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We study the impact of non-Hermiticity due to strong correlations in f -electron materials. One of the most
remarkable phenomena occurring in non-Hermitian systems is the emergence of exceptional points at which the
effective non-Hermitian Hamiltonian cannot be diagonalized. We here demonstrate that the temperature at which
exceptional points appear around the Fermi energy is related to the Kondo temperature. For this purpose, we
study the periodic Anderson model with local and nonlocal hybridization in the insulating and metallic regimes.
By analyzing the effective non-Hermitian Hamiltonian, which describes the single-particle spectral function, and
the temperature dependence of the magnetic moment, we show that exceptional points appear at the temperature
at which the magnetic moment is screened. This temperature corresponds to the Kondo temperature. These
results suggest that the well-known crossover between localized and itinerant f electrons in these materials
is related to the emergence of exceptional points in the single-particle spectral function at the Fermi energy.
Viewing exceptional points in the combined momentum-frequency space, we observe that the exceptional points
in the effective Hamiltonian form a one-dimensional manifold which changes its structure around the Kondo
temperature.
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I. INTRODUCTION

Recently, phenomena described by an effective non-
Hermitian Hamiltonian have been intensively studied, espe-
cially in the context of artificial quantum systems [1–13].
An effective non-Hermitian Hamiltonian can induce novel
topological phases [11,12,14–18] and novel phenomena such
as anomalous edge states [7,15], unusual quantum critical
phenomena [8,13,19], unidirectional invisibility [20–22], chi-
ral transport [6,23–26], and enhanced sensitivity [9,27–32].

In open quantum systems, e.g., in cold atomic systems, it
is possible to derive an effective non-Hermitian Hamiltonian
under certain conditions even though the Hamiltonian describ-
ing the total system is Hermitian [33,34]. However, as the
system becomes larger, it is difficult to experimentally realize
these conditions, such as postselection or a PT -symmetric
setup. Thus, experiments about non-Hermitian phenomena
in artificial quantum systems are particularly done in one-
dimensional or small systems [6,26,30,31,35,36].

On the other hand, strongly correlated systems in equilib-
rium were not considered to be related to non-Hermitian sys-
tems until recently. Generally, the band structure of strongly
correlated materials, which is given by the single-particle
spectral function, is renormalized and broadened by the self-
energy �(ω). The spectral function in equilibrium can always
be written as A(ω) = − 1

π
Im{tr(ω − Heff )−1}, where Heff =

H0 + �, H0 is the noninteracting part of the Hamiltonian, and
� is the self-energy. The imaginary part of the self-energy
can be related to the finite lifetime of the quasiparticles in
the strongly correlated material. Until recently, the effect of
the imaginary part of the self-energy was merely considered
to be a broadening of the spectral function. However, Kozii

and Fu [37] showed that because of the imaginary part of the
self-energy, the effective Hamiltonian describing the spectral
function is non-Hermitian, which can generate exotic phe-
nomena [11,38,39]. For example, the effective non-Hermitian
Hamiltonian can be defective at an exceptional point (EP)
in the Brillouin zone (BZ), where it cannot be diagonalized.
At these EPs, a topological number can be defined [11].
Moreover, different EPs in the BZ might be connected by
bulk Fermi arcs which could be observed in angle-resolved
photoemission spectroscopy (ARPES). These non-Hermitian
phenomena, which can be seen in the equilibrium state of
strongly correlated materials, are now studied vigorously.
They also hold the potential to explain the pseudogap in
cuprate superconductors or quantum oscillations in the topo-
logical Kondo insulators [38] SmB6 [40,41] and YbB12 [42].

We note that to obtain an effective non-Hermitian Hamil-
tonian describing the spectral function, postselection or other
difficult experimental setups are not necessary. Therefore,
it seems reasonable that two-dimensional (2D) or three-
dimensional (3D) bulk non-Hermitian phenomena can be
more easily observed in strongly correlated materials than in
artificial quantum systems.

