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Topological phases in two-legged Heisenberg ladders with alternating interactions
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We analyze the possible existence of topological phases in two-legged spin ladders, considering a staggered
interaction in both chains. When the staggered interaction in one chain is shifted by one site with respect to
the other chain, the model can be mapped, in the continuum limit, into a nonlinear sigma model NLσM plus a
topological term which is nonvanishing when the number of legs is two. This implies the existence of a critical
point which distinguishes two phases. We perform a numerical analysis of energy levels, parity, and string
nonlocal order parameters, correlation functions between x, y, z components of spins at the edges of an open
ladder, the degeneracy of the entanglement spectrum, and the entanglement entropy to characterize these two
different phases. We identify one phase with a Mott insulator and the other one with a Haldane insulator.
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I. INTRODUCTION

A Heisenberg spin model and its anisotropic variants (for a
review, see Ref. [1] and references therein) represent an ideal
playground for the description of quantum phases of matter
[2] with magnetic degrees of freedom. In the special case of
one-dimensional models, these systems exhibit both gapless
and gapped phases, with para-, ferro-, or antiferromagnetic
(AFM) correlations, and have been extensively used as a
benchmark to develop new analytical or perturbative tech-
niques. In particular, the spin s = 1/2 SU(2) AFM Heisenberg
chain, which was known to be exactly solvable [3] and to
correspond to a critical model (with a nonmagnetic ground
state with short-range correlations only), has been assumed
for decades as a paradigm. Thus, it came as a surprise when, in
1982, Haldane [4,5] argued that the spin s = 1 chain is instead
gapped. Indeed, Haldane’s conjecture states that there is a
substantial difference between half-integer and integer spin
chains. Such different behaviors can be explained in a semi-
classical approach which makes use of spin coherent states
[6] by mapping the model, in the continuum and low-energy
limit, to an effective O(3) nonlinear sigma model (NLσM)
[4,5,7] plus a topological term [8,9], whose coefficient θ

is proportional to the value of the spin s. For half-integer
spins, the topological term is an odd multiple of π and thus
weights the different topological sectors with an alternating
sign, giving rise to a massless spectrum [10]. On the contrary,
the topological term is a multiple of 2π and thus is ineffective
for integer spin, resulting in a pure O(3) NLσM, which is
a massive theory characterized by a finite correlation length
[11].

Actually, Haldane’s argument relied on the assumption that
the spin was large, but, mainly based on numerical checks,
it was expected that its conclusions could also be extended
to lower spins, down to s = 1. In 1987, Affleck, Kennedy,

Lieb, and Tasaki [12] introduced the so-called AKLT model,
for which the exact ground state and the existence of the
Haldane gap was obtained analytically. This was just the first
example of a class of models exhibiting gapped phases which
were soon proved to be characterized by [13,14] hidden sym-
metries and nonlocal order parameters (NLOPs). Similar to
what happens for the classical XY model and its Berezinskii–
Kosterlitz–Thouless (BKT) transition [15,16], it was known
that for all these quantum Hamiltonians, containing short-
range interactions only, the Mermin-Wagner theorem [17,18]
would prevent the breaking of any continuous [SU(2) or
U (1)] symmetry, yielding instances of what we now call
symmetry-protected topological (SPT) order, in which the
standard framework of the Ginzburg-Landau theory [19] is not
applicable. This is similar to what was then recognized to hap-
pen in a variety of models with fermions [20–24], including
topological insulators and superconductors [25,26]. Recently,
it has been pointed out [27,28] that a suitable class of NLOPs
might provide a complete classification for fermionic models
as well [29], at least in the weak coupling regime, as long
as they might be dealt within a bozonization approach and
mapped to a sine-Gordon theory [30].

The Heisenberg model in the two-dimensional case is very
different [31–35]: The topological term is absent whatever the
spin is and whatever the topology of the bipartite lattice is. To
have a behavior similar to what happens in one dimension, one
should examine quasibidimensional models such as coupled
chains, i.e., spin ladders. For Heisenberg ladders, a general-
ized “even-odd conjecture” was put forward [36], according to
which ladders with integer spin are gapped, while ladders with
half-integer spin are gapless if the number of legs is odd and
gapped if the number of legs is even, a fact strongly supported
by numerical checks [37–43]. The existence of topological
features as the cause of this different behavior in spin ladders
was investigated in Refs. [44,45]. AFM spin ladders were
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studied in Ref. [46] by using bosonization techniques, while,
following the original Haldane’s mapping, Dell’Aringa et al.
in Ref. [47] and Sierra in Refs. [48,49] mapped the Heisenberg
Hamiltonian of a spin ladder into a NLσM which contains
a topological term whose coefficient θ is proportional to
both spin and number of legs, proving the above-mentioned
conjecture.

