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We present a theoretical study of the interplay between topological p-wave superconductivity, orbital magnetic
fields, and quantum Hall phases in coupled wire systems. First, we calculate the phase diagram and physical
observables of a fermionic ladder made of two coupled Kitaev chains and discuss the presence of two and four
Majorana zero modes. Second, we analyze hybrid systems consisting of a Kitaev chain coupled to a Luttinger
liquid. By tuning the magnetic field and the carrier density, we identify quantum Hall and charge density wave
phases, as well as regimes in which superconductivity is induced in the second chain by the proximity effect.
Finally, we consider two-dimensional systems made of weakly coupled ladders. There we engineer a p + ip
superconductor and describe a generalization of the ν = 1/2 fractional quantum Hall phase. These phases might
be realized in solid-state or cold-atom nanowires.
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I. INTRODUCTION

The quest of topological phases has attracted much atten-
tion in the last few decades, starting from the quantum Hall
effect [1,2] and evolving towards variants on the honeycomb
lattice with effectively a zero magnetic flux in a unit cell [3].
These quantum Hall systems are characterized by a robust,
unidirectional charge flow at the sample boundaries [4,5], as
well as by the emergence of fractional charges in the case of
Laughlin states [6–9].

More recently, superconducting analogues of quantum Hall
phases have also been focus of interest [10–12]. These are
p-wave superconductors hosting chiral (unidirectionally prop-
agating) Majorana modes at the edges. One theoretical ap-
proach to study the connections between quantum Hall phases
and topological superconductors is to view two-dimensional
systems as arrays of coupled one-dimensional wires [13–15].
This so-called wire construction approach comes with the
benefit that it allows one to investigate interaction effects
(such as fractionalization) [16–18] that go beyond mean-field
theory, via the Luttinger liquid paradigm [19,20].

Below, we study a multiwire system in the low-energy
subspace, where each wire is described by a topological
p-wave superconductor [21]. We address the interplay be-
tween intrawire and interwire tunneling and superconducting
pairing terms, including orbital magnetic field effects. Such
orbital magnetic field effects have been realized in coupled
nanowires [22] through the application of a magnetic field
perpendicular to the plane of the wires. Similar efforts are
underway in cold-atom systems [23–25], where quantum Hall
phases have been observed in ladder geometries [26,27]. The
possibility of engineering fractional quantum Hall phases
in these ladders has stimulated a vigorous research activity,
focused on both bosonic and fermionic systems [28–34].
Orbital magnetic field effects have also started to attract some
theoretical interest in the case of two coupled Kitaev chains

[16,35]. Our building block is a two-leg ladder Kitaev system.
One scope of our work is to show that coupling such ladder
systems together will allow us to realize a (p + ip) topological
superconductor, through the engineering of space-dependent
magnetic fields.

We start by studying the phase diagram of two coupled
wires in the bonding-antibonding band representation, which
allows us to access the strong-tunneling limit [36,37] between
the wires. Afterwards, we introduce hybrid (spinless) systems
coupling a chain of free fermions with a Kitaev chain and
study the effect of Andreev processes. An Andreev process
allows the transfer of a Cooper pair from a superconducting
system into a normal metal (here the other wire). Such a
process leads to superconducting correlations in the normal
wire. In the case of spin-1/2 fermions, Andreev processes
have already been shown to influence the properties of cuprate
superconductors near the Mott insulating regime [38]. They
also give rise to a fractional quantum Hall phase at filling fac-
tor ν = 1/2 in the case of hybrid spin-1/2 wire systems [29].

We show that the aforementioned hybrid systems can
stabilize various phases: topological superconducting phases
with four and two Majorana fermions, Abelian quantum Hall
phases at ν = 1 and ν = 1/3, and a charge density wave.
The charge density wave occurs when the lowest band is
completely filled and the upper band is empty. It is anal-
ogous to the the rung-Mott phase identified in the two-leg
bosonic ladder system [39,40]. Here the system hosts one
particle and one hole per rung, with phase coherence between
different particle-hole pairs. We discuss observables in the
different phases, the stability of Majorana zero modes, and
the robustness towards interaction effects. We also propose
various probes of the phases, such as a Meissner-Majorana
current to reveal the presence of four Majorana zero modes in
a ladder and a Thouless charge pump geometry to study the
bulk response in the quantum Hall phases.
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In the later part of this work, we apply the wire construction
method [14,15] to engineer, in coupled-ladder geometries, the
p + ip superconductor (and more precisely, an ipx + py super-
conductor) with spinless fermions [10] as well as a fractional
quantum Hall state at ν = 1/2 [29,30] for spin-1/2 fermions
[29]. The p + ip superconducting proposal is implemented
with two different Peierls phases acting on the intrawire and
interwire hopping terms [23,24] corresponding to a proper
choice of space-dependent magnetic field. We identify three
phases for our system: a strong-paired phase with no Majo-
rana mode, a quasi-one-dimensional phase with 2N Majorana
fermions where N is the number of two-leg ladders, and a
Moore-Read phase [10,11] with a chiral Majorana fermion
flowing along the edge of the two-dimensional sample. A
square unit cell in the lattice allows us to reveal one Majorana
fermion. It has been recently shown that one can also realize
a topological (px ± ipy) superconductor on the honeycomb
lattice with Rashba spin-orbit interaction, as a result of the
interplay of geometric phase and electron correlation [41].

This wire construction could be engineered in solid-
state systems. More precisely, a one-dimensional topological
p-wave superconductor has been realized through a semi-
conducting nanowire with spin-orbit coupling in the vicinity
of an s-wave superconductor [42,43] following theoretical
predictions [44–46]. We assume here that the intrawire and in-
terwire pairing channels come from the vicinity of a common
(s-wave) superconducting reservoir. The presence of a Rashba
spin-orbit coupling of the form −iασy∂x [44–48] shifts the
band structure associated to the σy = +1 state compared to the
band structure associated to the σy = −1 state in momentum
space. The band structure of a given wire shows four Fermi
points. The application of a magnetic field perpendicular to
the spin-orbit field, e.g., in the z direction, will then open a
gap in the band structure at the crossing region between the
two bands, canting slightly the spins at the remaining two
Fermi points along the z direction [47,49]. The spin-polarized
nature of the fermions in the low-energy model comes from
the fact that the system has now only two remaining gapless
(spin-polarized) Fermi points. The coupling with an s-wave
superconducting reservoir induces pairing terms, as long as
the spins are oriented differently at the two Fermi points.
Coupled-wire spin-1/2 systems with Rashba spin-orbit cou-
pling have been studied, for instance, in Ref. [50], without
orbital magnetic field effects. In our work, (chiral) effects will
be included directly in the spinless fermion model through
Peierls phases, which are also induced by the magnetic field
in the z direction. To realize the p + ip superconductor, we
engineer magnetic fields Bz which are staggered along the y
direction. In this realization, the magnetic field vanishes at
the locations of the wires. Thus, in order to realize spinless
fermions, one could resort to an additional uniform magnetic
field in the perpendicular (say, x) direction.

Similar efforts are realized in ultracold atoms with syn-
thetic spin-orbit interactions [23,51–54]. It is also important
to mention the current efforts in implementing cold-atom
spin-polarized p-wave superfluid states, that would then allow
one to realize the spinless fermion model without spin-orbit
coupling [55,56].

The organization of the paper is as follows. In Sec. II
we introduce the model with the different flux situations to

be studied. In Sec. III we address both analytically and nu-
merically the ladder system comprising two coupled spinless
fermionic wires, in the bonding-antibonding band representa-
tion, which allows us to access the strong-tunneling limit [37].
In Sec. IV we introduce magnetic flux effects and generalize
the analysis to the case of hybrid systems, with one wire being
a topological p-wave superconductor and the other wire a free
fermion model or a Luttinger liquid, taking into account the
physics of Andreev processes [57]. In Sec. V we design and
study two-dimensional topological phases hosting chiral edge
modes from coupled ladder geometries. We show how mag-
netic field effects can turn the one-dimensional topological
superconductor (which belongs to the symmetry class BDI)
into a two-dimensional topological p + ip superconductor
(which belongs to the symmetry class D) by coupling the
ladders to the same (s-wave) superconducting reservoir [58].
We study the stability of the Majorana zero modes in the dif-
ferent phases in relation with symmetry-protected topological
(SPT) phases in wire constructions [59,60]. We also discuss a
realization of a ν = 1/2 Laughlin phase in coupled (hybrid)
ladders comprising spin-1/2 fermions, in the presence of a
uniform magnetic field. The ν = 1/2 Laughlin phase belongs
to the SPT class A in terms of the edge K-matrix structure
[60]. In Sec. VI we summarize our main findings. In the
Appendixes, we present a further analysis on the derivation of
Andreev processes and higher-order processes, induced by the
interwire tunneling. We also provide additional information
on the edge theory and Thouless charge pump geometry [61]
for the quantum Hall phases and discuss Coulomb interaction
effects.

II. PRELIMINARIES

A. Model and definitions

We begin by illustrating the building block of our coupled
wire construction: a flux-assisted two-leg ladder system of
spinless fermions, captured by the Hamiltonian (see Fig. 1,
top)

H = H‖ + H⊥ + H� + H�0 , (2.1)

which includes tunneling terms along and between the wires

H‖ = −
∑

j

∑
α=1,2

[μc†
α ( j)cα ( j) + te−iζa/2c†

1( j)c1( j + 1)

+ teiζa/2c†
2( j)c2( j + 1) + H.c.],

H⊥ = −
∑

j

t⊥eiχx j c†
1( j)c2( j) + H.c., (2.2)

as well as pairing interactions induced by the proximity to the
superconducting (superfluid) reservoir

H� =
∑

α=1,2

∑
j

�αc†
α ( j)c†

α ( j + 1) + H.c.,

H�0 =
∑

j

�0c†
1( j)c†

2( j) + H.c. (2.3)

We denote the lattice spacings of the wires as a and a′
for the horizontal x and vertical y directions. For a square
ladder, a′ = a. The positions of the sites along each wire are
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FIG. 1. (Top) Two-leg ladder lattice comprising spinless
fermions; we introduce the different flux situations discussed in
the article through χ and ζ such that the total flux per plaquette is
	tot = (χ − ζ ) assuming a = a′ = 1. (Bottom left) Band structure
in the absence of magnetic field and superconductivity. The blue
and gray curves correspond to the bonding (+) and antibonding
(−) bands, respectively [37]. A gap of the order of 2t⊥ is opened
by the interwire tunneling term. Varying the chemical potential, the
dashed lines denote the Fermi levels which host different numbers
of gapless Fermi points. (Bottom right) Band structure with flux
insertion and opening of a gap in the crossing region between the
two bands. The lowest bonding band now mixes fermionic states
with different chiralities (corresponding to left movers in the first
wire with a wave vector −k1

F and to right movers in the second wire
with a wave vector +k2

F ).

denoted as x j = ja, where j = 1, . . . , M. The total length
of one wire becomes L = Ma. The operator c†

α ( j) creates a
spinless fermion on site j of the wire α. Here μ stands for
the global chemical potential. For symmetric and decoupled
(or weakly coupled) wires, this condition will then ensure that
the Fermi wave vectors in the two wires satisfy k1

F = k2
F , but

we will also address cases (when specified hereafter) with
asymmetric wires where k1

F �= k2
F . The intrawire and interwire

pairing amplitudes are denoted �1,2 and �0, respectively.
Here the phase associated with the pairing terms is fixed by
the properties of the superconducting (superfluid) reservoir.
In Sec. V we will also include a term �0(c†

1( j)c†
2( j + 1) +

c†
2( j)c†

1( j + 1) + H.c.), which will play an important role for
the realization of the p + ip superconducting phase.

Even though we do not write the Coulomb interaction in
the Hamiltonian, we shall comment hereafter on the stability
of the physics towards interaction effects. The stability of
the topological superconducting phases and the possibility to
realize correlated and Mott phases in the presence of Coulomb
interactions or nearest-neighbor interactions have been dis-
cussed, for instance, for the Kitaev chain in Refs. [62,63] and
for two coupled wires (when t⊥ = 0) in Ref. [16].

Below for simplicity we assume that t and t⊥ are real. The
orbital effects of magnetic fields are included by multiplying t
and t⊥ by phase factors e±iζa/2 and e±iχx j , respectively (see
Fig. 1). We neglect the effect of the magnetic field in the
superconducting order parameter of the reservoir. We define

the Peierls phases for a unit charge q = 1 and we set h̄ = 1.
Furthermore, we introduce the quantity

	tot = χ − ζ . (2.4)

This quantity has the dimension of a wave vector. The flux per
plaquette or square unit cell is defined as (χ − ζ )a. Therefore,
	tot can also be seen as the total flux in a unit cell or plaquette
with a = a′ = 1.

When χ �= 0 and ζ = 0, this situation will correspond to
the case of a uniform magnetic field Bz = χ/a′ applied along
z direction and a vector potential gauge Ay = +x jχ/a′ along
y. In that case, one can also perform a gauge transformation
to absorb the effect of the induced fluxes (or phases) onto a
boost of the wave vector k for each wire, resulting in Fig. 1
(bottom right).