It has been shown that the minimal model which can in-
clude exceptional points in the spectral function must consist
of at least two hybridized bands, which include different
self-energies. A model exactly describing this situation is the
periodic Anderson model, which consists of an uncorrelated
band which is hybridized with a strongly correlated band.
This model is generally used to describe f -electron materials,
where the uncorrelated band describes conduction (c) elec-
trons and the correlated band describes f electrons. Because
of the strong correlations, many remarkable phenomena can
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be observed in f -electron materials, such as magnetism, un-
conventional superconductivity, quantum criticality, and the
Kondo effect.

In this paper, we study non-Hermitian phenomena induced
by the self-energy in the Kondo regime of 2D f -electron
materials by using the dynamical mean-field theory (DMFT)
[43] combined with the numerical renormalization group
(NRG) [44–46]. We elucidate the relationship between the
appearance of exceptional points (or exceptional loops) at the
Fermi energy in the spectral function and the transition from
a metal at high temperatures to the Kondo insulator or the
heavy-fermion state at low temperature. Thus, the appearance
of exceptional points at the Fermi energy corresponds to the
transition from localized f electrons to itinerant f electrons
[47–50]. We note that the emergence of exceptional points
and bulk Fermi arcs has been reported in different versions
of the periodic Anderson model [51] and the Kondo lattice
model [39].

The rest of this paper is organized as follows. In Sec. II,
we introduce the models, and we briefly explain exceptional
points and the related non-Hermitian topological numbers in
strongly correlated electron systems. In Sec. III, we show the
numerical results by DMFT/NRG about the Kondo temper-
ature and the temperature at which the exceptional points
emerge at the Fermi surface. In Sec. IV, we analyze the
structure of exceptional points in the combined momentum-
frequency-space. In Sec. V, we conclude this paper.

II. MODELS AND NON-HERMITIAN PROPERTIES IN
STRONGLY-CORRELATED ELECTRON SYSTEMS

To analyze the emergence of exceptional points and the
Kondo effect in f -electron materials, we use the periodic
Anderson model,

H =
∑

k

[(εk + μc)c†
kσ

ckσ+(ε f k + μ f ) f †
kσ

fkσ

+(Vl/p)σσ ′ ( f †
kσ

ckσ ′ + H.c.)]+U
∑

i

ni↑ni↓, (1a)

εc/ f = −2tc/ f (cos kx + cos ky) + μc/ f , (1b)

Vl = V δσσ ′, (1c)

Vp = V (σ · sin k) [sin k = (sin kx, sin ky)], (1d)

niσ = f †
iσ fiσ , (1e)

where c(†)
kσ

and f (†)
kσ

are annihilation (creation) operators of the
c and the f electrons for momentum k and spin direction σ .
tc, f are the intersite hopping strengths for the c and the f elec-
trons. For simplicity, we assume a two-dimensional square lat-
tice. μc/ f are the chemical potentials for the c and f orbitals.
Vl/p describe a local and a nonlocal hybridization between
the c and f orbitals, respectively. Throughout this paper,
we fix t f = ±0.05tc, μc = 0, μ f = −1.0, U = 2.0 and use
tc = 0.8. Using this model, we analyze the relation between
the Kondo effect and the emergence of exceptional points. We
will focus on three different cases: t f = −0.05tc with a local
hybridization (Vl �= 0,Vp = 0) in which the system becomes a
Kondo insulator, t f = 0.05tc with a local hybridization (Vl �=
0,Vp = 0) in which the system becomes a heavy metal, and

FIG. 1. Momentum-resolved spectral functions for the Kondo
insulator, the heavy-fermion state, and the metallic state with p-wave
hybridization for V = 0.4. (a) shows a high-temperature spectral
function, T = 0.13 of the Kondo insulator. (b)–(d) show spectral
functions at low temperatures, for T = 0.0005, for the Kondo in-
sulator, the heavy-fermion state, and the nonlocal hybridization,
respectively.

t f = −0.05tc with a p-wave hybridization (Vl = 0,Vp �= 0)
in which the system becomes a heavy semimetal.