It is also known that a way to control the coefficient in front
of the topological term in an independent way with respect
to the value of the spin is by introducing alternating interac-
tions. This has been considered, for example, [49–51] for the
one-dimensional chain and in Ref. [52] for ladders, showing
that in all cases a critical point is expected for the value of
the parameter controlling the alternated interactions, which
yields a coefficient of the topological term θc = π . Such a
critical point separates two different gapped phases whose
properties we want to investigate in this paper. In particular,
we will show that it is indeed the presence of the topological
term in the NLσM of the corresponding effective continuum
field theories that controls the emergence of a phase with
an SPT order, which shows up for θ > θc. We remark that
a similar connection between topological terms in the con-
tinuum effective Lagrangian and the appearance of a SPT
phase has also been found in a one-dimensional fermionic
system which aims at describing a generalization of the lattice
version of a Schwinger model for 1 + 1-dimensional quantum
electrodynamics [53,54].

The paper is organized as follows. In Sec. II, we present
our Hamiltonian of a two-legged spin ladder, with alter-
nated Heisenberg interactions along each chain. Following
Refs. [47,50], we sketch the derivation of its continuum limit
low-energy effective theory, finding a NLσM plus a topolog-
ical term which is nonvanishing even if the number of legs is
two. This allows us to verify the results of Refs. [52,55], which
predict a critical point for a certain value of the parameter
which controls the alternation.

In Sec. III, we start the numerical analysis, which confirms
the existence of such a critical point, separating two different
gapped phases. One of these phases (for θ > θc = π ) is char-
acterized by a set of zero modes degenerate with the ground
state. On the contrary to what happens in other Heisenberg
ladder models characterized by some nontopological zero
energy modes [56], in our case we prove that the phase
with zero modes encodes an SPT order investigating NLOP,
namely, parity and string NLOPs. Furthermore, in the phase
with zero modes, we also check that spin correlation functions
between spins at the ends of the ladder are different from zero,
supporting the idea that we are in the presence of edge states.
Finally, we perform an analysis of the entanglement entropy
and of the degeneracy of the entanglement spectrum, showing
that the latter has indeed an even degeneracy in the supposed
SPT phase. These results, concerning the critical point and the
topological nature of one of the two phases, are also consistent
with Ref. [57], where our model is studied through a Berry
phase investigation.

We finally summarize our conclusions in Sec. IV. Follow-
ing the classification suggested in Refs. [27–29], we can say
that our numerical analysis allows us to identify the region
for θ < θc with a Mott insulatorlike phase, with no edge
states, nonvanishing value of the parity NLOP, and an odd

FIG. 1. Representation of model B corresponding to Hamilto-
nian Eq. (2), for a chain of six sites. In this figure, the coupling
constants J‖,a (a = 1, 2) and J⊥,1,2 are indicated: strong and weak
interchain bonds are represented by black continuous and dashed
lines, while bonds between chains are in blue.

degeneracy of the entanglement spectrum, while the region
with θ > θc with a Haldane insulatorlike phase, characterized
by edge states, a nonvanishing value of the string NLOP, and
an even degeneracy of the entanglement spectrum.

II. THE MODEL AND ANALYTICAL PREDICTIONS

We focus on two-legged spin ladders with staggered in-
teractions along each chain. We have the choice to put the
alternation in two possible different ways:

(a) In the same way on both chains, thus forming a colum-
nar pattern of strong and weak bonds. The Hamiltonian reads

H =
∑

a=1,2

N∑
k=1

J‖,a(1 + (−1)kγ )�Sk,a · �Sk+1,a

+
N∑

k=1

J⊥,1,2 �Sk,1 · �Sk,2, (1)

where Sα
k,a (α = x, y, z) are the components of the spin-1/2

operator; the index a = 1, 2 labels the chains, while the index
k = 1, . . . , N the sites along each chain. We will show that
the topological term is zero in this case. This model was
analytically analyzed in Ref. [58].