When χ and ζ are both nonzero, this situation will allow
us to engineer the p + ip superconductor in Sec. V A. In
Fig. 1 this corresponds to a vector potential specified by the
components Ax = −(−1)y j/a′ ζ

2 and Ay = x jχ/a′, with y j =
0 for the lower wire and y j = a′ for the upper wire. This
choice of vector potential corresponds to a magnetic field
perpendicular to the plane of the wires,

Bz = ∂xAy − ∂yAx = χ

a′ − ζπ

2a′ sin(πy/a′), (2.5)

and reproduces a net flux 	tot = χ − ζ in a square unit
cell. Formally, to regularize properly the function Ax and
ensure that ∂Ax/∂y is real (as it should be), we can use
the form Ax = −1/2(eiπy/a′ + e−iπy/a′

) ζ

2 , which reproduces
Ax = −(−1)y/a′ ζ

2 for y = y j and produces the second term
−ζπ/(2a′) sin(πy/a′) in the magnetic field in (2.5). This form
of space-dependent magnetic field, with the two distinct geo-
metrical forms coming from χ and ζ , allows us to break time-
reversal symmetry even if χ = ζ �= 0 and 	tot = 0, because
Bz �= 0, by analogy to the Haldane model on the honeycomb
lattice [3]. The situation is physically different compared to
the case where one would apply a uniform magnetic field
Bz = (χ − ζ )/a′. In that case, the choice of two independent
Peierls phases in Fig. 1 would not be justified (for instance,
in that case, one could simply choose Ax = Ay = 0 for χ =
ζ ). To realize the p + ip superconductor in weakly coupled-
ladder geometries (see Sec. V A), we require that the vector
potentials and the magnetic field(s) are indeed periodic if we
change y → y + 2a′. In addition, the magnetic field Bz must
be staggered if we change y → y + a′; therefore we will also
assume in Sec. V A that χ takes a staggered (periodic) steplike
form {χ ; −χ} associated to two successive square cells in the
y direction.

The particular situation in which χ = ζ = π/a, of interest
in this work, admits two physical interpretations in the ab-
sence of the superconducting pairing. On the one hand, the
system is equivalent to a model of two wires with imaginary
hopping terms ±it or band dispersions ∓2t sin(ka) in Fig. 1
(bottom right), with an alternating transverse hopping term
t⊥(−1) j . On the other hand, because the total net flux is zero
in a given unit (square) cell, the band structure of the two-wire
system is also analogous to the one in Fig. 1 (bottom left) after
gauge transformation, with a uniform transverse hopping term
t⊥ [64].
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B. Energy bands and magnetic field effects

Below we introduce four cases of interest, which will be
addressed throughout the article.

In the first case, we consider that orbital magnetic fields
are vanishing, ζ = χ = 0. The band structure of two wires
is characterized by the bonding (+) and antibonding (−)
fermion operators [36]

c±( j) = 1√
2

[c1( j) ± c2( j)]. (2.6)

If we neglect the superconducting terms �i, the noninteracting
part can be diagonalized as

H0 = H‖ + H⊥ =
∑
λ=±

∑
k

ξk,λc†
λ(k)cλ(k), (2.7)

with an energy dispersion

ξk,± = −2t cos(ka) ∓ t⊥ − μ. (2.8)

In Eq. (2.7) we have used the Fourier transform
cα ( j) = (1/

√
M )

∑
k eikx j cα (k), with k = 2πn/(Ma)

and n = −M/2,−M/2 + 1, . . . , 0, . . . , M/2 − 1 (if we
assume M even). The energy spectrum of the two
bands is shown in Fig. 1 (bottom left). The Fermi
wave vectors for the bonding and antibonding bands are
kF,± = (1/a) arccos[(±t⊥ + μ)/(−2t )]. We will include
the effect of pairing terms at the Fermi points of this
band structure, which is justified if the pairing amplitudes
satisfy �i 	 (t, t⊥) with i = 0, 1, 2. In Sec. IV we will
use a complementary approach in the wire basis addressing
the weak-coupling limit. In Sec. III we will turn on the
pairing interactions in this strong-tunneling limit and study
phase transitions towards SPT phases with four and two
Majorana zero-energy modes (MZMs) [35]. The transition
from four MZMs to two MZMs can be viewed as a Lifshitz
transition; i.e., it is induced by a change of the Fermi surface
topology or by a change of the number of Fermi points
from four to two. The associated Van Hove singularity in
the density of states can be observed, for instance, through
local compressibility measurements. The trivial phase on the
phase diagram of Fig. 2 (top left) refers to the strong-paired
phase with zero Majorana fermions, which occurs when
the chemical potential lies below the bottom of the lowest
band or above the top of the upper band. We study both
theoretically and numerically the stability of the Majorana
fermions and the structure of induced pairing terms at
low energy in the strong-coupling region. We also study
observables and provide complementary results compared to
Refs. [16,35,50,65].

The second case of interest corresponds to ζ = 0 and
χ �= 0. In Sec. IV we further set �2 = �0 = 0, which im-
plies a hybrid system composed of a Kitaev superconducting
wire and a free fermion wire. The phase associated to the
vertical tunneling terms can be absorbed through the local
transformation

c1( j) = eiχx j/2c̃1( j), c2( j) = e−iχx j/2c̃2( j). (2.9)

The effect of the flux insertion 	tot = χ is then equiva-
lent to a shift (boost) of the momentum of the two energy

FIG. 2. (Top left) Phase diagram of two coupled wires in the ab-
sence of magnetic fields. A Lifshitz phase transition, associated with
a change in the topology of the Fermi surface showing, respectively,
four and two Fermi points, occurs between the topological phases
with four and two Majorana fermions. The trivial phase refers to the
strong-paired phase. (Top right) The lowest bonding and antibonding
energy bands for � = 0, t⊥ = 0.5t with ξq,± = −E±. Through a shift
of the chemical potential, three possible cases of occupancy are
denoted by the dark, red, and cyan dashed lines. At the Fermi level,
each gapless Fermi point contributes to a Majorana edge mode when
� �= 0. (Bottom) Three energy spectra from exact diagonalization
calculations of Eq. (3.4) with a system size M = 1000 for each
wire and open boundary conditions. The parameters are set to t⊥ =
0.5t , � = 0.1t , and �0 = 0.3t . The different graphs correspond to
different values of μ = −t,−1.6t, −3t . In the last graph, the energy
gap corresponds roughly to the energy to produce a quasiparticle at
the bottom of the lowest bonding band.

bands:

ξk,1̃ = −2t cos[(k + χ/2)a] − μ,

ξk,2̃ = −2t cos[(k − χ/2)a] − μ. (2.10)

Within these definitions, the two bands cross when ξk,1̃ = ξk,2̃,
meaning at the wave vector k = k0 = 0 in the new basis
associated to Fig. 1 (bottom right), which then makes the
effect of a uniform interwire hopping term relevant in this
region. In fact, in the strong-coupling limit, t⊥ is relevant only
at the band crossing point k0, resulting in [22]

H⊥ = −t⊥
∑

k

c̃†
1(k)c̃2(k) + H.c.


 −t⊥[c̃†
+(k0)c̃+(k0) − c̃†

−(k0)c̃−(k0)], (2.11)

which then splits the energies of the bonding and antibonding
bands at the crossing point k0 = 0 accordingly. In the original
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frame, this corresponds to having k1
F + k2

F = ±	tot at the
crossing point such that a gap 2t⊥ can be opened, as shown
in Fig. 1 (bottom right). When the Fermi level is between the
upper and lower bands, the two gapless modes form an edge
state falling into the category of an Abelian quantum Hall
phase provided that �i 	 t⊥.

In the weak-coupling limit, on the other hand, we find a
superconducting topological phase at flux 	tot = π . When
adjusting the densities of the wires such that (k1

F + k2
F ) =

π/a, Andreev processes between the two wires stabilise su-
perconductivity in the two wires similarly to the case of zero
magnetic flux. The system shows four Majorana fermions
via a proximity effect. At π flux, in the strong-tunneling
limit, the lowest (bonding) band which now mixes the two
wire states at the Fermi points can be fully filled and can
therefore open a gap in the single-particle spectrum when the
upper band is empty. This situation, which is analogous to
a band insulator, gives rise to a charge density wave in the
wire basis associated to long-range order with one particle
on each rung. We show below that this charge density wave
state forms phase-coherent particle-hole pairs along the wires
which then survive even if the transverse hopping term t⊥ be-
comes comparable to (slightly larger than) the pairing channel
amplitudes.

The third case is ζ = χ = π/a with the vector potential
and magnetic field described in Sec. II A. It is our start-
ing point towards implementing a p + ip superconductor
in coupled-ladder geometries via the �0 (interwire) pairing
channel. Due to the ±it hopping terms in the two wires,
the time-reversal symmetry and the chiral symmetry are not
present, but particle-hole symmetry is preserved. The trans-
verse hopping term t⊥(−1) j now becomes real, and this will
then ensure the stability of Majorana modes at zero energy
even if t⊥ �= 0. In Sec. V A, first, we perform the local gauge
transformation to map the band structure onto the one of Fig. 1
(bottom left), similar to the one in the absence of magnetic
fields, and then we show how the interwire pairing term �0

can give rise to a purely imaginary ipx channel for the bonding
fermions in a two-leg ladder architecture. Coupling pairs of
wires or ladders together, we realize a py channel through the
same superconducting (s-wave) reservoir, assuming that the
Bz magnetic field in Eq. (2.5) is uniform in the x direction and
staggered in the y direction (which implies that χ generates a
step function changing of sign on each successive plaquette
in the y direction). Then we build a low-energy model in
a two-dimensional representation of Majorana fermions to
study the existence of boundary edge modes. We check that
similar results can be obtained with the band structure of
Fig. 1 (bottom right), corresponding to the same value of the
magnetic field Bz. We also discuss the stability of the results
when fixing 	tot = 0 when decreasing progressively the value
of ζ = χ .

The fourth case is analogous to the second ζ = 0, χ �= 0
with spinful fermions. In Ref. [29] two of us have shown the
possibility to realize a fractional quantum Hall phase at filling
factor ν = 1/2 in hybrid systems. In Sec. V B we generalize
the analysis in coupled-ladder geometries with a uniform
magnetic field showing how the chiral edge mode becomes
more protected towards backscattering effects (when the bulk
becomes larger).

The last two cases place us on track to search for topo-
logical phases in quasi-one-dimensional systems by coupling
flux-assisted two-leg ladders through vertical tunnelings. This
is the subject of the analysis performed in Sec. V.

III. TWO-BAND MODEL IN THE
STRONG-COUPLING LIMIT

We start from a system of two coupled Kitaev super-
conducting wires with �1 = �2 = � and χ = ζ = 0 (corre-
sponding to the first case mentioned above). We consider the
limit (t, t⊥) � (|�0|, |�|), where one can apply the bonding-
antibonding band representation. We take t > 0 and t⊥ > 0
without loss of generality. Hereafter, we build a Bardeen-
Cooper-Schrieffer (BCS) model in this representation, and
to discuss interaction as well as interband/interwire pair-
ing effects we also introduce the Luttinger liquid formal-
ism [19,20,66,67]. In Sec. III A we study the physics and
observables associated to the three phases, namely, the two
topological superconducting phases with four and two MZMs
and the trivial phase corresponding to the strong-paired phase.
In Sec. III B we also discuss the stability of MZM modes in
relation with SPT phases and check the results numerically.

A key property of the system is that for arbitrary val-
ues of t⊥, the interwire pairing term �0c†

1( j)c†
2( j) + H.c. is

irrelevant from renormalization group arguments. To prove
this important point, we resort to the bosonization formalism
or Luttinger liquid description, which will be also useful
when discussing proximity effects and magnetic field-induced
phases in Sec. IV. We assume the continuum limit ψα (x) =
cα ( j)/

√
a with x = x j = ja [19,20,66,67]. A fermionic oper-

ator can be written in terms of bosonic fields φα and θα:

ψα (x) = ψα
R (x) + ψα

L (x),

ψα
r (x) = U α

r√
2πa

eirkα
F xe−i[rφα (x)−θα (x)]. (3.1)

The index r = +1(−1) is taken for r = R(L), i.e., for the right
(left) moving particle. Formally, α = 1, 2 or +,− can embody
the wire or band basis. In this subsection we switch to the
bonding and antibonding basis (2.6). The Klein factors U α

r
enforce the Fermi statistics and satisfy the relations U †

r,α =
Ur,α , {UR,α,UL,α} = 0. For convenience, it is sufficient to
set UR,αUL,α = i and all others to unity Ur,αUr′,α′ = 1. The
bosonic fields satisfy the commutation relation

[φα (x), θβ (x′)] = i
π

2
δαβsgn(x′ − x). (3.2)

For � = 0, each band gives rise to a Luttinger quadratic
Hamiltonian in real space, characterized by the Luttinger
parameter K that is equal to one for free fermions [19,66]
[see Eq. (4.2)]. We then notice that for general values of t⊥
the interwire pairing contribution coupling the two bonding
and antibonding bands now oscillates rapidly in the real space
domain:

H�0 = − �0

∑
j

c†
+( j)c†

−( j) + H.c.

= − 4|�0|
πa

∫
dx cos(kF,+x − φ+) cos(kF,−x − φ−)

× cos(δ − θ+ − θ−), (3.3)
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where �0 = |�0|eiδ . This contribution which oscillates
rapidly is irrelevant from a renormalization point of view and
can be neglected in the effective BCS model even when the
chemical potential lies above the bottom of the antibonding
band. Below we check numerically that the interband pairing
term �0 in Eq. (3.3) does not modify the low-energy prop-
erties. It should be noted that the phase δ coming from the
fact that the pairing term is not gauge-invariant should not
influence the physical properties. For instance, one could re-
absorb it through a redefinition of the phases θ+ → θ+ + δ/2
and θ− → θ− + δ/2, which would then only modify slightly
the fermion operators in Eq. (3.1) through a global phase. The
system thus behaves as if δ = 0 in this section, and similarly
we can take the order parameter � to be real.