In Figs. 1 and 2, we show the momentum-resolved spectral
functions and the Fermi surfaces for all three states. We use
the self-energy which is calculated by the DMFT combined
with NRG. DMFT takes local fluctuations fully into account
by self-consistently solving the mean-field equations [43].
The lattice Hamiltonian is thereby mapped onto a quantum
impurity model. DMFT neglects nonlocal fluctuations. Even
though nonlocal fluctuations might not be small in 2D sys-
tems and might even be crucial for the magnetic state, they
might be less important for the Kondo effect and the emer-
gence of exceptional points. Furthermore, all shown results
remain correct in three-dimensional systems, where nonlocal
fluctuations are weaker compared to the 2D system. To solve

FIG. 2. Momentum-resolved spectral functions at ω = 0 corre-
sponding to the spectral functions shown in Fig. 1. In (d), we have
enhanced the visibility of the Fermi surface by changing the color.
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the quantum impurity model, we use the NRG, which cal-
culates low-energy properties by iteratively discarding high-
energy states. It has been shown that NRG is a very reliable
tool at low temperature [45,46]. At high temperature, the
f electrons are localized and do not hybridize with the c
electrons, as shown in Figs. 1(a) and 2(a). Below the Kondo
temperature, f electrons become itinerant and hybridize with
the c electrons, which results in strong changes in the spec-
tral function. Figure 1(b) shows the spectral function of the
Kondo insulator having a gap at the Fermi energy. Figure 1(c)
shows the spectral function of the metallic regime with local
hybridization, and Fig. 1(d) shows the spectral function of
the p-wave hybridization. Corresponding to these spectral
functions, we show the spectral weight at the Fermi energy
in Fig. 2. At high temperatures [Fig. 2(a)], we find only the
c electrons at the Fermi energy. At low temperatures, all
three states have very different Fermi surfaces. The Kondo
insulating state, shown in Fig. 2(b), has no spectral weight at
the Fermi energy. The heavy-Fermion state [Fig. 2(c)] shows
the Fermi surface corresponding to a metallic state. Finally, in
Fig. 2(d), the pointlike Fermi surface of the metallic state with
p-wave hybridization is shown.

Before showing the main results, we briefly introduce
exceptional points in strongly correlated materials. As men-
tioned above, the periodic Anderson model is a minimum
model for the emergence of the exceptional points. The effec-
tive non-Hermitian Hamiltonian which describes the spectral
function can be block diagonalized in the spin space and can
be written by

Heff (k, ω) = H0 + �(ω) =
(

εc(k) V (k)
V (k) ε f (k) + �(ω)

)

= h01 + h1τ
z + V (k)τ x, (2a)

h0 = [εc(k) + ε f (k) + �(ω)]/2, (2b)

h1 = [εc(k) − ε f (k) − �(ω)]/2, (2c)

E± − h0 = ±
√

h2
1 + V 2(k) (2d)

= ±
{(

[εc(k)−ε f (k)−Re�(ω)]2

4

+V 2(k)− [Im�(ω)]2

4

)

+ i

2
(Im�(ω)[εc(k)−ε f (k)−Re�(ω)])

} 1
2

, (2e)

where E± are the eigenvalues of the effective Hamiltonian.
τ i corresponds to the Pauli matrices acting on the orbital
indices. For the system with p-wave hybridization, we use the
helical basis, in which V (k) = V

√
sin2(kx ) + sin2(ky). This

effective non-Hermitian Hamiltonian becomes nondiagonal-
izable when the following conditions are satisfied:

εc(k) − ε f (k) − Re�(ω) = 0, (3a)

Im�(ω)/2 = V (k). (3b)

These points (sometimes loops) in the momentum
space, for which the non-Hermitian Hamiltonian cannot be
diagonalized, are called exceptional points. Moreover, we can

FIG. 3. The temperature dependence of the imaginary and real
parts of the self-energy calculated by DMFT/NRG. (a) and (b) show
the results for the local hybridization with V = 0.36 and t f =
−0.05tc. (c) and (d) show the results for the nonlocal hybridization
with V = 0.36 and t f = −0.05tc. The black lines in (a) and (c) de-
scribe the condition Im�(ω)/2 = max|V (k)|, and the black lines in
(b) and (d) describe the conditions of Eq. (3a) and Re(ω − h0 ) = 0.

define a winding number on these points which reads [11]