(b) In the opposite way, in one chain with respect to that
of the second chain, yielding a staggered pattern of strong and
weak bonds, as shown in Fig. 1. In this case, the Hamiltonian
is

H =
N∑

k=1

J‖,1(1 + (−1)k−1γ )�Sk,1 · �Sk+1,1

+
N∑

k=1

J‖,2(1 + (−1)kγ )�Sk,2 · �Sk+1,2

+
N∑

k=1

J⊥,1,2 �Sk,1 · �Sk,2. (2)

An equivalent situation is obtained by exchanging the role of
the two chains. This is the case we will concentrate on, since
a nonvanishing topological term will be present.

We assume that the coupling constants J‖,1, J‖,2, J⊥,1,2 are
all positive, so the classical minimum of the Hamiltonian is
antiferromagnetically ordered, and we will work in the range
−1 � γ � 1.
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The partition function of both models Eqs. (1) and (2) can
be expressed using a path integral representation,

Z =
∫

D�̂ exp

⎛
⎝is

∑
k,a

ω[�̂k,a(τ )] −
∫ β

0
dτH (τ )

⎞
⎠, (3)

with spin coherent states [6], obtained by replacing the spin
operators �Sk,a with the classical variables s�̂k,a(τ ). In Eq. (3),
the first term is the Berry phase contribution, which arises as
a consequence of the nonvanishing overlap between coher-
ent states at consecutive times [59] and represents the area
bounded by the trajectory parameterized by �̂(τ ) on the S2

sphere [7,60]. To calculate the action that appears in the phase
of the exponential, we will assume Haldane’s mapping [31]
and follow Ref. [47] to specialize it to the case of spin ladders
by taking

�̂k,a(τ ) = (−1)a+kφ̂(k, τ )

(
1 − |la(k, τ )|2

s2

) 1
2

+ la(k, τ )

s
,

(4)
where the spin coherent field has been written in terms of a
slow-varying field φ̂(k, τ ) of unit norm, which is weighted
by a staggered factor (−1)k+a and of uniform fluctuations
la(k, τ ) which are assumed to be small, |la(k, τ )|/s � 1. This
allows us to expand all expressions up to quadratic order in
the latter field which can then be integrated out. Notice that
we take φ̂(k, τ ) not changing along a rung, meaning that the
staggered spin-spin correlation length ξ is greater with respect
to the total width of the ladder nl a, a fact which is confirmed
numerically [61,62]. Here we do not give further details of the
calculations that can be found in Ref. [63]. For both cases A, B
above, we find a partition function

Z =
∫

Dφ̂ exp

(
−

∫
dxdτL(x, τ )

)
, (5)

where the Lagrangian density L(x, τ ) is written as that of a
NLσM with a topological term:

L(x, τ ) = 1

2g

(
1

vs

˙̂φ
2
(x, τ ) + vsφ̂′2(x, τ )

)

+ iθ

4π
φ̂′(x, τ ) · (φ̂(x, τ ) × ˙̂φ(x, τ )). (6)

where

1

g
=

√√√√√∑
d,b

L−1
d,b

⎛
⎝−4s2γ 2

∑
d,b

αA,BJ‖,d L−1
d,bJ‖,b + s2

∑
a

J‖,a

⎞
⎠,

vs =
√√√√( − 4s2γ 2

∑
d,b αA,BJ‖,d L−1

d,bJ‖,b + s2
∑

a J‖,a
)

∑
d,b L−1

d,b

,

with αA = (−1)(d+b) and αB = 1 while

θA,B = −4πsγ

×
(∓2J‖,1(4J‖,2 + J⊥,1,2) + 2J‖,2(4J‖,1 + J⊥,1,2)

16J‖,1J‖,2 + 4J‖,1J⊥,1,2 + 4J‖,2J⊥,1,2

+ ±2J‖,1J⊥,1,2 − 2J‖,2J⊥,1,2

16J‖,1J‖,2 + 4J‖,1J⊥,1,2 + 4J‖,2J⊥,1,2

)
. (7)
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FIG. 2. The ground-state energy and the first three excited states
as a function of the parameter γ (top panel) and their gaps with
respect to the ground state (bottom panel) in the case of PBC. Here
γ varies from 0 to 1 with a 0.05 step and we consider N = 30 sites
for each chain.