Assuming K = 1, the Hamiltonian H can be rewritten as
BCS Hamiltonians in the two subspaces H = H(ζ = χ =
0,�1 = �2 = �) = H+ ⊕ H−, each sharing the form of a
Kitaev wire Hamiltonian [21]. We obtain the model

H± = 1

2

∑
k

�
†
±(k)h±(k)�±(k),

h±(k) =
(

ξk,± −�k

−�∗
k −ξk,±

)
, �±(k) =

(
c±(k)

c†
±(−k)

)
. (3.4)

ξk,± is given in Eq. (2.8), and the off-diagonal elements read
�k = −2i� sin(ka).

The �0 term, as written in Eq. (3.3), does not contribute
to the intraband pairing term as a result of the Pauli principle.
Adding a contribution of the form �0c†

1( j)c†
2( j + 1) simply

renormalizes the intraband � term in �k in an additive
manner.

The total band structure resulting from the diagonalization
of the Bogoliubov–de Gennes Hamiltonian (3.4) consists of
four branches (±E±) with

E±(k) =
√

[2t cos(ka) ± t⊥ + μ]2 + 4 sin2(ka)|�|2. (3.5)

If � = 0, as depicted in Fig. 2 (top right), there are
three possibilities for the occupancy of two lowest bond-
ing and antibonding bands (−E±) depending on the chem-
ical potential: (i) four MZMs phase: 2t + t⊥ > μ > −(2t −
t⊥); (ii) two MZMs phase: −(2t + t⊥) < μ < −(2t − t⊥);
and (iii) trivial phase: |μ| > (2t + t⊥). Once � �= 0, by anal-
ogy with the Kitaev chain [21], a superconducting gap is
opened at the Fermi level, giving rise to a protected Majorana
mode associated to each gapless Fermi point. We thus confirm
the presence of two topological phases and one trivial phase
hosting four, two, and zero MZMs in the phase diagram of
Fig. 2 (top left) [35,65]. This phase diagram holds as long as
t⊥ < 2t .

Let us comment briefly on the stability of the phases
against the Coulomb interaction in each wire. Following
Refs. [16,36,37], we observe that interactions would have
two effects. First, they would modify the Luttinger parameter
K < 1 in each band, therefore decreasing slightly the size of
the intraband pairing amplitude as �eff ∼ �c(�/�c)1/(2−1/K )

due to renormalization effects when integrating modes at high
energy (with �c ∼ t, t⊥ being a high-energy cutoff in the
model). Second, they would produce a Josephson term or
interband Cooper pair channel between the band pairs which

corresponds then to locking the phase difference between the
superconducting gaps in each band. As long as Coulomb
interactions are moderate and the pairing amplitude �eff

remains appreciable, implying that K > 1/2, then the phase
with four Majorana fermions subsists, and equally for the
phase with two Majorana fermions. We then conclude that
as long as K is not too far from one, the topological phase
diagram remains unchanged. The stability of the Majorana
edge structure towards interactions in the phase with four
Majorana fermions was discussed thoroughly in Ref. [16] for
t⊥ = 0.

Additionally, we perform numerical calculations on
Eq. (3.4) through exact diagonalization (ED) in a finite-size
system (M = 1000) with open boundary conditions (OBCs)
using the Hamiltonian H± above (assuming here that K = 1),
including the effect of �0. Figure 2 (bottom) shows the en-
ergy spectra in the strong coupling regime (t, t⊥) � (�,�0).
In particular, we observe that the four and two MZMs are
both robust against relatively strong interwire pairing inter-
actions, even when �0 > �, in agreement with the theory
above and in Sec. III B. In bosonization, the pairing term
in the bonding (antibonding) band gives a contribution of
� cos(2θ+) [� cos(2θ−)] in the Hamiltonian. The relevance
of these intraband pairing channels then ensures that higher-
order contributions of the �0 term in Eq. (3.3) will not affect
the low-energy physics.

A. Observables

From Eq. (3.4), one can extract physical quantities such as
superconducting correlation functions and the local compress-
ibility.

We define two types of “gap” (pairing correlation func-
tions) in the system, one intrawire gap as

�‖ = (1/M )
∑

j

〈c1( j)c1( j + 1)〉, (3.6)

and the other interwire gap as

�⊥ = (1/M )
∑

j

〈c1( j)c2( j + 1)〉, (3.7)

which is induced by the band contribution �kc†
+(k)c†

+(−k)
where �k = −2i� sin(ka). This induced pairing term be-
tween the two wires corresponds to the transfer of one particle
forming a Cooper pair in one wire into the other wire as a re-
sult of t⊥ �= 0. The interwire quantity (1/M )

∑
j〈c1( j)c2( j)〉

is equal to zero. By symmetry �‖ can also be defined with
the fermions c2. Both observables can be extracted from the
Hamiltonian (3.4) through the Bogoliubov transformation.
One finds

�‖ =
∫

dk

2π
� sin2(ka)

[
1

2E+(k)
+ 1

2E−(k)

]
,

�⊥ =
∫

dk

2π
� sin2(ka)

[
1

2E+(k)
− 1

2E−(k)

]
, (3.8)

where k ∈ [−π/a, π/a[. We plot them by varying t⊥ and
μ in Fig. 3 (top). When t⊥ = 0, we check that �⊥ = 0.
We also check that �⊥ → 0 in the strong-paired phase, for
instance, when μ ∼ −3t , showing that in this regime the
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FIG. 3. (Top) Formation of the intrawire gap �‖ and the inter-
wire gap �⊥ as a function of the chemical potential μ for various tun-
neling strengths t⊥. The pairings induced by the superfluid reservoir
are set to � = 0.1t and �0 = 0. (Bottom left) Local compressibility.
The parameters are kept the same as previous two plots. (Bottom
right) Linear growth of the lowest single-particle excitation energy
as a function of Im�0. In ED the parameters are the same as Fig. 2
(bottom) with μ = −t corresponding to the four MZMs phase.

system behaves as if the kinetic terms were almost zero
and the intrawire pairing terms �‖ approach smoothly their
uncoupled-wire values. We also find that �⊥ = 0 when μ = 0
independently of the value of t⊥. This can be explained by the
fact that E+(k + π ) = E−(k) when μ = 0.

As the tunneling effect between the two wires increases,
the splitting of the bonding and antibonding bands becomes
more significant, and �⊥ �= 0 results from the transport of one
electron forming a Cooper pair in a wire into the other wire.
Indeed, we observe an enhancement in �⊥ with larger t⊥. We
study the behaviors of �‖ and �⊥ in the vicinity of the two
quantum phase transition points occurring at μ = −(2t ± t⊥);
here �‖ shows a combination of smooth steps and inflection
points.

To locate the phase transitions accurately, we study the
local compressibility κloc, which can be measured via scan-
ning electron transistors in nanowire systems [68]. One
could also introduce bipartite fluctuations to localize the
quantum phase transitions and study some aspects of the
topology in the bulk [16,69]. By definition, κloc = ∂nloc/∂μ

with nloc the local number of particles in two wires. Using
(1/M )

∑
j,α〈c†

α ( j)cα ( j)〉 for nloc we obtain

κloc = −
∫

dk

2π

∂

∂μ

[
ξk,+

2E+(k)
+ ξk,−

2E−(k)

]
. (3.9)

Originating from Van Hove singularities in the density of
states of each band (±), in Fig. 3 (bottom left), κloc shows
a clear divergence as a function of μ at the quantum phase
transitions towards the phases with two and four MZMs.

B. Stability of Majorana zero modes

Here we study the stability of the Majorana edge modes
against the interwire pairing term �0, using symmetry

arguments. The four MZMs phase belongs to the class BDI
[58], which respects the time-reversal symmetry T , chiral
symmetry C, and particle-hole symmetry P . To gap four
Majorana zero-energy modes, we need a term which breaks
T . Since complex spinless fermion operators are left invariant
under T , the interwire pairing transforms as

T �0c†
+( j)c†

−( j)T −1 = �∗
0c†

+( j)c†
−( j). (3.10)

Only the imaginary part of �0 could break T and couple the
edge modes. We have justified above that for χ = ζ = 0, the
pairing terms can be taken to be real [see discussion below
Eq. (3.3)], then ensuring the stability of the four MF edge
states as numerically checked in Fig. 2 (bottom). The phase
of �0 must be related to the superconducting phase difference
between the two chains. Such a difference is gauge-invariant,
hence observable. Below, for completeness, we study briefly
the effect of Im�0 �= 0, which can occur in certain geometries
when applying magnetic fluxes per plaquette different from 0
and π (see, e.g., Sec. V A).

To be more precise, we introduce local Majorana
fermion operators γ λ

A ( j) = c†
λ( j) + cλ( j) and γ λ

B ( j) =
i[c†

λ( j) − cλ( j)] with λ = ± for the bonding and antibonding
bands. In terms of these, the Hamiltonian of each subspace
reads

Hλ = i

2

∑
j

[−(t + �)γ λ
A ( j)γ λ

B ( j + 1)

+ (t − �)γ λ
B ( j)γ λ

A ( j + 1) − (μ + λt⊥)γ λ
A ( j)γ λ

B ( j)
]
.

(3.11)

For (μ + λt⊥) 	 t and � ∼ t , we obtain the Majorana pairs
of γ λ

A ( j)γ λ
B ( j + 1). If we relabel the site index as j =

0, . . . , M − 1, then free particles on the two boundaries con-
stitute a four-Majorana edge state {γ +

B (0), γ −
B (0), γ +

A (M −
1), γ −

A (M − 1)}. At a boundary, either the Majorana fermion
γ λ

A or γ λ
B is gapped confirming the protection of Majorana

modes towards large values of t⊥ in the band basis; for � ∼ t
and (μ + λt⊥) 	 t one can neglect the effect of the term
−(μ + λt⊥)γ λ

A ( j)γ λ
B ( j). We can now rewrite the interwire

pairing term at the boundaries as

δH�0 = − Im�0

2
[iγ +

B (0)γ −
B (0) + iγ +

A (M − 1)γ −
A (M − 1)].

(3.12)

The fermion parity operators iγ +
B (0)γ −

B (0) and iγ +
A (M − 1) +

γ −
A (M − 1) commute with the Hamiltonian and take eigenval-

ues ±1 at zero temperature. In general, a gap is induced by the
interwire pairing with the behavior

�E ∝ Im�0. (3.13)

This behavior is verified by ED calculations (see Fig. 3,
bottom right).

The arguments above confirm the stability of the topolog-
ical phases with four and two MZMs when � ∼ t assuming
that (μ + λt⊥) 	 t . We check numerically the stability of the
topological phases and MZMs for other choices of parameters
�/t and μ; see Fig. 2.
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FIG. 4. (Top) Hybrid system comprising a topological supercon-
ducting Kitaev p-wave chain and a chain of free fermions. (Middle
and bottom) Phase diagrams for K = 1 and for densities in the wires
such that (k1

F + k2
F )a = ±χa = π and (k1

F + k2
F )a = ±χa �= π . For

the superconducting phase in blue, the condition on ki
F ensures the

occurrence of four MZMs until the charge density wave transition.
The dashed lines refer to quantum phase transitions.

IV. MAGNETIC FLUX EFFECTS AND
ANDREEV MECHANISM

Now we generalize the results of two wires to the situation
of a hybrid system comprising a Kitaev superconducting chain
and a metallic chain, and study the interplay between Andreev
processes [38,57] and orbital magnetic-field effects. In the
following, we concentrate on the case of spinless or spin-
polarized fermions and study the proximity effect between
the superconducting wire and the Luttinger wire through the
bosonization formalism. In Sec. IV E, we address a compari-
son to the case of spin-1/2 fermions. In Fig. 4 (top), we depict
this situation (corresponding to the second case discussed in
Sec. II B). The model is described by

Hhybrid = H(ζ = 0, χ �= 0,�2 = �0 = 0,�1 = �). (4.1)

The precise goals below are as follows: first, we study the
evolution of the topological superconducting phases in the
presence of a gap anisotropy and study the weak-coupling
limit. In addition, we study possible quantum phase transitions
under a uniform magnetic flux. The schematic phase diagram
is plotted in Fig. 4 (middle) and (bottom) for different flux
conditions. When ±χa = π , in the weak coupling limit p-
wave superconductivity is induced in the free fermion wire.
Deviating slightly from the ±χa = π situation, we analyze

the Meissner and Majorana currents in the bulk and at the
boundaries, respectively. We also address Abelian quantum
Hall phases for particular relations between magnetic flux and
densities in the wires and describe properties of the charge
density wave state in real space when the bonding band is fully
filled, occurring at ±χa = π in the strong-tunneling limit.