W =
∮

EP

dk
2π i

· ∇kln detHeff (k, ω). (4)

Exceptional points with W �= 0 are topologically stable
because W does not change unless the exceptional point is
annihilated by another one. We note that, in strongly corre-
lated materials, the effective non-Hermitian Hamiltonian is
introduced to describe the spectral function [39]. Therefore,
when Re(ω − h0) is not small, the spectral weight at the
exceptional points is small and might have only a small
effect on observable phenomena. We will thus distinguish
exceptional points with Re(ω − h0) � 0 from the exceptional
points where |Re(ω − h0)| is large. In this paper, we call the
former “exceptional points” and the latter “irrelevant excep-
tional points” (iEPs). In short, iEPs have less spectral weight
and therefore are less relevant to physical phenomena than
EPs. In this paper, we use the cutoff |Re(ω − h0)| < 0.005
to distinguish between EPs and iEPs.

In Fig. 3, we show an example of the temperature
dependence of the self-energy calculated by DMFT/NRG.
The model with local hybridization, V = 0.36, is shown in
Figs. 3(a) and 3(b). Because Eq. (3b) is independent of the
momentum for a system with local hybridization, Eq. (3b) can
be satisfied for all k in the BZ, and therefore, EPs and iEPs
can emerge at ω where the imaginary part of the self-energy
crosses the black line. For the emergence of EPs which have
strong spectral weight, additionally, Re(ω − h0) � 0 must be
fulfilled. Because (ε f − μ f )/(εc − μc) = const in our model,
the momentum dependence vanishes for Re(ω − h0) = 0.
Thus, the condition for the emergence of an EP can be written
as (εc − μc − ε f + μ f )ω/(εc − μc) = γω = Re�(ω) + μ f ,
where γ is a constant. In Figs. 3(b) and 3(d), this condition
is fulfilled when the black line intersects with Re�(ω). We
note that even in a model where (ε f − μ f )/(εc − μc) is not
constant, the momentum dependence of Re(ω − h0) is small
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because, usually, (ε f − μ f ) is much smaller than (εc − μc).
Thus, we see in Fig. 3 that the condition Re(w − h0) = 0 can
be fulfilled at the Fermi energy.

For the system with nonlocal hybridization, shown in
Figs. 3(c) and 3(d), Eq. (3b) can be satisfied at ω, where
the absolute value of the imaginary part of the self-energy
is smaller than the black line, because the strength of the
hybridization depends on the momentum. Therefore, EPs and
iEPs can appear more easily in this case, as we will show in
the next section.

III. RELATION BETWEEN KONDO TEMPERATURE
AND TEP IN f -ELECTRON MATERIALS

Before showing the numerical results, let us consider the
Kondo effect from the non-Hermitian point of view in a
two-orbital periodic Anderson model. The imaginary part of
the self-energy plays here an essential role to create non-
Hermitian effects. At high temperature, the imaginary part of
the self-energy has a peak at ω = 0, and Im� � V is satisfied
around the Fermi energy. Equation (2d) is given in the first
order of V/Im� as

E± = h0 ∓ iIm�

2

(
1 + 4Reh1

iIm�
− 4(V 2 + (Reh1)2)

(Im�)2

) 1
2

(5a)

� h0 ∓ iIm�

2

(
1 + 2Reh1

iIm�

)
= εc, ε f + �, (5b)

which shows that f electrons are localized. On the other hand,
below the Kondo temperature, the imaginary part of the self-
energy becomes small, satisfying Im� 	 V , and therefore,
the eigenvalues of the effective non-Hermitian Hamiltonian
become E± = Re(h0) ±

√
Re(h1)2 + V 2, which show that f

electrons are hybridized and become itinerant. Thus, during
the crossover from localized to itinerant f electrons, the
self-energy satisfies Im� ∼ V , and the condition for the
emergence of exceptional points in Eq. (3b) is fulfilled. In
this paper, we assume that there is no magnetically ordered
phase. This assumption is justified because there are many
f -electron materials, such as Ce3Bi4Pt3 [52,53], SmB6 [54],
and YbB12 [55], in which the Kondo crossover occurs in
the magnetically disordered phase. Furthermore, the tendency
towards magnetically ordered phases is suppressed at strong
hybridization strengths, so that it is justified to assume that
the Kondo effect occurs in the magnetically disordered phase.
Therefore, we can anticipate the emergence of exceptional
points at the Fermi energy around the Kondo temperature. In a
periodic Anderson model including more orbitals, exceptional
points due to hybridization between different orbitals can
occur, and a more detailed analysis is necessary.