We notice that our results are consistent with those of Ref. [47]
in absence of a staggered interaction, i.e., γ = 0, which in turn
are consistent with those found in Refs. [45,48,49].

As anticipated before, the topological term Eq. (7) is null
for case A, yielding instead a nontrivial contribution in case
B, which we will concentrate on in the following.

It is well known [64] that the NLσM is gapped for all
values of the coefficient of the topological term, but for
θ = π , at which one finds a quantum phase transition [2].
In the next sections, we will check numerically that this is
indeed the case and we will characterize the two phases. For
simplicity, we set J‖,1 = J‖,2 = J⊥,1,2 = 1, which implies that
θc = π when γc = −0.75. This result is the same found in
Refs. [52,55].

III. NUMERICAL ANALYSIS

Our numerical analysis is based on the density matrix
renormalization group algorithm [65,66] using the matrix
product state tensor network (TN) [67–69].

A. Energy levels and critical point

Our first purpose is to look for the existence of a critical
point, by looking at the gap. Figure 2 shows the results for
periodic boundary conditions (PBCs): in the top panel, the
energies of the ground state (which is in the subspace Sz

tot =∑
a=1,2

∑N
k=1 Sz

k,a = 0), and of the first three excited states
(which, because of the SU(2) symmetry, are degenerate and
belong to subspaces Sz

tot = 0, Sz
tot = +1, Sz

tot = −1); in the
bottom panel, the values of the triplet gap. The energy of
the ground state is indicated with E0, while the energies of the
triplet are indicated with E1, E2, and E3. Furthermore, 
E1 ,

E2 , and 
E3 are their gaps with respect to the ground state.
The data have been obtained by considering N = 30 sites on
each chain for PBC and the parameter γ varies from 0 to 1
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FIG. 3. The ground-state energy and the first three excited states
as a function of the parameter γ (top panel) and their gaps with
respect to the ground state (bottom panel) in the case of OBC. Here
γ varies from 0 to 1 with a 0.05 step and we consider N = 32 sites
for each chain.

with a 0.05 step (the model is symmetric under the inversion
γ → −γ ).

Then, we consider open boundary conditions (OBCs). The
values of the energies of the first four states and of the triplet
gap are shown in Fig. 3, respectively, in the top and in the
bottom panel, using the same notation of Fig. 2. We consider
N = 32 sites on each chain and γ varying from 0 to 1 with a
0.05 step.

The data clearly show a closure of the gap for γ ∼ 0.35 −
0.4. Even if the exact determination of the critical point is
not our aim, we provide in the Appendix a finite-size scaling
analysis for these values of γ , which confirms the existence
of a critical point. It is evident that γc deviates a lot from the
expected theoretical value γc = 0.75. This does not come as
a complete surprise, since renormalization corrections to the
semiclassical analysis performed in the previous section are
expected, as also remarked in Refs. [52,55].

We also notice that the triplet states are gapped in the phase
for γ < γc while they are degenerate with the ground state in
the phase for γ > γc, yielding zero modes. This is signaling
that the latter phase might indeed be a SPT phase, a fact that
we are now going to prove.

B. Nonlocal order parameters

Let us remark that our system is essentially a one-
dimensional model with two species of spin, one for each
chain. Using a Jordan-Wigner transformation [59,70], it can
be interpreted as an interacting system of two fermionic
species whose densities na/N (a = 1, 2) are separately con-
served. As for the Hubbard model, we have that the total z
spin and total charge densities, respectively, defined as (n1 +
n2)/N and (n1 − n2)/N , are conserved. Thus, to characterize
the two phases of the Hamiltonian Eq. (2) which are separated
by the critical point γc, we can follow the work [27–29] and

0.0 0.2 0.4 0.6 0.8 1.0

γ

0.0
0.2
0.4
0.6
0.8

C
x A

Cx
P

Cx
S

0.0 0.2 0.4 0.6 0.8 1.0

γ

0.0
0.2
0.4
0.6
0.8

C
y A

Cy
P

Cy
S

0.0 0.2 0.4 0.6 0.8 1.0

γ

0.0
0.2
0.4
0.6
0.8

C
z A

Cz
P

Cz
S

FIG. 4. Parity and string order parameters Cα
P,S , α = x, y, z, are

shown, respectively, in black and in red, as function of the parameter
γ . Here we use PBC, N = 30 sites on each chain and γ varies from
0 to 1 with a 0.05 step.