To acquire a physical understanding of the system’s prop-
erties in real space (such as induced currents) when applying
a magnetic field and to generalize the results when t⊥ 	
�, we now switch to the bosonization picture in the wire
basis. This allows us to include higher-order processes in the
tunnel-coupling description. The approach below specifically
addresses the limit t � t⊥ � �, such that we can apply the
continuum limit in the x direction parallel to the wires. In the
bosonization picture (3.1), the kinetic term along the wires in
Hhybrid takes the form

H‖ = H+
0 + H−

0 ,

H±
0 = v±

2π

∫
dx

[
K±(∇θ±)2 + 1

K± (∇φ±)2

]
, (4.2)

with the rotated fields θ± = (θ1 ± θ2)/
√

2 and φ± = (φ1 ±
φ2)/

√
2. It is important to emphasize here that the modes φ±

and θ± are not the same as the ones φ± and θ± in the preceding
section. Here these modes must be understood as symmetric
and antisymmetric superpositions of bosonic fields in the wire
basis, whereas in the preceding section the label ± referred
to the two band indices. The sound velocities and Luttinger
liquid parameters satisfy v±K± = vK = vF , where the Fermi
velocity takes the form vF = 2ta sin(kF a) if we linearize the
band structure of each wire close to each Fermi point, and in
this formula kF refers to either k1

F or k2
F . For simplicity, we

assume that the two wires have (almost) the same velocity. If
we neglect the effect of the Coulomb interaction or nearest-
neighbor interaction parallel to the chain V‖, then formally
K = 1. If we take into account this interaction, as discussed
in Sec. III A, then this would adiabatically renormalize K to
a value smaller than 1, according to v±/K± = v/K ≈ v +
2V‖a/π .

The interwire hopping term takes the form

H⊥ = − 2t⊥
πa

∫
dx cos(

√
2θ− − χx)

× {
cos

[(
k1

F + k2
F

)
x −

√
2φ+]

+ cos
[(

k1
F − k2

F

)
x −

√
2φ−]}

. (4.3)

The conservation of the total number of particles in the system
at t⊥ = 0 and t⊥ �= 0 implies the equality k1

F + k2
F = kF,+ +

kF,− in accordance with Luttinger’s theorem. The pairing term
in wire 1 takes the form

H� = −2�

πa

∫
dx sin

(
k1

F a
)

cos(2θ1). (4.4)

Furthermore, we choose densities in the wires ki
F �= π/(2a),

such that intrawire insulating transitions do not occur, since
they have been well studied [16,62,63]. Still, we will show
below that a charge density wave transition can occur in the
system, giving rise to an analog of the rung-Mott insulator for
which the total charge φ+ and the superfluid phase difference
θ− are pinned [39]. The physics is adiabatically linked to the
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half-filled situation where the lowest band is fully occupied
and the upper band is empty, implying kF,− = 0 and kF,+ =
π/a when t⊥ > 2t . In the wire basis, the half-filled condition
at t⊥ = 0 refers accordingly to (k1

F + k2
F ) = π/a.

It should be noted here that in principle the ef-
fect of Coulomb interactions between the wires [16]
could give rise to an additional term proportional to
V⊥

∫
dx cos [2(φ1 − φ2)(x) − 2(k1

F − k2
F )x] in the wire basis.

To be able to describe the topological superconducting prox-
imity effect induced by t⊥, we assume below that k1

F �= k2
F

such that the V⊥ term averages to zero. Since V⊥ is already
a four-fermion operator, higher-order contributions will like-
wise not be relevant.

A. Topological proximity effect when χ = 0

Let us start with the case without flux insertion, χ = 0. For
general situations where k1

F �= k2
F , all the terms in Eq. (4.3)

oscillate rapidly and average to zero. This implies that one
must include higher-order effects in t⊥ in the weak-coupling
regime [29,38,57]. Appendix A presents a perturbative ap-
proach developed to build the possible nonoscillating terms
to higher order in t⊥. In the weak-coupling limit t⊥ 	 � 	 t ,
to show the emergence of four MZMs as soon as t⊥ �= 0, we
expand the partition function to second order and identify the
effective Hamiltonian

H(2)
⊥ = − 2t2

⊥
πa�

∫
dx cos(2

√
2θ−)

= −2�̄2

πa

∫
dx cos(2θ2). (4.5)

This corresponds to an Andreev process where a Cooper pair
is transported from wire 1 to wire 2. For the second equality,
we use the fact that at energies smaller than �, the charge
field of wire 1 is pinned to a classical value 〈cos(2θ1)〉 ∼ 1
implying θ1 ∼ 0, due to the strong pairing H� term (4.4).
Classically, to minimize energy (at zero temperature) the
superfluid phase θ1 will be pinned at one minimum of the
(periodic) cosine potential − cos(2θ1). Each minimum θ1 =
2nπ with n ∈ Z is equivalent, and thus we can assume that the
phase is pinned at θ1 ∼ 0, neglecting instanton effects from
one minimum to another. We observe an effective induced
superconducting gap in the second wire: �̄2 ∼ t2

⊥/�. There-
fore in the weak tunneling region, the superconducting phase
shows four MZMs for a large range of chemical potentials,
when −2t < μ < 2t . This conclusion is in agreement with
the results of Sec. III in the band basis, since the two MZMs
region shrinks to zero when t⊥ → 0.

Formally, minima of the form θ1 = (2n + 1)π are also
allowed and correspond to a twist of π in the definition
of the fermionic operator in Eq. (3.1). In the Kitaev model
for the wire 1, this π phase shift is equivalent to the Z2

symmetry c1 → −c1 in the BCS Hamiltonian. A redefinition
of the global phase by π of the fermionic operator associated
with wire 1 also corresponds to change t⊥ → −t⊥ and �0 →
−�0 in Eq. (2.1). This corresponds to the transformation
c1 ↔ c2 in the Hamiltonian. In the band picture, this π -phase
shift simply inverts the bonding and antibonding bands. It is,
however, important to recognize that the intra- and interwire
pairing terms would have a π -phase shift of difference, which

seems difficult to realize with a unique (three-dimensional)
superfluid reservoir.

In the regime t � t⊥ � �, one can also generate a similar
term:

H(2)
⊥ = − 2t2

⊥
πa�

∫
dx cos(2

√
2θ−). (4.6)

The energy cutoff � depends on the short time and short
distance considered in the virtual processes (see more details
in Appendix A). The original pairing term in wire 1 can
be estimated as 〈cos(2θ1)〉 ∼ �/�, when evaluating the
effect of the pairing term at low energy perturbatively
in �. More precisely, we calculate 〈cos[2θ1(x)]〉 =
Tr{e−βH cos[2θ1(x)]} to first order in � leading to
〈cos[2θ1(x)]〉 ∼ �

∫ β→+∞
1/�

dτ 〈cos[2θ1(x, τ )] cos[2θ1(x, 0)]〉,
where τ represents the imaginary time and 〈· · · 〉 means
an average on the quadratic Luttinger theory of the
correlation function at the position x. Remembering
that 〈cos[2θ1(x, τ )] cos[2θ1(x, 0)]〉 ∼ (�τ )−2, we check
that 〈cos(2θ1)〉 ∼ �/�. The H(2)

⊥ term then gives a
contribution in ∼(t2

⊥/�)〈cos(2θ1)〉 ∫
dx cos(2θ2). Starting

from a Gaussian Luttinger theory, we have the equality
〈e2iθ1(x)〉 = 〈e−2iθ1(x)〉 = e−2〈θ2

1 (x)〉, implying that only
the product of cosine functions contributes. A gap is
induced in wire 2 and its amplitude now evolves as
�̄2 ∼ t2

⊥�/�2 ∼ �. This argument can also be checked
applying the arguments in the bonding-antibonding
representation. The term �1 in the band basis gives a
term such as �1 sin(k1

F a)[c†
+(k)c†

+(−k) + c†
−(k)c†

−(k)],
which induces a contribution �1 sin(k1

F a)c†
2(k)c†

2(−k) with
�1 = �. This confirms the preceding argument that the
induced superconducting gap in wire 2 becomes equal to
the superconducting gap in wire 1 in the strong-coupling
limit. Bosonization arguments apply as long as the energy
spectrum is linear, implying that k1

F is not too close to zero
and therefore that sin(k1

F a) ∼ 1, which then validates the
equivalence with Eq. (4.6). If we consider the regime close
to the bottom of a band, then one must rely on the band
basis arguments showing that the induced gap in wire 2 is
� sin(k1

F a).
To identify the number of Majorana fermions in this

regime, we resort to the band-structure arguments of the
preceding section assuming that K → 1. The proximity effect
gives rise to four MZMs, two MZMs, or zero MZM depending
on the value of μ, as checked numerically using Eq. (3.4) (see
Fig. 5). We also check numerically that when approaching the
bottom of the lowest band, close to the strong-paired phase
transition, the proximity effect becomes fragile as � sin(k1

F a)
becomes very small.

B. π-Flux per plaquette at half-filling

For nonzero values of the magnetic field with χ �= 0, one
must adjust the densities or the Fermi wave vectors in the
two wires in Eq. (4.3) to produce a proximity effect, e.g.,
to make the tunneling term t⊥ or higher-order contributions
relevant. Here we study the situation with π -flux per plaque-
tte. We assume that (k1

F + k2
F )a = π such that the following
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FIG. 5. Energy spectra from ED with the same eigenvalue labels
as in Fig. 2, with �1 = � = 0.01t , �2 = 0, and t⊥ = 0.1t for t = 1.
This corresponds to the limit where t � t⊥ � � with anisotropic
bare values of the superconducting gap. The three graphs correspond
to μ = −1t , −2t , and −2.3t , respectively. In the strong-paired phase
with μ = −2.3t , there is no MZM (red dots), in the case with two
Fermi points where μ = −2t , there are two MZMs (blue dots), and in
the case with four Fermi points where μ = −t , there are four MZMs
(green dots). Starting with t⊥ = 0.1t , fixing μ = −2t corresponds to
having the Fermi level close to the bottom of the lower band, showing
the fragility of the proximity effect close to the strong-paired phase
since formally � sin(k1

F a) becomes very small, resulting in very
small gaps in (bulk) energy spectra.

commensuration relation is satisfied:

a
[(

k1
F + k2

F

) ∓ χ
] = 0 mod 2π, (4.7)

with χa = ±π . This corresponds to a half-filled ladder with
one particle per rung. The interwire hopping term (4.3) be-
comes

H⊥ = −2t⊥
πa

∫
dx cos(

√
2θ−) cos(

√
2φ+), (4.8)

modulo an oscillatory term. In the strong-coupling limit, both
modes θ− and φ+ are pinned to the classical values: θ− ∼ 0,
φ+ ∼ 0. The pinning of the mode φ+ suppresses fluctuations
in the total density (or total charge) on a given rung. The
system shows a(k1

F + k2
F )/π = 1 particle and one hole per

rung. Adding a particle or a hole at a given rung costs an
energy, and the system shows a long-range charge order

associated to the channel φ+. Each rung is equivalent with
one another, leading to a uniform charge density wave order
with an effective wave vector q = (k1

F + k2
F ∓ χ ) = 0.

Essentially, when t⊥ � � and more precisely t⊥ > 2t , in
the bonding and antibonding representation of Fig. 1 (bottom
right), the lowest band becomes filled and adding one more
particle in the antibonding band costs an energy of the order
of t⊥. The bosonization argument above suggests that this
conclusion remains in fact correct even when t⊥ < t , but with
t⊥ � �, due to renormalization group arguments. Indeed, t⊥
is a relevant perturbation associated to the kinetic terms H±

0 ,
and therefore will grow under the renormalization scheme to
values larger than t . More precisely, defining the dimension-
less quantities �̃ = �/�∗ and t̃⊥ = t⊥/�∗ with �∗ being the
high-energy cutoff (which can be taken to be larger than t
since the total bandwidth for a given wire is 4t), the invariance
of the partition function to second order in t̃⊥ 	 1 and �̃ 	 1
leads to the following two equations:

dt̃⊥
dl

=
(

2 − K+
2

− 1

2K−

)
t̃⊥,

d�̃

dl
=

(
2 − 1

2K+
− 1

2K−

)
�̃, (4.9)

where l = − log(�∗/E ) and E corresponds to the energy
scale of interest. This renormalization procedure can also be
seen as an integration of modes at short distances with typical
lengths between h̄v/�∗ ∼ a (with h̄ = 1) and L = h̄v/E ,
corresponding to an integration of blocks in real space and
a redefinition of the lattice spacing as L. For free fermions,
setting K+ = K− = 1, we check that both t̃⊥ and �̃ flow to
strong couplings. If we assume free fermions (K+ = K− = 1)
or weakly interacting fermions (K+ < 1, K− < 1) and if we
consider the limit where t⊥ � �, then we confirm that the
term t̃⊥ will flow to strong coupling faster than the term �̃. In
this case, the low-energy physics will be strongly associated
with the properties of Eq. (4.8), and the ground state is a
charge density wave.