In Figs. 4(a)–4(c), we show the magnetic moment of the
f electrons [contribution of the f electron to the magnetic
susceptibility T χ z

f (T )]. Around the Kondo temperature, the
magnetic moment changes from 0.25 at high temperatures to
zero at low temperatures, which corresponds to the Kondo
screening. The magnetic susceptibility in Figs. 4(a)–4(c) is
thereby calculated by applying a tiny magnetic field to the
system and calculating the induced magnetic polarization of
the f electrons. We here estimate the Kondo temperature

as the temperature at which the magnetic moment crosses
T χ = 0.125 in Figs. 4(a)–4(c) and include an arrow at these
temperatures. We note that this screening is a crossover occur-
ring over a finite-temperature range. Thus, the Kondo temper-
ature can also be determined only approximately within the
temperature region where the magnetic moment is screened.
For the metallic system with local hybridization shown in
Fig. 4(b), the screening occurs more slowly than in the other
cases. In this system, the Fermi surface does not vanish below
the Kondo temperature, so that scattering around the Fermi
surface can occur, and the imaginary part of the self-energy
at the Fermi energy decreases only slowly with lowering the
temperature. Although the system with nonlocal hybridization
shown in Figs. 4(c) and 4(f) also has a Fermi surface, it is al-
most pointlike, and therefore, it induces much less scattering,
resulting in a fast screening.

In addition to analyzing the Kondo screening, we can
use the self-energies obtained by DMFT/NRG to analyze
the emergence of EPs in the spectrum and the temperature
at which the EPs appear at the Fermi energy. We show
these EPs in Figs. 4(g)–4(i), where we plot iEPs with large
eigenvalue Re(ω − h0) as black dots and EPs with Re(ω −
h0) � 0 as colored squares corresponding to the colors of the
hybridization shown in Figs. 4(a)–4(c). We see that EPs with
Re(ω − h0) � 0 appear only in a narrow temperature region
for the system with the local hybridization and below a certain
temperature for the system with nonlocal hybridization. In
Fig. 4(e), EPs appear in a wider temperature range than
in Fig. 4(d) because the self-energy changes only slowly
when lowering the temperature. Finally, in Fig. 4(f), EPs can
emerge below a certain temperature because of the momentum
dependence of the hybridization, which makes it easier to
satisfy Eq. (3b). Furthermore, in Fig. 4(f), EPs appear also far
from ω = 0. This is possible because, for the system with the
nonlocal hybridization, the conditions for the emergence of
EPs can be satisfied more easily. However, the emergence of
EPs far from ω = 0 seems to be irrelevant to the Kondo effect
because the Kondo effect stems from the scattering around the
Fermi surface.

Comparing the temperature at which EPs with Re(ω −
h0) � 0 appear and the temperature at which the magnetic
moment of the f electron is screened, we see that both tem-
peratures match very well. Thus, we conclude that the Kondo
temperature is closely related to the temperature where EPs
emerge at the Fermi energy. When lowering the temperature,
the self-energy at the Fermi energy changes very strongly
around the Kondo temperature, which results in a situation
in which Eqs. (3a) and (3b) can be easily fulfilled at the Fermi
energy. For the system with the p-wave hybridization, the EPs
start to emerge at the Kondo temperature when the absolute
value of the imaginary part of the self-energy becomes smaller
than the hybridization strength.

In Figs. 4(d)–4(f), we can also see many iEPs with large
Re(ω − h0), which appear at almost all temperatures. These
iEPs are mainly related to the imaginary part of the self-energy
away from the Fermi energy, particularly in the Hubbard
bands, which are nearly temperature independent and are
irrelevant to the Kondo effect.

