) when δ = ±π ,
indicating that there is a self-duality in the theory, i.e., a
mapping from the model to itself at a different value of
the interaction strength [51]. To investigate this further, note
that the Bethe equations are invariant under the combined
transformation δ → −δ along with θ j → θ j + iπ ; however,

this changes the sign of the energy,
∑

j ε(θ j ) → −∑
j ε(θ j ).

Thus, the spectrum is inverted under a change in sign of the
interaction strength. This is a manifestation of the particle-
hole transformation of our original model. Furthermore, it
can be checked that the replacement δ → π − |δ| along with
a redefinition μα → μ + iπ/2 has the same effect on the
Bethe equations as taking δ → −δ. Combining these two
maps therefore leaves the spectrum invariant and allows us
to restrict our analysis to δ ∈ [0, π/2] with results outside this
region found using the above transformations.

VIII. GROUND STATE

The structure of the Bethe equations is similar to those
appearing in the solutions of a number of other mod-
els [37,39,46], and the present analysis follows similar lines
using the methodology presented for the noninteracting case.

When 0 � δ � π
2 , the ground state consists of all θ j lying

on the iπ line and M = N/2. Using this in (23) and (24) and
then taking their logarithm, we have

�

πvF
sinh (θ j )L = n j −

N/2∑
α

σ = ±

φ1(θ j − σμα ),

N∑
j = 1

σ = ±

φ1(μα − σθ j ) = I j +
N/2∑

β = 1
σ = ±

φ2(μα − σμβ ) + g(μα ).

(25)

Here n j and I j are integers which are the quantum numbers
of the interacting system, and φn(x, y) = i

2π
ln [ sinh (x+inδ/2)

sinh (x−inδ/2) ],

g(μ) = i 2−nB
π

ln[ cosh [μ j+iδ/2]
cosh [μ j−iδ/2] ]. In the thermodynamic limit we

may describe the ground state via the rapidity distribution
ρ(θ ), defined by (12) and the analogous distribution for the
Bethe parameters ν(μ), which is defined similarly. In the
thermodynamic limit, Eqs. (25) become a set of coupled
integral equations,

�

πvF
cosh (θ ) − δ(θ )

L
= ρ(θ ) −

∫
dμφ′

1(θ − μ)ν(μ),

∫
dθ φ′

1(μ − θ )ρ(θ ) − δ(μ)

L

= ν(μ) +
∫

dζ φ′
2(μ − ζ )ν(ζ ) − φ′

2(2μ)

L
− g′(μ)

L
,

(26)

where the δ functions are included to account for the holes
at θ = μ = 0. These equations may be solved via Fourier
transform with the result

ρ(θ ) = 2�

πvF
cosh (θ ) + ρbdry(θ ) + ρB(θ ), (27)

ν(μ) = � cosh (μ)

πvF cos (δ/2)
+ νbdry(μ) + νB(μ). (28)

The first terms in the above expressions correspond to the bulk
contribution; note that the rapidity distribution is modified in
the interacting case compared to (13). The next terms arise
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due to the presence of the boundary; they are distinguished
from the bulk by being of order 1/L and are independent of
the number of bound states. The last terms are those which
are attributable to the bound states and are proportional to
nB/L. The total energy density of the state is determined solely
by the rapidity distribution via εg = − ∫

dθ ρ(θ )� cosh (θ ),
giving

εg = ε0 + �

L

[
1

2 cos (δ/2)
−

√
2 cos (δ/2)

]
+ nB − 2

L
εB.

The first term here is the bulk energy density which is given
by (15) modulo a δ-dependent shift in D′ [52] which vanishes
in the thermodynamic limit; the remaining terms are due to
the boundary conditions and bound states, with εB being the
energy per bound state.

Before discussing this bound-state contribution to the en-
ergy we shall comment on the excitations of the model. The
lowest-lying excitations come in two forms, the first of which
are similar to the noninteracting case. They can be created
by placing the hole in the rapidity distribution at θ = θh + iπ
or adding a positive-energy particle at θ = θp; in either case
the energy is given by ε1(θh,p) = 2� cosh (θh,p). The factor
of 2 present here compared to the noninteracting case can
be traced to the overall factor of 2 in (27). A particle-hole
excitation of this type has a minimum energy of 4�, which
is twice that of the noninteracting model. The second type
of excitation involves placing a hole in the distribution of
Bethe roots at, say, μ = θh. In this case the energy is given
by ε2(θh) = � cosh (θh )

cos (δ/2) . As a result the gap in the interacting
system is increased to 2�g, where

�g = �

cos (δ/2)
. (29)

The bound-state contribution to the rapidity distribution
is used to determine the bound-state energy via εB =
−L

∫
dθρB(θ )� cosh (θ )/nB, where

ρB(θ ) = −nB

L

∫
dω

2π

e−iωθ sinh [πω/2] sinh [δω/2]

sinh [(π − δ)ω/2] sinh [(π + δ)ω/2]
,

from which we have that the energy per bound state for 0 �
δ � π/2 is given by εB = �g tan [δ/2] = �g

√
(�g/�)2 − 1.