For free fermions, our results are also in agreement with
a filled lowest bonding band. Excitations above the charge
gap corresponding to transferring a particle in the antibond-
ing band then are accompanied with a phase change of π

associated to the fermion operator c2 [from Eq. (2.6)], which
is equivalent to θ1 − θ2 + χa = ±π in the presence of the
magnetic field. Another manner to understand the pinning
of the phase θ− is through the condition that at each site j
(or each wave vector k) the charge density wave formation
implies 〈c̃†

1c̃1〉 + 〈c̃†
2c̃2〉 = 1 or k1

F + k2
F = π/a = kF,+ +

kF,−. If we consider the strong-coupling fixed point of the
renormalization group arguments, then this corresponds to
a situation with a large t̃⊥ ∼ 1 and with a fully occu-
pied lowest band, i.e., with kF,+ = π/a and kF,− = 0. From
the equality 〈c̃†

+c̃+〉 = 1 = 1
2 (〈c̃†

1c̃1〉 + 〈c̃†
2c̃2〉) + 1

2 (〈c̃†
1c̃2〉 +

〈c̃†
2c̃1〉), we then infer 〈c̃†

1c̃2〉 + 〈c̃†
2c̃1〉 = 1 on each rung of the

ladder system. In the continuum limit, phase coherence takes
place between a particle (ψ1

R )† and a hole ψ2
L . This constraint

is naturally fulfilled through the pinning conditions of φ+ and
θ− in H⊥. Here θ− can be seen as the phase associated to the
bosonic particle-hole pair wave function, and there is then a
global phase coherence for the particle-hole pairs.
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FIG. 6. Weakly coupled hybrid wires in the presence of a uni-
form magnetic field with 	tot = χa = ±π . The condition k1

F + k2
F ∓

χ = 0 allows us to make Andreev terms flowing to strong couplings
close to 	tot = ∓π , similarly as the situation at zero net flux. A
Meissner current formed by the Cooper pairs and proportional to
�χ is formed within each plaquette under a small flux deviation
from 	tot = χa = ±π , and the bulk transverse current effectively
averages to zero as described through the vertical dashed lines. The
induced parallel flow screens the effect of the perturbation �χ .
The conservation of the Meissner current close to the boundaries
is ensured through Andreev processes shown at rungs (1,2) and
(L − 3, L − 2), which have flown to the strong-coupling limit. In
addition, at the sites 0 and L − 1, similar to the Josephson junction
with Majorana fermions [46,49,72], the presence of gapless Majo-
rana modes allows for a (perturbative) current proportional to t⊥.
We then find a Majorana current in orange satisfying the property
〈 jM,2→1(0)〉 = −〈 jM,2→1(L − 1)〉, where 2 and 1 refer to the wire
indices. The choice of vector potentials at the first and last rungs is
fixed such that the Peierls phase for an electron or Majorana fermion
is half of that of a Cooper pair.

We also observe that the ±π magnetic flux suppresses the
effect of the superconducting term �1 when t⊥ � �, since at
low energy cos(2θ1) = cos [

√
2(θ+ + θ−)] and 〈ei

√
2θ+〉 ∼ 0

due to the pinning of the dual mode φ+ and the quantum un-
certainty principle resulting from commutation rules between
φ+ and θ+.

In the wire or chain representation, the system is analogous
to the rung-Mott insulator [39,40] of the ladder system. In
the rung-Mott state of hard-core bosons, the Josephson effect
produced the pinning of the phase θ−. We name the phase
found here the charge density wave (CDW) in the phase
diagram of Fig. 4 associated to the long-range correlations of
the field φ+ in the wire basis. This state of matter is driven
here by the t⊥ term (rather than the interaction term) and is
also related to a filled band insulator when t⊥ ∼ 2t .

Now we study the opposite limit where t⊥ � �, referred
to as the weak-coupling regime. The parameter �̃ flows first
to strong-coupling values in Eq. (4.9) assuming moderate
repulsive interactions (K+, K− > 1/2). Therefore, we have
θ1 ∼ 0, and its dual mode φ1 becomes fast oscillating inside
cos (

√
2φ+) = cos(φ1 + φ2). H⊥ is then irrelevant to the first

order. To the second order in perturbation, however, we still
find an effective term reminiscent of an Andreev process
between wires where a Cooper pair is transported from wire
1 to wire 2, then triggering a superconducting gap in the free
fermion wire (see Fig. 6 and more details in Appendix A)

H(2)
⊥ = − 2t2

⊥
πa�

∫
dx cos(2

√
2θ− − 2χx)

= − 2t2
⊥

πa�

∫
dx cos(2θ2). (4.10)

In the last equality, we regard 2χx as multiples of 2π and
θ1 is pinned to zero for large �. Similar to the 0-flux case,
the induced gap takes the form �̄2 = t2

⊥/�. To minimize
classically the energy in H(2)

⊥ , we obtain the pinning condition

〈cos(2
√

2θ− − 2χx)〉 = 1. (4.11)

This phase is referred to as the p-wave SC phase in the phase
diagram of Fig. 4. Here the phase reveals four MZMs until
the occurrence of the CDW order transition. Together, the
conditions k1

F + k2
F = π/a and χ = π imply that the chemical

potential will take a value where the four MZMs phase occurs.
At the transition between the CDW and the four MZMs topo-
logical phase, the modes φ+ and θ+ should become gapless,
since in the CDW phase the system tends to favor the pinning
of the mode φ+ and in the superconducting phase, both θ1 and
θ2 are pinned, implying consequently that both θ− and θ+ are
pinned. Hence, a Luttinger liquid is expected in the vicinity of
the transition line (dashed line in Fig. 4) separating the CDW
and the four MZMs phases.

Below we study the Meissner and Majorana currents that
originate when aχ deviates slightly from ±π . It is interesting
to comment that the argument below would also be applicable
for the four MZMs topological superconducting phase close to
the zero flux situation. We define and measure the Meissner-
Majorana current at the edge by a small disturbance in fluxes
�χ , as in Fig. 6. From Eq. (4.11), we obtain

χ̃ = χ + �χ, 〈∇θ−(x)〉 = �χ/
√

2. (4.12)

It is relevant to observe that �χ acting on the θ− mode
in Eq. (4.2) plays a similar role as a chemical potential
−μ̃∇θ−(x) on a band insulator with μ̃ = �χv−K−/(

√
2π ).

Therefore, the topological proximity effect takes place as long
as |μ̃| < �̄2. For |μ̃| = �̄2, by analogy to the commensurate-
incommensurate transition [70], the pinning of θ− should be
suppressed, and the system effectively behaves as if there is
a chain of free fermions and a topological superconducting
wire with two MZMs in Fig. 4. Next, we develop a linear-
response analysis in �χ for the ladder system along the lines
of Ref. [71]. In particular, we address the Majorana particle
current at the boundaries of the system with four MZMs,
building an analogy with the topological Josephson junction
[46,72].

C. Superconducting response close to π-flux

To evaluate the Meissner and Majorana currents, we em-
ploy the Heisenberg equation of motion for the density oper-
ator d (n1 − n2)/dt = i[Hhybrid, n1 − n2] with h̄ = 1 and with
n1(x) − n2(x) = −√

2∂xφ−/π (modulo a global background
charge). Integrating the continuity equation

∫
dx[∂ (n1 −

n2)/∂t + ∇ · j(x)] = 0, then we identify the parallel (in-
trawire) current (density) j‖ and the interwire (vertical) cur-
rent j⊥ associated, respectively, to H−

0 and H⊥.
The perpendicular current associated with a unit charge

q = 1 takes the form

j⊥(x) = −4t⊥
π

sin(
√

2θ−) cos(
√

2φ+). (4.13)

If we apply the pinning condition found above 〈θ−(x)〉 =
�χx/

√
2, we observe that the vertical current which was
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formally zero when �χ = 0 now gives an oscillatory re-
sponse with the space variable x in the continuum limit. We
check that

∫
dx〈 j⊥(x)〉 = 0, as an indication that circulating

Meissner currents still take place if we assume a small devi-
ation from π flux. Below we assume that the left and right
boundaries of the sample are located at x = 0 and x = L − 1
as in Fig. 6. Since we have fixed a′ = a = 1, the variable
L − 1 here will also denote the position of the last site.

To evaluate the parallel current from Eq. (4.2), it is im-
portant to mention that the charge operator has been defined
as n1(x) − n2(x) = −√

2∂xφ−/π for a unit charge q = 1. To
define the current associated to Cooper pairs, we shall then
multiply this operator by q = 2, which then results in the
following:

j‖(x) = −2
√

2vK

π
∇θ−(x). (4.14)

In the bulk, a Meissner current with charge q = 2 is then
formed. From Eq. (4.12), we obtain

〈 j‖(x)〉 = −2
√

2vK

π
〈∇θ−(x)〉 = −2vK�χ

π
, (4.15)

which screens the effect of the magnetic flux variation; see
Fig. 6. The continuity of the bulk Meissner current 〈 j‖〉 =
−2vK�χ/π close to the two boundaries in the vertical di-
rection (at sites j = 1, 2 and sites j = L − 3, L − 2 formally)
is ensured by the Andreev processes, which have flowed to
the strong-coupling limit. Once �χa �= 0, in addition to the
normal Meissner current formed by the bulk Cooper pairs, the
hopping term at the two edges also induces an edge Majorana
fermion current. The Majorana responses at sites 0 and L − 1
will be proportional to the perturbation t⊥.

Based on the analysis of Sec. III B, we introduce the
four MZMs operators {γ 1

B (0), γ 2
B (0), γ 1

A (L − 1), γ 2
A (L − 1)}.

To describe the effect of �χ symmetrically on the Majorana
fermions in the first and last (orange) unit cells in Fig. 6,
we define a vector potential of the form A⊥(0) = A⊥,2→1 =
(�χa)/(2a′) at the first rung (and effectively zero vector
potentials in the other segments of the first cell) associated
to a unit charge q = 1; the symbol 2 → 1 means going from
(lower) wire 2 to (upper) wire 1. The associated Peierls
phase at j = 0 for the Majorana fermions then takes the
form A⊥(0)a′ = �χa/2. In the last unit cell, we may define
A⊥(L − 1) = A⊥,2→1 = −A⊥(0) (and effectively zero vector
potentials in the other segments of the last cell). In this
geometry of parallel wires, the operator c†

1c2 then turns into
γ 1

B (0)γ 2
B (0)/4, which results in

H⊥(0) = t⊥
2

sin

(
�χa

2

)
iγ 1

B (0)γ 2
B (0)

≈ t⊥a

4
�χ iγ 1

B (0)γ 2
B (0). (4.16)

When �χa = 0, H⊥(0) is zero, reflecting that the phase with
four-Majorana edge modes is protected against a π -flux since
the hopping term t⊥eiχx j = t⊥(−1) j becomes real and since
the arguments of Sec. III B show that in this case t⊥ should
not hybridize the MZMs. Similarly to Eq. (3.13), we check
that Majorana fermions move adiabatically (linearly with �χ )
from zero energy when deviating from π flux per plaquette.

At the left boundary of the system, the Majorana current is
denoted as 〈 jM (0)〉 = 〈 jM,2→1(0)〉 and is defined as 〈 jM (0)〉 =
∂〈H⊥(0)〉/∂[aA⊥,2→1(0)] = 2∂〈H⊥(0)〉/∂ (a�χ ), which re-
sults in

〈 jM (0)〉 = (t⊥/2)
〈
iγ 1

B (0)γ 2
B (0)

〉
. (4.17)

In the π -flux configuration, [iγ 1
B (0)γ 2

B (0),Hhybrid] = 0, the
parity operator iγ 1

B (0)γ 2
B (0) associated to these two MZMs

is equally likely to take an expectation value ±1. Then
〈iγ 1

B (0)γ 2
B (0)〉 = 0 on average and accordingly 〈 jM (0)〉. As

soon as one switches on �χa = 0+, to minimize the energy,
the parity operator 〈iγ 1

B (0)γ 2
B (0)〉 is locked to −1, producing

a response 〈 jM (0)〉 = (t⊥/2). Here the Majorana current sat-
isfies 〈 jM (0)〉 = −〈 jM (L − 1)〉 where jM (L − 1) = jM,2→1.
This relation can be derived from the boundary term

H⊥(L − 1) ≈ − t⊥a

4
�χ iγ 1

A (L − 1)γ 2
A (L − 1). (4.18)

By symmetry between the two wires’ boundaries, we have
the relations γ 1

A (L − 1) ↔ γ 2
B (0) and γ 2

A (L − 1) ↔ γ 1
B (0),

ensuring that 〈H⊥(0)〉 = 〈H⊥(L − 1)〉. The identification
〈 jM (0)〉 = −〈 jM (L − 1)〉 comes from the vector potential
A⊥,2→1(L − 1) = −A⊥,2→1(0) = −(�χa)/2a′, as shown in
Fig. 6. When writing Eq. (4.18), we have assumed that
t⊥(−1) j takes the same values at j = 0 and j = L − 1 im-
plying that L − 1 is even; an odd value of L − 1 would lead
to the same physical result and would just flip the value of
〈iγ 2

A (L − 1)γ 1
A (L − 1)〉 at the boundary to satisfy 〈H⊥(0)〉 =

〈H⊥(L − 1)〉. This shows that the physics remains the same
independently of the relative parity between the two pairs of
Majorana fermions at the boundaries.

If we change �χ → −�χ , all the currents should flip their
signs. The energy conservation of 〈H⊥〉 is related to a flip
of the parity operator formed by the two Majorana fermions
at one boundary. There is then a jump of size t⊥ associated
with the edge MZM current when changing the sign of �χ

close to π -flux per plaquette. This situation is therefore very
similar to a Josephson junction with a resonant level which
can be realized with a double-dot charge qubit and which
shows a similar “jump” in the superconducting Josephson
response for a π phase shift [73]. The resonant level here is
formed at π flux per plaquette through the two values of the
expectation value of the parity operator iγ 1

B (0)γ 2
B (0) = ±1

at the boundary. Figure 6 illustrates the formation of the
composite Meissner-Majorana current. It enables us to detect
the four-Majorana edge mode through the measurement of the
vertical current at the two boundaries. Physically, to measure
the Majorana current, one can resort to a setting similar to
the one suggested in Ref. [74], where an analogy between
Majorana fermions and a resonant level was also addressed.