Figures 4(g)–4(i) show the Fermi surface at the tempera-
ture at which EPs appear at the Fermi energy for the systems
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FIG. 4. (a)–(f) Comparison between the Kondo insulator, the heavy-fermion state, and the metallic state with p-wave hybridization for
different strengths of V . (a)–(c) show the local susceptibility. The colors in (a)–(c) correspond to different V . The arrows describe the estimated
Kondo temperature for each case. In (a) and (c), green, sky blue, orange, and red lines respectively correspond to V = 0.36, 0.4, 0.44, 0.5.
In (b), the green, sky blue, orange, and red lines respectively correspond to V = 0.4, 0.44, 0.5, 0.55. (d)–(f) show the temperature and the
frequency dependence of the emergence of the iEPs and the EPs. The iEPs are drawn as black dots. In (d) and (f), the crosses, points, triangles,
and squares are for V = 0.36, 0.4, 0.44, 0.5. In (e), the crosses, points, triangles, and squares correspond to V = 0.4, 0.44, 0.5, 0.55. The EPs
are drawn as color plots. We use the same color as in (a)–(c). The arrows describe the Kondo temperature estimated from (a)–(c). We use the
cutoff |Re(ω − h0 )| < 0.005, which distinguishes between EPs and iEPs. If |ω − Reh0| < 0.005, we call them EPs; otherwise, we call them
iEPs. (g)–(i) show momentum-resolved spectral functions at the Fermi energy around TEP. (g) corresponds to V = 0.36, T = 0.0035 shown in
(a) and (d). (h) corresponds to V = 0.4, T = 0.0007 shown in (b) and (e). (i) corresponds to V = 0.36, T = 0.0025 shown in (c) and (f). The
parameters are U = 2, tc = 0.8, t f = −0.04, μc = 0, μ f = −1.0. In (g) and (h), exceptional points form a closed loop in the BZ, highlighted
as a green line. In (i), we included exceptional points with vorticity ±1/2 as red and blue points.

with local hybridization and for the system with p-wave
hybridization. For the system with the local hybridization, EPs
appear only at TEP and form a closed loop in the BZ. We note
that it is not possible to define a vorticity at ω = 0 for this
closed loop, which is different from the symmetry-protected
exceptional ring in systems with chiral symmetry [56–59].
Therefore, we believe that this loop of exceptional points
will change into isolated EPs connected by bulk Fermi arcs
when taking into account a momentum-dependent self-energy.
For the system with the p-wave hybridization, EPs appear as
isolated points at the Fermi energy in the spectrum and have
nonzero vorticity and are thus topologically protected. These
EPs change their position in the BZ satisfying Eq. (3a) with

changing temperature and finally merge and disappear at zero
temperature.

IV. EXTENSION OF THE EXCEPTIONAL
MANIFOLDS TO ω SPACE

For the emergence of exceptional points, two equations
[Eqs. (3a) and (3b)] must be satisfied. Thus, in a d-
dimensional model (two-dimensional momentum space in
this paper), exceptional points will generally form (d − 2)-
dimensional manifolds. The dimension of the exceptional
manifold might be higher if additional symmetries do exist.
For example, in 2D systems with chiral symmetry [58], one
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FIG. 5. Exceptional points of Heff (kx, ky, ω) in the system (a) with local hybridization and (b)–(d) with nonlocal hybridization. The
parameters are Vl = 0.4, t f /tc = −0.05, T = 0.016 in (a), Vp = 0.4, t f /tc = −0.05, T = 0.016 in (b) and (c), and Vl = 0.4, t f /tc = −0.05,
T = 0.002 in (d). (c) is a magnification of the exceptional manifold shown in (b) close to the Fermi energy. The arrows in (a)–(d) describe the
tangent vectors of exceptional manifolds. We choose the direction of the tangent vector so that the vorticity defined by Eq. (6) becomes 1/2.

of the two conditions for EPs, such as Eqs. (3a) and (3b), is
always satisfied, which leads to (d − 1)-dimensional excep-
tional manifolds.