introduce the following two types of NLOPs, defined in terms
of the parity and the string operators:

Cα
P (r) =

〈
j+r−1∏
k= j

eiπ (Sα
k,1+Sα

k,2 )

〉
, (8)

Cα
S (r) =

〈
2Sα

j,1

j+r−1∏
k= j

eiπ (Sα
k,1+Sα

k,2 )2Sα
j+r,1

〉
. (9)

Notice that in all exponentials we take the sum of the spins on
both chains and put a factor π , as suggested in Refs. [71,72].
The factor 2 in Cα

S (r) is introduced because it gives the correct
normalization.

To reduce finite-size effects as much as possible, we con-
sider 1 � r � N

2 for PBCs and N
4 � r � 3N

4 for OBCs. For
both Cα

P and Cα
S , the initial site j in and the final site j + r

belong to chain 1.
The behavior of Cα

P (black line) and Cα
S (red line) are given

in Fig. 4 for PBCs and in Fig. 5 for OBCs, with a chain of
N = 30 sites for PBCs and N = 32 for OBCs (γ always varies
from 0 to 1 with a 0.05 step).

We clearly see that the SU(2) symmetry is respected, so
the x, y, z components of all parameters look the same. Both
with PBCs and OBCs, the parity and the string operator have
a dual behavior in the two phases, with Cα

P nonvanishing for
γ < γc and Cα

S different from zero for γ > γc.

C. Correlation functions and edge states

In this subsection, we investigate spin correlation functions
between the first spin of the ladder kept fixed (i.e., the first
spin of the second chain) and each of the other spins of the
ladder until the last one (i.e., the last spin of the second chain),
when considering OBCs. To simplify the notation, we adopt a
new label to number the spins along the ladder: Sα

J , with J =
1, . . . , 2N , following a snake path, as shown in the top panel
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FIG. 5. Parity and string order parameters Cα
P,S , α = x, y, z, are

shown, respectively, in black and in red, as function of the parameter
γ . Here we use OBC, N = 32 sites on each chain and γ varies from
0 to 1 with a 0.05 step.

of Fig. 6. By using this new label, spin correlation functions
can be expressed as follows:

CCα
1,J = 〈

Sα
1 Sα

J

〉
, (10)

CC1,J =
∑

α

CCα
1,J = 〈�S1 · �SJ〉, (11)

where α = x, y, z and J = 1, . . . , 2N .
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FIG. 6. Top panel: A ladder with N = 6 showing the new way of
labeling sites using the index J , by following a snake path. Bottom
panel: Ground-state spin correlations CCα

1,J (α = x, y, z), obtained
with OBC, γ = 0.15 and N = 32 sites on each chain, i.e., 64 sites for
the ladder. Correlations are calculated between the first spin (J = 1)
of the ladder kept fixed and each of the other spins of the ladder, until
the last one (J = 2N = 64).
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FIG. 7. Absolute value of ground-state spin correlations |CCα
1,J |

(α = x, y, z) and |CC1,J |, for OBC and N = 32 sites on each chain,
i.e., 64 sites for the ladder. Correlations are calculated between the
first spin (J = 1) of the ladder kept fixed and each of the other spins
of the ladder, until the last one (J = 64), in the trivial phase for γ =
0.15.

Indeed, being in a gapped phase, we expect them to decay
in an exponential way for the trivial γ < γc case, while in the
supposed topological case γ > γc they should still decay in
the bulk but have a nonzero value between the first and the last
spins of the ladder, signaling the appearance of edge states.