D. Abelian quantum Hall phases

We can also consider, in general, any configuration allowed
by Eq. (4.7):

a
[(

k1
F + k2

F

) − mχ
] = 0 mod 2π, (4.19)

with m odd and χa �= ±π . Adjusting the densities in the two
wires, one can then reach quantum Hall plateaux for specific
values of the magnetic field. As before, one can safely drop
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out fast oscillating terms, such as ∝ ∫
dx cos(· · · ∓ 2χx) in

H⊥ (4.3), and reach for m = 1:

H⊥ = − t⊥
πa

∫
dx cos[

√
2(θ− − mφ+)]. (4.20)

In the strong-coupling limit, t⊥ � �, the form of the inter-
wire hopping term H⊥ (4.20) satisfies the classification of a
ν = 1/m Laughlin state (with m odd) and integer quantum
Hall effect when ν = 1 [13,14]. We show below that in that
case the intrawire pairing term � flows to zero according to
renormalization group arguments. In the case of m = 1, the
quantum Hall phase can be achieved for free fermions, as ex-
perimentally confirmed in ultra-cold atoms [26], and we check
that the hopping term is relevant in that case for K = 1 under
the renormalization group procedure. Long-range Coulomb
forces resulting in K 	 1/2 can also stabilize the fractional
quantum Hall state at ν = 1/3 by making the tunneling term
in Eq. (4.20) relevant for m = 3, as numerically observed
[31,32]. In that case, one must include higher harmonics con-
tributions to the definition of the fermion operator in Eq. (3.1)
to obtain Eq. (4.20) for the same density-flux constraint as in
Eq. (4.19) [31].

The relevance of the hopping term t⊥ here pins the mode
(θ− − mφ+) to zero, which can be interpreted as a (bulk)
gapped mode by analogy to a two-dimensional system. A
ladder system is described by four bosonic fields, which
implies that two modes are still gapless. The latter describe
the two chiral edge modes of the ladder system. To properly
describe the system and the edge states, it is convenient to
introduce four chiral fields [29,30]

φα
r = θα

m
+ rφα, (4.21)

with α = 1, 2 representing the wire index and now r = +1/ −
1 denoting the left/right moving particles in agreement with
Eq. (3.1). The chiral bosonic fields satisfy the commutation
relation[

φα
r (x), φβ

p (x′)
] = ir

π

m
δr pδαβsgn(x′ − x). (4.22)

New modes can be constructed from φα
r which capture the

properties of the gapped bulk states (θ, φ){
φ = ( − φ1

−1 + φ2
+1

)
/2,

θ = (
φ1

−1 + φ2
+1

)
/2,

(4.23)

and gapless edge states (θ ′, φ′){
φ′ = ( − φ2

−1 + φ1
+1

)
/2,

θ ′ = (
φ2

−1 + φ1
+1

)
/2.

(4.24)

The commutation relation reads

[φ(x), mθ (x′)] = i(π/2)sgn(x′ − x), (4.25)

and the same for the gapless modes (φ′, θ ′). The bulk gapped
mode is now related to the field φ. When t⊥ � �, correspond-
ingly, the bulk mode φ is pinned to a classical value since

H⊥ = − t⊥
πa

∫
dx cos(2mφ). (4.26)

A gap is opened in the bulk as previously shown in Fig. 1
(bottom right). In Appendix B and Eq. (B11), we check that

FIG. 7. Edge current for a unit charge q = 1 in the Abelian
quantum Hall state (ν = 1) when t⊥ � �. An arbitrary uniform
magnetic flux is applied on each plaquette.

the two gapless modes which produce a chiral Luttinger the-
ory are L(x) = φ1

+1(x) = θ ′(x) + φ′(x) and R(x) = φ2
−1(x) =

θ ′(x) − φ′(x). Starting from free fermions and K = 1, the
edge Luttinger parameters are Ke = 1, ve = v. We thus realize
an Abelian quantum Hall phase at filling factor ν = 1/m = 1
in the presence of an arbitrary uniform flux. If we change the
direction of the magnetic field, which is equivalent to change
m → −m in Eq. (4.19), we obtain similar results by inverting
the left and right-moving particles’ definitions in Eq. (4.21).

The two gapless modes are, furthermore, protected against
a small intrawire pairing. Indeed, we can rewrite H� as

H� = − �

πa

∫
dxei[2mθ+√

2(θ−+mφ− )] + H.c. (4.27)

Since φ is pinned to a classical value minimizing the co-
sine potential term, then the dual mode θ oscillates rapidly:
〈eiθ (x)e−iθ (0)〉 ∝ e−x/ξ with a correlation length ξ proportional
to 1/t⊥. Therefore, H� flows to zero for large t⊥. For the
observables, the integer Laughlin state is revealed in the edge
current. A direct calculation of the parallel and perpendicular
currents defined in Sec. IV C for a unit charge q = 1 leads to

〈 j⊥(x)〉 = −2t⊥
π

〈sin(2mφ)〉 = 0,

〈 j‖(x)〉 = −
√

2vK

π
〈∇θ−(x)〉. (4.28)

Choosing an alternative gauge for the magnetic vector
potential

A⊥ = 0,

∮
�A · d�l = (A1

‖ − A2
‖)a = χa, (4.29)

we rewrite the quadratic contribution to the action for the −
bosonic field, as

S[φ−, θ−] = v

2π

∫
dx dτ

[
1

K
(∇φ−)2 + K (∇θ− + A−

‖ )2

]
,

(4.30)

where A−
‖ = (A1

‖ − A2
‖)/

√
2. To extremize the action

∂S/∂θ− = 0, it requires 〈∇θ−(x)〉 = −A−
‖ . The edge current

of the integer Laughlin state for a unit charge q = 1 and for
free electrons K = 1 hence becomes

〈 j‖(x)〉 = vKχ

π
. (4.31)

It follows the same direction as the vector potential produced
by the magnetic flux (shown in Fig. 7).

In the presence of Coulomb interactions, as shown in
Appendix B, backscattering effects occur for K �= 1 when
integrating out the bulk (gapped) mode on the two-leg lad-
der system, and as a result the charge at the edges will
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be adiabatically deformed [22,29,30]. In contrast, the bulk
polarization in a Thouless pump geometry [61] is stable under
Coulomb interactions as shown in Appendix C, reflecting the
Zak phase, and measuring ν. Similar arguments apply to the
Laughlin phase ν = 1/3 stabilized with long-range Coulomb
interactions [31,32]. The charge at the edges in these ladder
systems could be measured accurately [22,30,75–78].

The quantum Hall phase at ν = 1 occurs when t⊥ � �. In
the weak-coupling limit t⊥ � �, for an arbitrary flux, both the
first-order (4.20) and the second-order (4.10) contributions of
t⊥ are irrelevant from renormalization group arguments since
the superfluid mode θ1 is now pinned. In Appendix A we find
that the most relevant term is

H(4)
⊥ = − t4

⊥
3πa�3

∫
dx cos{2[θ2(x + 2a) − θ2(x)] + 4χa},

∝ e4iχac†
2(x − a)c†

2(x)c2(x + a)c2(x + 2a) + H.c.
(4.32)

The constraint on the phases

θ2(x + 2a) − θ2(x) = −2χa (4.33)

helps to form a local current formed by the Cooper pairs
within three adjacent plaquettes, and using Eq. (4.15), this
leads to

〈 j‖(x)〉plaquette = −2vKχ

π
. (4.34)

Deviating from the π -flux substantially in the weak-coupling
region, an arbitrary flux breaks the symmetry T and destabi-
lizes the proximity effect (see related discussion in Sec. IV B).
Consequently, there is no induced superconducting gap in the
free fermion wire. Still, two Majorana edge modes persist
in the original Kitaev superconducting wire. The protection
against orbital magnetic effects in this weak-coupling re-
gion could be useful for applications in quantum computa-
tion and engineering of Majorana fermions with magnetic
fluxes [79].

Figure 4 shows the phase diagrams for the cases of π flux
per plaquette at half filling and arbitrary fluxes, when adjust-
ing the densities in the wires such that the proximity effect can
effectively takes place. In the strong-coupling limit, on the
other hand, one is able to distinguish the CDW and Abelian
quantum Hall states from the responses of the Thouless pump
[61]. We refer the reader to Appendix C, where a proposal
for the measurement is raised and the stability of the bulk
polarization under Coulomb interactions is also discussed.

E. ν = 1/2 quantum Hall phase for a spin-1/2 ladder

With arbitrary fluxes, another interesting comparison can
be made with the case of spinful or spin-1/2 fermions. Two
of us have previously shown in Ref. [29], for a spin-1/2
system, that the attractive Hubbard interaction and the long-
range repulsive interwire interaction help stabilize a ladder
generalization of a Cooper pair Laughlin state at ν = 1/2.
The attractive channel allows us to realize a Luther-Emery
model [80] with Cooper pairs or bosons, and the long-range
repulsive interaction then realizes the hard-core boson regime.
An essential difference with the spinless situation is that here
we take into account the spin-charge separation phenomenon

FIG. 8. (Left) Weakly coupled spinful (spin-1/2) wires with a
flux configuration 	tot = χa = (k1

F + k2
F )a. The dashed arrows rep-

resent the interactions between fermions with different spins. (Right)
Formation of Cooper pair Laughlin state at ν = 1/2, where the chiral
edge currents move in opposite direction compared to those in the
Meissner effect.

of the Luttinger liquid. Therefore, as for a Luther-Emery
liquid, the Cooper pairs are realized through a gap in the
spin channel in the two wires. The two charge fields are
still free in the wires, allowing more tunability to realize a
Laughlin state at ν = 1/2 of hard-core bosons from the charge
sector. The filling factor ν = 1/2 reflecting the charges of
quasiparticles in the bulk can be accessed through Thouless
pump measurements. The main difference with the Meissner
effect is that the edge current now flows in opposite direction,
as shown in Fig. 8 compared to Fig. 6. Below we first briefly
review the main results, and later in Sec. V B we will extend
the building block to coupled-ladder systems referring then to
the fourth case of study.

The key ingredients of the spinful ladder can be found in
Fig. 8 (left). Four parts enter into the Hamiltonian

Hspinful = H‖ + H⊥ + U + V . (4.35)

The intra- and interwire hopping terms H‖ and H⊥ keep the
form of the spinless case with the addition of the spin flavor
s =↑,↓: cα ( j) → cα,s( j). The flux configuration also satisfies
ζ = 0 and the constraint (4.19) for an arbitrary value of χ .
For the interactions, we take into account the Hubbard and
interwire Coulomb repulsion:

U =
∑

j

∑
α=1,2

Uαnα,↑( j)nα,↓( j),

V = V⊥
∑

j

∑
s,s′=↑,↓

n1,s( j)n2,s′ ( j), (4.36)

where nα,s( j) = c†
α,s( j)cα,s( j) denotes the particle number

operator. For simplicity, we consider two identical wires
sharing the same attractive Hubbard interaction U = U1 =
U2 < 0 and a repulsive long-range interaction V⊥ > 0 is added
between the wires. We consider the weak-coupling regime
t⊥ 	 (|U |, |V⊥|), where H⊥ acts as a small perturbation.

Applying bosonization techniques [19,66], we introduce
the spin (σ ) and charge (ρ) degrees of freedom through the
transformation

φσ (x) = 1√
2

[φ↑(x) − φ↓(x)],

φρ (x) = 1√
2

[φ↑(x) + φ↓(x)], (4.37)
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and the same for the dual modes θσ,ρ . The Hamiltonian then
takes the form

Hspinful = Hσ + Hρ + H⊥,

Hρ = H+
0,ρ + H−

0,ρ,

Hσ =
∑

α=1,2

Hα
0,σ + U

2π2a

∫
dx cos

(
2
√

2φα
σ

)
,

H⊥ = − t⊥
2πa

∫
dx

∑
s=±1

∑
r,r′=±1

eiχaeir′(k1
F +rk2

F )x

× e−ir′[φr
ρ+r′θ−

ρ +s(φr
σ +r′θ−

σ )] + H.c. (4.38)

Here H±
0,ρ and Hα

0,σ with α = 1, 2 take the Luttinger form.
The Luttinger parameters are defined as Kσ = K1

σ = K2
σ =

(1 + u)−1/2, K±
ρ = (1 − u ± v⊥)−1/2, where u = |U |a/(πv),

v⊥ = 2V⊥a/(πv). In the spin part, the attractive Hubbard
interaction U plays the same role as the pairing term H� for
the spinless particles, resulting in the pinning conditions for
the spin modes (modulo π/

√
2):

φσ = φ1
σ = φ2

σ ∼ 0. (4.39)

The Cooper pairs formed along each wire are protected by a
spin gap �σ which grows exponentially fast at small U and
then �σ ∝ |U | for strong interactions.

Below we assume the flux condition 2(k1
F + k2

F ) ± 2χ = 0
following Ref. [29]. For the energy scales smaller than �σ , the
dual mode θ−

σ = (θ1
σ − θ2

σ )/
√

2, meanwhile, oscillates rapidly
in H⊥ making the coupling term t⊥ irrelevant to first order in
perturbation theory. The second-order term gives the charge
contribution

H(2)
⊥ = − t2

⊥
�σπa

∫
dx cos[2(θ−

ρ ± φ+
ρ )]. (4.40)

To study the motion of Cooper pairs, we notice that the corre-
sponding creation operator satisfies (ψα

−r,↑ψα
r,↓)† ∼ e−ir

√
2θα

ρ .
This implies a canonical transformation for Cooper pairs on
each wire:

�α
ρ =

√
2θα

ρ , 	α
ρ = φα

ρ /
√

2,

H(2)
⊥ = − t2

⊥
�σπa

∫
dx cos[

√
2(�−

ρ ± 2	+
ρ )]. (4.41)

By analogy with spinless fermions [see Eq. (4.20)], a
fractional Cooper pair Laughlin state is observed at ν =
1/(2m) = ±1/2 on the spinful ladder, as shown in Fig. 8
(right).