Besides the spatial dimension, the effective Hamiltonian
in strongly correlated systems also depends on the frequency
ω because the self-energy depends on the frequency. Thus,
the inclusion of frequency will increase the dimension of the
exceptional manifolds. Previous studies have focused on only
the Fermi energy, ignoring the frequency dependence of the
exceptional manifolds. We note that a frequency-dependent
effective Hamiltonian occurs in situations when focusing on
a subsystem and integrating out the rest of the total system,
even though the full system is described by a frequency-
independent Hamiltonian [60–62]. Because we here focus
on the one-particle Green function, the effective Hamiltonian
depends on the frequency.

In Fig. 5, we show the exceptional manifolds for the
local and nonlocal hybridizations and different temperatures
in the (k, ω) space. Until now, we have focused only on
exceptional points close to the Fermi energy. Figure 5(a)
shows the exceptional loops in the system with local hy-
bridization for a temperature above the Kondo temperature.
As described above, in the system with local hybridization,
Eqs. (3a) and (3b) do not depend on the momentum, and thus,
exceptional manifolds are loops in the momentum space. At
temperatures above the Kondo temperature, we find one loop
above the Fermi energy and one loop below the Fermi energy.

Lowering the temperature towards the Kondo temperature,
these exceptional loops move towards the Fermi energy. At
the Kondo temperature, these exceptional loops merge at the
Fermi energy.

We note that by extending our considerations to the (k, ω)
space, we are able to define and calculate the vorticity of these
loops by

ν =
∮

EP

dk′

2π i
· ∇k′ log detHeff (k, ω), (6)

where k′ is defined on the plane which is perpendicular to the
tangent vector of the exceptional loop. The line integral is
done in the mathematical positive direction. We then define
the direction of the exceptional loops, shown in Fig. 5, so
that the vorticities defined in Eq. (6) become 1/2. Further
details are explained in the Appendix. We note that when
considering a momentum-dependent self-energy, these loops
become distorted. Thus, looking at the Fermi energy, the
exceptional manifold will appear as points.

Figures 5(b)–5(d) show the exceptional manifolds for the
system with nonlocal hybridization. Because Eqs. (3a) and
(3b) depend on the momentum for a nonlocal hybridiza-
tion, the exceptional manifolds are points in the momentum
space for fixed ω. Figures 5(b) and 5(c) show these excep-
tional points in (k, ω) space at high temperatures. Including
the ω space, these exceptional points form closed loops.
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Furthermore, we show in Fig. 5(c) a magnification of Fig. 5(b)
around the Fermi energy, which demonstrates the absence
of exceptional points at the Fermi energy for high temper-
atures. When lowering the temperature, one closed loop of
EPs is formed above ω = 0, and one closed loop is formed
below ω = 0. At the Kondo temperature, these loops touch
and merge at ω = 0 to a single one-dimensional exceptional
manifold, as shown in Fig. 5(d).

We conclude that the crossover from localized to itinerant
f electrons in the system with local hybridization goes hand in
hand with the merging and vanishing of two exceptional loops
at the Fermi energy. In the system with nonlocal hybridization,
different exceptional loops in the (k, ω) space change their
topology at the Kondo temperature and generate EPs at the
Fermi energy. Although the shape of the peak in the imaginary
part of the self-energy at the Fermi energy might depend
on the details of the model, the imaginary part of the self-
energy must have the peak at ω ∼ 0 at high temperature and
continuously decreases to zero around the Kondo temperature
with decreasing temperature. Thus, the conditions for the
emergence of exceptional points at the Fermi energy will
be fulfilled at some temperature around the Kondo temper-
ature independent of the exact shape of the peak in the
imaginary part of the self-energy.