We can then combine this with the various symmetries of the
Bethe equations discussed above and reconstruct the bound-
state energy for all values of δ to be

εB =
{
�g tan (δ/2) 0 � |δ| � π

2 ,

�g cot (δ/2) π
2 � |δ| � π.

(30)

We see that the bound-state energy is pushed below the
Fermi level for δ < 0 and above it for δ > 0, indicating that
there is a first-order phase transition at δ = 0. For attractive
interactions the ground state consists of a filled Fermi sea
with bound states at both ends. Similar transitions are known
to occur when magnetic impurities are present in super-
conductors [9–12,53–57]. Therein, Shiba or Andreev bound
states form at the impurity. In such cases the transition is
accompanied by a change in the fermion parity of the ground

state. In the present case this does not occur as bound states
will be present at both ends of the wire, leaving P invariant.

For |δ| � π/2, |εB| increases, and at δ = ±π/2 it touches
the continuum of states in the conduction or valence bands.
Upon further increasing |δ|, εB undergoes a sharp change in
behavior, turning away from the bands and again approaching
the Fermi level. Recall that there are holes at θ = 0, and so the
bound state does not become degenerate with any scattering
state. This sharp avoided level crossing is a consequence
of the self-duality of the model, i.e., the invariance of the
spectrum under the combined transformations, δ → −δ and
then δ → π − |δ|, with the avoided crossing occurring at the
special point δ = ±π/2, which corresponds to ξ�g/vF =√

2. As a result the bound states cannot couple to scattering
states and are protected from decay. Therefore, in contrast to
noninteracting systems where boundary modes are protected
by symmetry, in the interacting model they are protected by
self-duality.

The bound-state energy reaches the Fermi level once again
at the strongly interacting points δ = ±π , indicating that
the symmetry of the noninteracting model is restored. This
can be seen also in the bosonic language. At the points
δ = π the spin Luttinger parameter vanishes, K− = 0, while
at δ = −π we have 1/K+ = 0. In either case the fields φ±
decouple from each other with only one being gapped. In these
cases the bosonic model, (3), can be mapped to a quadratic
model of spinless fermions [47]. Therein, the bound states
lie at the Fermi level, in agreement with (30) derived using
self-duality.

IX. CONCLUSIONS

In this paper we have studied the boundary bound states of
a one-dimensional, spinful quantum wire. The wire Hamil-
tonian has a proximity-induced px-wave triplet pairing and
density-density interactions. We have solved this system ex-
actly using the Bethe ansatz for a range of parameters and
constructed the ground state and excitations of the model. It
was shown that for a choice of boundary conditions which
breaks time-reversal symmetry, the system can support bound
states localized at both ends. The bound-state energy lies at
the Fermi level, within the energy gap, when interactions
are absent but is shifted when interactions are present. For
attractive interactions the bound-state energy is pushed below
the Fermi level, while in the repulsive case it is pushed up.
This causes a first-order phase transition to occur at zero
temperature. Unlike similar transitions in superconductor-
impurity systems, this is not accompanied by a change in
fermion parity.

The bound-state energy is seen to approach the gap �g

as the interaction strength |δ| is increased but undergoes a
sharp avoided level crossing at δ = ±π/2, thus preventing the
bound state from entering the continuum of scattering states
and decaying. This is a consequence of the self-duality of
the model which relates the spectra of the model at different
values of the interaction strength.

In the noninteracting case the bound states lead to a
Lorentzian, zero-bias peak in the conductance through the
edge [29]. When interactions are present, this peak will be
shifted owing to the nonzero energy of the bound states but
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shall remain in the gap. In addition the Lorentzian shape
of the peak is maintained in the presence of interactions
owing to the fact that pairing term has scaling dimension 1
irrespective of the value of δ [37,39]. For a more general form
of the interaction, which may break the integrability of the
model, one can expect that the scaling dimension becomes a
function of δ, leading to an energy gap which has a power

law dependence on � as well as a power law decay of the
conductance away from the peak [25–27].
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