In the end, we comment that a relatively strong long-range
repulsive interwire interaction V⊥ plays a vital role in driving
the system towards a fractional quantum Hall state [29]. This
will be studied in more detail in Sec. V B.

V. TOPOLOGICAL PHASES IN COUPLED LADDERS

In this section, we present two proposals to realize two-
dimensional topological phases using multiple coupled lad-
ders (corresponding to the third and fourth cases of Sec. II B).
First, we design a p + ip superconductor [10] starting from
the bonding-antibonding band representation of a pair of
wires—“ladder geometry”—and generalizing the analysis to

FIG. 9. (Left) Coupled ladder construction for a p + ip super-
conductor. A building block is formed in blue with two strongly
coupled wires. The blue ladders then couple together via the pink
regions. While the pairing terms denoted by gray arrows (both
intra- and interwire) are suppressed in the strong coupling limit,
the pairings denoted by red and green arrows (interwire only) are
responsible for the ipx and py channels. (Right) Flux attachment in
each square plaquette with ζa = χa = π . In each square unit cell,
the total net flux is zero. Peierls phases take opposite values within
two successive plaquettes in the y direction for the same hopping
process.

coupled ladder systems. Here a pair of wires with appropriate
Peierls phases ζ and χ will generate an ipx superconduct-
ing channel, and coupling weakly the ladders together will
provide the py channel. If we would consider instead only
strongly coupled wires or symmetrically coupled wires, then
the projection onto the lowest band which is assumed below
would result in long-range pairing terms in the direction
perpendicular to the wires, through the tunneling term t⊥ and a
generalization of Eq. (3.8). Other proposals coupling quantum
wires have suggested the possible engineering of ip channels
through bath or reservoir engineering [15,81–83] by analogy
to the two-dimensional case [10]. It is also important to
mention that for spins-1/2 fermions, similar ladder construc-
tions allow us to reproduce d-wave superconductivity, D-Mott
and pseudogap physics, relevant to cuprate superconductors
[37,84,85]. Second, we address the case of coupled spinful or
spin-1/2 ladder systems where, as obtained in Sec. IV E, each
ladder hosts a Cooper pair Laughlin state at filling ν = 1/2.
In the presence of a uniform magnetic field and long-range
repulsive interactions, we show how the coupled wire system
can form a single bulk fluid with chiral modes at the edges
now carrying a charge in agreement with the two-dimensional
bulk-edge correspondence [7].

A. p + ip superconductor from spinless fermions

Here we present our proposal to engineer the p + ip super-
conductor in coupled ladder geometries (referring to the third
case of study). Depicted in Fig. 9 (left), our building block is
a blue ladder comprising two strongly coupled wires labeled
by α = 2l − 1, 2l where l is an integer. The flux attachment
which will be responsible for the ipx channel is shown in
Fig. 9 (right top).

First, we reanalyze a block, say, with α = 1, 2, for the case
with ζ = χ . The kinetic part of the Hamiltonian is described
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by H‖ and H⊥ in Eq. (2.2) with

ζ = χ, 	total = 0. (5.1)

As discussed in Sec. II, we assume here that the vector
potentials related to ζ and χ are engineered, for instance,
in ultracold atom systems. In solid-state nanowires, this can
also be realized through a space-dependent magnetic field
Bz = χ/a′ − ζπ/(2a′) sin(πy/a′). Physically, the two pieces
related to χ and ζ correspond to the superposition of two
distinct forms of magnetic fields, as emphasized in Sec. II.
Since the total flux per plaquette is zero, we can rewrite the
band structure as the one of Fig. 1 (bottom left), in the absence
of magnetic flux, performing a proper gauge transformation
similar to Eq. (2.9). The pairing terms will be modified
accordingly, then providing the required physics, namely, an
ipx channel, after fixing the value of χ = ζ = π/a. Coupling
weakly the ladders together, we realize a py channel. There are
two key properties to this proposal. First, the magnetic field Bz

will be staggered in the y direction implying that χ also takes
opposite values in two successive plaquettes in the y direction
with the requirement that 	tot = 0 in all plaquettes. Here χ

represents a periodic staggered steplike function in the y direc-
tion. Therefore, induced Zeeman effects at the position of the
wires will be small and controllable through another magnetic
field Bx along the x direction (which is important to induce
the proximitized p-wave pairing potentials [47]). Second,
the choice χ = ζ = π/a leads to imaginary hopping terms
±it along the wires, which break chiral symmetry and time-
reversal symmetry while preserving particle-hole symmetry.
This then allows for a wire construction of a topological phase
of class D, e.g. a two-dimensional p + ip superconductor [58].
The transverse hopping term of the form t⊥(−1) j is real,
therefore ensuring that Majorana modes can occur at zero
energy. Below we provide two physical interpretations of the
results when using equivalent low-energy theories related to
Figs. 1 (bottom left and right), which implies that the results
are gauge independent.

Performing the gauge transformation (2.9),

c1( j) = eiχx j/2c̃ 1( j), c2( j) = e−iχx j/2c̃ 2( j), (5.2)

we can define the new basis for the bonding (+) and antibond-
ing (−) fermions

c̃ ±( j) = [̃c 1( j) ± c̃ 2( j)]/
√

2. (5.3)

The two-band model in Eqs. (2.7) and (2.8) is recovered with
the band structure shown in Fig. 1 (bottom left). A gap of
scale (2t⊥) is opened between “+/−” bands. Below we fix the
chemical potential μ such that the + band becomes partially
filled and the − band remains empty. We then project a pair of
wires, the blue ladder system, onto the lowest bonding band
pair basis:

H0,+ = −
∑

kx

[2t cos(kxa) + t⊥ + μ]̃c †
+(kx )̃c +(kx ). (5.4)

In the strong coupling limit t⊥ � �i, the phase ζ is important
to suppress the intrawire pairing. The intrawire pairing term

�1 = �2 = � becomes

H� = i�
∑

kx

sin(kxa) cos(ζ/2a)̃c †
+(kx )̃c †

+(−kx ) + H.c.

(5.5)

Below we set χ = ζ = πa, such that this contribution be-
comes zero. As mentioned above in Sec. III A, the interwire
contribution �0 involving a given rung also vanishes be-
tween nearest (N) neighbors when projecting onto the lowest
band:

0 = H�0,N = �0

∑
j

c†
1( j)c†

2( j) + H.c.

= �0

4

∑
kx

[̃c †
+(kx ), c̃ †

+(−kx )] + H.c., (5.6)

but survives between next-nearest (NN) neighbors

H�0,NN = �0

∑
j

c†
1( j)c†

2( j + 1) + H.c.

= �̃
∑

kx

i sin(kxa)̃c †
+(kx )̃c †

+(−kx ) + H.c., (5.7)

with �̃ = (�0eiχa/2)/2. Adding a term �0
∑

j c†
2( j)c†

1( j +
1) + H.c. would result in an identical contribution in the
bonding band basis. In the equations above, we have ignored
all irrelevant terms involving the “−′′ band. Once we fix the
flux value

χa = π, �̃ = i�0/2, (5.8)

we engineer a purely imaginary ipx channel for the bonding
fermions in each blue building block α = 2l − 1, 2l . The
pair of strongly coupled wires then effectively behaves as
a topological ipx superconductor with two Majorana zero
modes, one at each boundary. The projection onto the lowest
bonding band (of each ladder) is important to produce a purely
ipx channel.

Now we couple the blue building blocks or ladders along
the y direction by the tunneling amplitude t ′

⊥ (corresponding
to the pink blocks in Fig. 9, left) with a reversed flux unit χ →
−χ depicted in Fig. 9 (right bottom). The magnetic field Bz =
χ/a′ − ζπ/(2a′) sin(πy/a′) then becomes staggered in the y
direction. To realize the ipx + py superconductor (or px ± ipy

superconductor modulo gauge redefinitions), the magnetic
field Bz must be uniform in the x direction but staggered in
the y direction.

Formally, this construction is correct as long as t ′
⊥ 	 t⊥,

such that the bonding-antibonding band representation of
a two-coupled wire model remains valid. Through a pink
region, we obtain the Hamiltonian:

H′
⊥ = −t ′

⊥

M ′/2∑
l=1

e−iχxc†
2l (x)c2l+1(x) + H.c.,

H′
�0,N = �0

M ′/2∑
l=1

c†
2l (x)c†

2l+1(x) + H.c. (5.9)
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For the coupled wire system, the gauge transformation (5.2)
can be generalized as

c2l−1( j) = eiχx j/2c̃ 2l−1( j), c2l ( j) = e−iχx j/2c̃ 2l ( j),
(5.10)

which leads to

H′
⊥ = −t ′

⊥
∑

ky

cos(kya′ )̃c †
+(ky )̃c +(ky),

H′
�0,N = �0

2

∑
ky

i sin(kya′ )̃c †
+(ky )̃c †

+(−ky) + H.c. (5.11)

Thus we can implement a purely real py channel for the
bonding fermions, assuming that t ′

⊥ 	 (t⊥, t ). The relative
phase between the ipx and py channel is locked through the
gauge transformation (5.10).

Next, we define two-dimensional fermion operators
c̃ +(k) = c̃ +(kx, ky). The goal is to study the phase diagram
and edge state properties associated with the system. To
that end, it is convenient to switch to the Majorana fermion
representation,

c̃ +(k) = 1
2 [γ1(k) + iγ2(k)]. (5.12)

Similarly to Ref. [15], for simplicity we set the lattice spac-
ing a = a′ = 1, and we concentrate on the regime with low
densities around k 
 (0, 0), where we have

H+ 
 H0,+ + H�0,NN + H′
⊥ + H′

�0,N

= −1

4

∑
k

γ T (−k)H+(k)γ (k), (5.13)

with γ T (−k) = (γ1(−k), γ2(−k)) and

H+(k) = ukxτ
z +

[
ε0 + k2

x

2m
+ T2 cos(ky)

]
τ y + R2 sin(ky)τ x.

(5.14)

Here τ i (i = x, y, z) denote Pauli matrices, and effective pa-
rameters are given by u = �0, m = 1/(2t ). The three param-
eters locating the phase transitions read

ε0 = −2t − t⊥ − μ, T2 = −t ′
⊥, R2 = −�0. (5.15)

The phase diagram of H+ (5.14) is carefully studied in
Ref. [15], and we adjust the discussion for the Majorana zero
modes at a boundary to our situation. By tuning μ, ε0 goes
from a large negative value to a large positive value (with
respect to ±|T2|), and this produces two phase transitions from
an anisotropic topological superconducting phase to the trivial
strong paired state through the occurrence of an intermediate
topological two-dimensional Moore-Read particle-hole phase
[11].

A large (positive) ε0 � |T2| value hinders the occurrence of
MZMs from an energetics point of view in the trivial strong-
paired phase. The chemical potential is located below the
bottom of the lowest band. When ε0 = +t ′

⊥ = +|T2|, we enter
into the intermediate topological phase. The energy spectrum
becomes gapless in the two-dimensional sense with the lowest
energy eigenvalue −�0

√
k2

x + k2
y close to kx = ky = 0. A

two-dimensional gapless Majorana mode flows around the
sample, as a chiral edge mode. The physics is then related

to the neutral sector of a Moore-Read particle-hole Pfaffian
phase [11] with an effective px − ipy channel for R2 < 0. By
changing the sign of χ = ζ by −π , we flip the sign of R2, and
the intermediate region now becomes the Pfaffian phase [11].
Changing the sign of R2 will change the velocity (direction) of
propagation of the Majorana mode. In fact, as long as |ε0| �
|T2| [15], the system stabilizes one gapless chiral Majorana
fermion. Increasing the chemical potential further, this results
in (very) negative values of ε0 � −|T2|, and therefore low-
energy modes move away from kx = ky = 0. Modes in the y
direction associated to the R2 sin(ky)τ x term now cost a finite
energy, and the system becomes anisotropic. This parameter
regime is adiabatically linked to N decoupled ipx topological
superconductors with 2N MZMs. From Sec. III B, in our ge-
ometry, the 2N gapless Majorana modes should be protected
against real �0 and t ′

⊥ terms in Eq. (5.11), meaning that the
Majorana fermions of each chain should remain decoupled
from those in other chains.