V. CONCLUSION AND DISCUSSION

In summary, we have shown a relation between the Kondo
temperature and the emergence of exceptional points at the
Fermi energy in f -electron materials. Particularly, we have
studied the Kondo insulator and the metallic state with a
local hybridization and the semimetallic state with a p-
wave hybridization in the 2D periodic Anderson model by
DMFT/NRG. Around the Kondo temperature, f electrons
change from localized to itinerant when lowering the tem-
perature. Thus, the emergence of EPs at the Fermi surface
is a sign of the crossover between localized and itinerant
f electrons. The emergence of EPs is a robust feature in a
periodic Anderson model, for which the energy dispersions
of the f -electron band and the c-electron band intersect at the
Fermi energy and where the f electrons change from localized
at high temperatures to itinerant (hybridized) at low temper-
ature. We have also shown that the exceptional manifolds
have a structure one dimension higher when considering the
ω dependence of the effective Hamiltonian. For the system
with the local hybridization, there are exceptional loops above
and below ω = 0 in the (k, ω) space at high temperature,
which merge and disappear around the Kondo temperature.
For the p-wave hybridization, there are four exceptional loops
each above and below ω = 0 in the (k, ω) space at high
temperature, which merge and change their topology around
the Kondo temperature. Contrary to the system with local
hybridization, these exceptional manifolds at the Fermi energy
are stable for a wide range of temperatures below the Kondo
temperature, and these EPs are connected by bulk Fermi arcs.

In this paper, we have not considered the momentum de-
pendence of the self-energy. However, even if the self-energy
has a momentum dependence, the imaginary part of the self-
energy at the Fermi energy must change from a large value at
high temperatures to zero at low temperatures, corresponding

FIG. 6. Visualization of the tangent vector, normal plane, and the
vorticity.

to the crossover between localized and itinerant f electrons.
At some temperature during this crossover, the conditions
for the emergence of exceptional points Eq. (3a) and (3b)
are fulfilled. Equation (3a) is satisfied at some momenta at
the Fermi energy whenever the c- and f -electron bands are
partially filled and both bands intersect at the Fermi energy.
Equation (3b) must be satisfied at some temperature because
the imaginary part of the self-energy smoothly changes from
large values at high temperatures to zero at low temperatures.
Thus, our conclusions about the emergence of EPs at the
Fermi energy is unchanged when taking the momentum de-
pendence of the self-energy into account. We note, however,
that a momentum-dependent self-energy will deform excep-
tional loops in the (k, ω) space. We believe that exceptional
points are detectable via ARPES by direct observation of
the Fermi arcs, which connect two EPs, or by tunneling
experiments which might detect an increased density of states
due to the EPs.

We can naturally expect that the relation between the
emergence of exceptional points at the Fermi energy and
the Kondo temperature holds for three-dimensional systems
because the DMFT results become more accurate for higher
dimensions. Because the band structure of the 3D system can
be understood by stacking 2D systems, the 3D f -electron
material should host robust exceptional rings in the case of a
momentum-dependent hybridization and exceptional surfaces
in the case of a local hybridization at the Fermi energy.
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APPENDIX: DEFINITION OF THE VORTICITY
IN (k, ω) SPACE

Here, we explain the details of the definition of the vor-
ticity in the (k, ω) space. In (2 + 1)-dimensional systems,
exceptional points form a loop in the (k, ω) space. In order to
define the vorticity of the exceptional loop, we set up the plane
in the (k, ω) space to which the tangent vector of the loop is
the normal vector (see Fig. 6). We calculate the vorticity by
doing the following line integral in the mathematical positive
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direction:

ν =
∮

EP

dk′

2π i
· ∇k′ log detHeff (k, ω), (A1)

where k′ is defined on the plane, as shown in Fig. 6.
However, the sign of the integral still depends on the

orientation of the plane, which depends on the direction of
the tangent vector. Therefore, we choose the direction of the
tangent vector so that the integral in Eq. (A1) becomes 1/2.
This uniquely defines a direction for the exceptional loop in
the (k, ω) space, which is shown in Fig. 5. To define the
vorticity in this way, we need to define a plane perpendicular

to the exceptional manifold. Thus, it is necessary that the
dimension of the exceptional manifold is (d − 2), where d is
the dimension of the (k, ω) space. By using Eqs. (3a) and (3b),
we see that exceptional points can merge and disappear only
if their tangent vectors are antiparallel, when two loops touch.
We note that in systems whose Hamiltonian is described by
a matrix larger than 2 by 2, e.g., a system including more
than two orbitals, exceptional points generated by different
pairs of eigenvalues can touch with arbitrary direction without
merging. Furthermore, we note that a similar definition might
be used to analyze two-dimensional exceptional manifolds in
(3 + 1)-dimensional systems.
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