We first notice that the SU(2) symmetry, which implies that
correlation functions are identical along all three directions,
is respected. Also, as expected, there is a short-range AFM
order, which is evident from the staggered behavior of the
correlation functions, as shown, for example, in Fig. 6. Their
absolute value is plotted in Fig. 7 for the trivial case (γ =
0.15) and in Fig. 8 for the topological phase (γ = 1). In the
latter case, to sort out the ground state living in the spin zero
sector, we perform the numerical simulations by adding an

interaction with a small magnetic field, μ(
∑64

J=1
�SJ )

2
, with

μ = 10−3, to the Hamiltonian Eq. (2).
From Fig. 8, we clearly see that, for γ > γc, there is a

strong correlation between the first and the last spin of the
ladder, which we interpret as the emergence of zero modes
made up of two entangled spins at the edges. Following the
work [73] which characterizes long-distance entanglement in
spin systems, we can quantify the degree of entanglement
carried by such edge states by means of the concurrence
between the first spin of the ladder (J = 1) and each of the
other spins of the ladder until the last one (J = 64). Having
an SU(2) symmetry, the concurrence can be computed as

C1,J = 1
2 max

(
0,−1 − 12 CCz

1,J

)
. (12)

We find that ∑
J

(C1,J )2 = 0.49707302, (13)

where the major contribution (of about 99.8%) is given by
the case where J corresponds to the last spin of the ladder.
We also note that this sum is smaller then 1, indicating
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FIG. 8. Absolute value of ground-state spin correlations |CCα
1,J |

(α = x, y, z) and |CC1,J |, for OBC and N = 32 sites on each chain,
i.e., 64 sites for the ladder. Correlations are calculated between the
first spin (J = 1) of the ladder kept fixed and each of the other spins
of the ladder, until the last one (J = 64), in the topological phase for
γ = 1.

that the system also carries a certain degree of multipartite
entanglement [74] (indeed due to rotational symmetry, all
the single-site magnetizations vanish and the reduced density
matrix describes a maximally entangled state of one spin with
all the others).

D. Entanglement entropy and entanglement spectrum

Finally, we analyze the behavior of the entanglement en-
tropy and the entanglement spectrum. Again using OBCs, we
calculate the von Neumann entropy Sv and the spectrum of the
reduced density matrix [75] obtained by tracing out half of the
chain.

Figure 9 shows the values of Sv for γ from 0 to 1 with
a 0.05 step, obtained for a ladder with N = 32 sites on each
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FIG. 9. Representation of entanglement entropy Sv as function of
γ which goes from 0 to 1 with a 0.05 step. We use OBC and N = 32
sites on each chain.
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FIG. 10. Representation of the logarithm of the eigenvalues λi of
the reduced density matrix of the system at γ = 0.2. We use OBC
and N = 32 sites on each chain. For each value of λi, it is possible to
see horizontally the corresponding degeneration given by the number
of blue dots.

chain and OBC. We observe a clear high peak near the γ -
range in which the gap in Fig. 3 closes. This is in agreement
with the fact that, in the thermodynamic limit, entanglement
entropy Sv diverges at the critical point γc.

Also, we know that at least an even degeneracy of the
entanglement spectrum [75] is expected in the topological
phase. In Figs. 10 and 11, we show the logarithm of the
eigenvalues of the reduced density matrix greater than 10−12,
for γ = 0.2 and γ = 0.8, respectively, again obtained for a
ladder of N = 32 sites on each chain. We can summarize
our results by noting that the degeneracy of the entanglement
spectrum changes from odd for γ = 0.2 (Fig. 10) to even for
γ = 0.8 (Fig. 11), in agreement with the fact that we find a
nontrivial phase for γ > γc.
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FIG. 11. Representation of the logarithm of the eigenvalues λi of
the reduced density matrix of the system at γ = 0.8. We use OBC
and N = 32 sites on each chain. For each value of λi, it is possible to
see horizontally the corresponding degeneration given by the number
of blue dots.
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IV. CONCLUSION

We analyzed a two-legged spin ladder with alternated
interactions.

Using a path integral formulation of the partition function
based on spin coherent states, we analytically mapped the
system into a NLσM plus a topological term. This allowed
us to confirm [52,55,57] that, for a certain value of the pa-
rameter γ which characterizes the interaction, there is a phase
transition. We note here that the numerical result for γc seems
to be very close to half of our theoretical prediction. The
same discrepancy was found for spin-1 chains with staggered
interaction [49,76]. This effect may be due to different causes,
such as lattice and finite-size effects, perturbative, and non-
perturbative renormalization corrections to the semiclassical
(large s) approximation on which the Haldane map is based,
an implicit dependence on the number of legs. With our
present knowledge, we are not able to sort these different
effects out, but this does not affect our main findings.

We then performed a numerical study based on the DMRG
algorithm to characterize the two different gapped phases. In
particular, we saw that the γ > γc phase is accompanied by
a set of zero modes, hinting that it corresponds to an SPT
order. This was confirmed by the analysis of the correlations
between the spins at the edges and by looking at the degen-
eracy of the entanglement spectrum. We also calculated some
NLOP, showing that the parity and the string order parameters
have a dual behavior, with the former being nonzero for γ <

γc and the latter for γ > γc.
Following the classification of Refs. [27–29], we can say

that we can identify the region for θ < θc with a Mott in-
sulatorlike phase and the region with θ > θc with a Haldane
insulatorlike phase.

In conclusion, our results show that the presence of a
topological term in the NLσM induces a critical point which
separates an ordinary phase from a topological one.

A similar situations- may be encountered in other systems.
For example, it would be interesting to extend this analysis
to ladders with more than two legs, possibly going toward
the two-dimensional limit. Also, an analogous study could
be performed in the case of higher spin SU(2) [4,5] or even
SU (N ) [77] systems.
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APPENDIX

In this Appendix, we give some details about the numerical
analysis and, in particular, the finite-size scaling procedure we
adopt. We perform the numerical analysis by means of a finite-
size DMRG code which is based on TNs. The ITensor library
[78] allows us to describe the wave function of a system by
using a network of interconnected tensors. In this framework,
matrix product states are TN states that correspond to a

one-dimensional array of tensors [67–69]. In a similar way,
operators as the Hamiltonian are represented by means of
matrix product operators, yielding powerful tools to describe
a wide range of models including one-dimensional chains
and ladders. TN codes work better with OBCs than with
PBCs. However, if it is necessary to analyze both boundary
conditions, as we do, PBCs can be easily achieved from OBC
code adding the appropriate interaction term between the first
and last site of each chain in the Hamiltonian.

Since the ITensor Network Library does not implement
the conservation of the total spin quantum number, our sim-
ulations are implemented in the whole Hilbert space and
we target the ground state and the first three/four excited
states. This multitarget approach allows us to check that the
SU(2) symmetry is respected also at the level of numerical
simulations, a fact which is also confirmed by the behavior
of NLOP (Figs. 4 and 5) and spin correlation functions
(Figs. 6–8).

We work with up to N sites for each chain, N = 30 for
PBC and N = 32 for OBC; in the calculations of the energy
spectrum we usually consider seven sweeps for each state,
while for spin correlation functions we consider 40 sweeps.
For each sweep, the maximum value of bond dimension varies
from 10 to 500 and the minimum value of bond dimension
varies from 10 to 20. Also, the cutoff changes from 10−5 to
10−10 and the noise term, which is added to the density matrix
to help convergence, varies from 10−5 to 0.

All the physical quantities that we have evaluated (energy
gap, NLOP, spin correlation functions, entanglement entropy,
and spectrum) are consistent with the analytical prediction
of a critical point γc and the emergence of two different
phases. As already anticipated in Sec. III A, our aim is not the
exact determination of the critical point γc, but the analysis
of the two gapped phases, to show that the one for γ > γc

is topological. For completeness, however, here we present
some graphs describing the finite-size behavior of the different
physical quantities of interest.

First, we consider the scaling of the first four excited
energy states close to the critical point. This is shown in
Fig. 12 for both PBCs and OBCs, in the cases of γ = 0.35
and γ = 0.4. These data clearly indicate that we are very close
to a phase transition point, whose accurate location would,
however, require bigger sizes of the ladder to have results
which are independent of boundary conditions.

Second, we describe how the NLOPs scale with the size
of the system. In particular, since the SU(2) symmetry is
respected, in the first two panels of Fig. 13 we only report
the values of the z component of the parity and string order
parameters as functions of γ , for different system sizes (N =
16, 20, 24, 28, 32, 36) and OBCs. Then, in the third panel,
we show how the string order parameter scales to zero in
the trivial phase, for γ = 0.2, while in the fourth panel we
show how the parity order parameter scales to zero in the
topological phase, for γ = 0.8.

All these data confirm that the maximum size at which
we perform the numerical simulations (N = 30 for PBC and
N = 32 for OBC) is large enough to ensure small errors and
accuracy of the results.
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