For completeness, we provide an alternative understanding
of the emergence of a purely ipx channel using the band
structure of Fig. 1 (bottom right). As mentioned in Sec. II,
the ζa = ±π phase on the two wires produces equivalently
purely imaginary hopping terms ±it for the two wires, then
modifying the band structure of free fermions as ∓2t sin(kxa).
When t⊥ = 0, these two bands cross at kx = k0 = 0 with the
indices 1 and 2 in Fig. 1 switched (bottom right). Furthermore,
in Eq. (2.2), the perpendicular tunneling term t⊥ becomes
modified as t⊥(−1) j . By Fourier transform, we then conclude
that for this situation, the tunneling term t⊥ does not open a
gap at the crossing point, i.e., at k0 = 0. If we also Fourier
transform the �0 channel in Eq. (5.7) including the effect of
the phases ζa = ±π for the two wires, then the wave vectors
(of the two wires) in Fig. 1 (bottom right) are modified as
kx → kx ± ζ/2, and around the crossing point k0 = 0, the �0

NN-neighbor channel can indeed produce a term, as

�0

M

∑
j

∑
kx,k′

x

c̃ †
1(k′

x )̃c †
2(kx )ei(kx+k′

x ) jaeik′
xaei aζ

2 + H.c. (5.16)

When kx = −k′
x = 0, the pairing term vanishes. Then, we con-

firm that the induced gap at the Fermi energy takes the form
�̃ = (�0eiζa/2)/2 with here ζ = χ = π/a. We also check
that the N-neighbor �0 channel vanishes in the low-energy
subspace due to anticommutation rules between fermionic op-
erators �0c̃ †

1(0)̃c †
2(0) + H.c ≈ 0. To proceed and understand

the correspondence with Eq. (5.14), we remind readers that
the mapping onto Fig. 1 (bottom right) is applicable as long as
one assumes to be close to the band crossing point. Taking into
account the momentum boost k → k ± ζ/2 with ζ = π/a,
this corresponds to the case where each wire is half-filled.
In the corresponding Fig. 1 (bottom left) this implies that the
lowest band is now close to the full filling, which corresponds
to change −2t → +2t for the lowest bonding band compared
to the case studied before where the (lowest) band is almost
empty. One must therefore readapt in the arguments that ε0

now becomes +2t − μ − t⊥; when the lowest band is filled,
then this means that kF,+ = π/a. Then, to make the corre-
spondence with Eq. (5.14) complete, one can then reidentify
the fermionic operators c̃ 1(k) and c̃ 2(k) close to the crossing
point k0 with the left-moving and right-moving branches of
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the lowest band operator c̃ +(k). From Fig. 1 one can then
apply the same arguments as in Eq. (5.14), modulo the fact
that one redefines ε0 = 2t − t⊥ − μ.

It is perhaps important to mention a duality in the system
when exchanging the blue and pink ladders in Fig. 9 (with
open boundary conditions in the y direction), showing that the
above two-dimensional Majorana fermion analysis remains
applicable when t ′

⊥ � t⊥.
When fixing the total flux per plaquette 	tot = χ − ζ = 0

and changing (decreasing) adiabatically the value of χ = ζ

from π/a, i.e., decreasing slightly the value of the magnetic
field Bz, we observe that the transformation (5.10) remains
applicable. Then this produces additional real channels to
the ipx superconducting channel coming from Eqs. (5.5) and
(5.7), resulting in a i(px − ip′

x ) channel, whereas the py chan-
nel remains identical. Through the arguments of Sec. III B,
a superconducting channel of the form (px − ip′

x ) (defined
modulo the global phase π/2) should then slightly move
progressively the 2N Majorana fermions in the anisotropic
phase away from zero energy. On the other hand, the two-
dimensional chiral gapless edge mode seems to survive in the
Moore-Read phase. More precisely, entering this phase from
the strong-paired phase which means that ε0 = +t ′

⊥ = +|T2|,
the lowest energy eigenvalue turns slightly into −[u2k2

x +
(R2ky + vkx )2]1/2, where v is proportional to δχ�0 and δχ =
π/a − χ (with a = 1). Therefore, when fixing either kx �=
0, ky = 0 or kx = 0, ky �= 0, the energy spectrum still allows
for a linear gapless Majorana mode.

It is instructive to briefly address the limiting case where
Bz = 0. In that case, all the channels px and py are real.
In the low-energy description of Eq. (5.14) we have u =
0 and the last term R2 describes all the superconducting
terms �̃ sin ky + ˜̃� sin kx, where �̃ = −�0, and now ˜̃� takes

into account all the intraladder pairing terms ˜̃� ∼ −�. As-
suming that �̃ ∼ ˜̃�, we can redefine the R2 contribution
as 2�̃ sin((kx + ky)/2) cos((ky − kx )/2). The superconduct-
ing pairing term can be then rewritten in terms of the wave
vectors k′ = (kx + ky)/2 and k′′ = (ky − kx )/2, which implies
that in that case gapless excitations defined around k′ = 0 will
correspond to nodal quasiparticles in the bulk propagating
between a + and − p-wave lobe, associated with zeros of the
superconducting term.

B. Fractional quantum Hall state at
ν = 1/2 with spinful fermions

Here we would like to address the coupled spinful ladders
based on the building block in Sec. IV E, referring to the
fourth case of analysis. A two-dimensional fractional quantum
Hall state at ν = 1/2 can be built from the Cooper pair
Laughlin states formed on each ladder.

The general building block for the construction is shown in
Fig. 10. Under the flux constraint (4.19), the coupling on the
rungs of the J-th ladder gives a Sine-Gordon term (4.41) in
the charge sector

HJ
⊥ = −ṽ

∫
dx cos(

√
2θ−

J − m̃
√

2φ+
J ), (5.17)

FIG. 10. (Left) Coupled spinful ladders with uniform flux attach-
ment; the variable J represents the ladder label and l = J + 1/2
in the middle of two successive ladders will represent the modes
formed by coupling ladders together. (Right) Formation of a two-
dimensional quantum Hall system with the filling factor ν = 1/m̃ =
1/2. The two chiral edge states L1 and RN are now diagonal in the
K-matrix structure producing an SPT phase of Class A [60].

where we introduce the charge fields as θ−
J = �−

ρ,J , φ+
J =

	+
ρ,J with ṽ = t2

⊥/(�σπa) and m̃ = 2m = ±2. By analogy
with the spinless case, one can build an edge theory on
each ladder in the new basis of Eqs. (4.21)–(4.24) with the
substitution m → m̃. Accordingly, the bulk modes (θ J , φJ )
generate a term

HJ
⊥ = −ṽ

∫
dx cos(2m̃φJ ), (5.18)

then pinning each mode φJ and producing a gap. The two edge
modes on the Jth ladder are identified as the chiral fields (see
Fig. 10, right) {

LJ = φ1,J
+1 = θ ′J + φ′J ,

RJ = φ2,J
−1 = θ ′J − φ′J ,

(5.19)

with φα,J
r = θα,J/m̃ + rφα,J and α = 1, 2 representing the

wire index inside each ladder. In Fig. 10 (right), each ladder
behaves as a small quantum Hall system which gives rise to
two low-energy chiral edge modes LJ and RJ . Neighboring
chiral edge modes belonging to two successive ladders can
then be coupled through an additional t ′

⊥ term at low energy,
smaller than the typical energy scale �̃ at which the term ṽ has
flown to strong couplings in each ladder. Here �̃ can be esti-
mated as �c(ṽ/v)1/(2−2|m̃|K ) with �c ∼ �σ . As mentioned in
Sec. IV E, we require the introduction of long-range Coulomb
forces (such that 2|m̃|K < 2) to stabilize the relevance of this
energy scale. To couple the left-moving mode LJ+1 of the
ladder J + 1 with the right-moving mode RJ of the ladder
J , this requires momentum conservation during the tunnel
process, and therefore this requires us to apply a magnetic
field χ ′ = +χ in the region centered at the position J + 1/2.

It is then possible to couple two edge modes between
ladders taking into account the effect of an additional intralad-
der magnetic flux χ ′ = χ by analogy to the two-dimensional
quantum Hall effect, as depicted in Fig. 10 (left). Between the
Jth and (J + 1)-th ladders, the flux constraint then follows

a
[(

k1
F + k2

F

) − mχ ′] = 0 mod 2π. (5.20)
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Through a recombination of the fields as in Fig. 10,{
φ̃J+1/2 = (−RJ + LJ+1)/2,

θ̃J+1/2 = (RJ + LJ+1)/2,
(5.21)

for t ′
⊥ 	 t⊥, the bulk and edge Hamiltonians take the form

Hbulk = H̃0[θ̃ , φ̃] −
∑

l=J+1/2

∫
dx̃v′ cos(2m̃φ̃l ), (5.22)

Hedge = ve

8π

∫
dx[ARR(∇RN )2 + ALL(∇L1)2]. (5.23)

The tunnel process ṽ′ = t ′
⊥

2
/(�̃πa) represents the backscat-

tering process of fractional charges m(2e) from one left-
moving chiral edge to another right-moving edge. The bulk
quadratic Hamiltonian H̃0 has the coupled form in θ̃ and φ̃:

H̃0[θ̃ , ϕ̃] = ve

8π

∑
l=J+1/2

∫
dx(ARR + ALL )[(∇ θ̃l )

2 + (∇φ̃l )
2]

+ ARL(∇ θ̃l−1 + ∇φ̃l−1)(∇ θ̃l − ∇φ̃l ), (5.24)

with the nonzero backscattering term ARL = 2m̃2Ke − 2/Ke

and the velocity ve similar to the one introduced in
Appendix B. We also identify ARR = ALL = m̃2Ke + 1/Ke,
and the new fields satisfy

[φ̃l (x), ∂x′ θ̃l ′ (x
′)] = i(π/m)δl,l ′δx,x′ . (5.25)

By analogy with the arguments of Sec. IV E, once the long-
range repulsive interactions are present between the ladders,
ṽ′ in Hbulk becomes relevant. This leads to a gapped bulk,
corresponding to the pinning of the phases φ̃l=J+1/2 ∼ 0.

Since LJ = θ̃l−1 + φ̃l−1, RJ = θ̃l − φ̃l , two edge modes RN

and L1 no longer entangle with the bulk. The coupled wire
system now forms a single bulk ν = 1/2 fluid in Fig. 10
(right). Since the edge mode theory for these modes is a chiral
Luttinger model with ARL = 0, the properties of the charge at
these edges depend only on the value of Ke. If we set ALR = 0
at an edge with the condition that m̃ = ±2, then we check
from Eq. (5.24) that the fractional charge Ke = 1/2 is now
in agreement with the bulk-edge correspondence. This phase
which shows a perfectly diagonal structure for the edges can
be thought of as an SPT phase of Class A in terms of the
K-matrix structure [60].

Similar arguments could be applied for the reconstruction
of the Abelian ν = 1 and ν = 1/3 quantum Hall states with
wires and coupled ladder systems.

VI. CONCLUSION

To summarize, we have studied the effect of orbital mag-
netic fields on topological superconducting quantum wire sys-
tems. We have shown the occurrence of topological supercon-
ducting phases with two or four Majorana fermions per ladder
as well as quantum Hall phases by tuning the magnetic flux
and densities at the crossing points of the band structure. The
adjustment of the chemical potential at the crossing region is a
key ingredient to realize the appropriate low-energy physics.
When the lowest band is completely filled this can give rise
to a charge density wave state. We have also studied Andreev
processes and the induction of topological superconductivity

in these quantum wire networks. Then we have engineered a
p + ip topological superconducting state in weakly coupled
ladder systems, projecting the low-energy physics on the
(partially filled) lowest bonding band for each ladder or a pair
of two strongly coupled wires. Chiral effects are introduced
here through the application of a space-dependent magnetic
field perpendicular to the plane of the wires. We have also
shown how the presence of superconductivity and preformed
pairs can stabilize a two-dimensional ν = 1/2 Laughlin quan-
tum Hall phase in hybrid spin-1/2 systems, as a result of
Andreev processes in the Luther-Emery description of a su-
perconducting quantum wire. Similar fractional quantum Hall
states can be constructed in bosonic coupled wires or quantum
spin systems as well [14,29,30]. We have analyzed the phase
diagram and the physical observables, discussing the effect of
Coulomb interactions. We have suggested implementations of
these ideas in solid-state nanowires and cold-atom systems.
Finally, due to the analogy between p-wave superconductors,
quantum Ising spin chains [86,87] and Z2 Kitaev quantum
spin liquids [88–91], one may also anticipate further appli-
cability of these findings in other interacting systems.
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APPENDIX A: PERTURBATIVE TREATMENT OF H⊥

Here we give more detail on the derivations of the Andreev
processes in Sec. IV. To find the relevant contribution from t⊥,
we can develop perturbation theory [29,38,57] for the hybrid
wire Hamiltonian H0 = H1 + H2 + H� with a weak inter-
wire coupling V = H⊥. Here H1 + H2 refers to the quadratic
part (Luttinger liquid contribution) of the Hamiltonian in
each wire 1 and 2, respectively, and the Hamiltonian density
operator V (x) = H⊥(x) reads

V (x) = − t⊥
2πa

{
[ei[

√
2θ−(x)−χx] + e−i[

√
2θ−(x)−χx]]

× [
ei[(k1

F +k2
F )x−√

2φ+(x)] + e−i[(k1
F +k2

F )x−√
2φ+(x)]

]
+ [ei[

√
2θ−(x)−χx] + e−i[

√
2θ−(x)−χx]]

× [
ei[(k1

F −k2
F )x−√

2φ−(x)] + e−i[(k1
F −k2

F )x−√
2φ−(x)]

]}
.

(A1)
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To the nth leading order, the effective Hamiltonian reads

Heff = H0 + V (n). (A2)

For any observable A, the expectation value under Heff takes
the form

〈A〉H0+V = 〈A〉Heff + O(V n), (A3)

where

〈A〉H0+V = Tr[e− ∫
dxdτ (H0+V )A]

Tr[e− ∫
dxdτ (H0+V )]

=
[
〈A〉H0 +

∞∑
n=1

(−1)n

n!

〈(∫
V

)n

A

〉
H0

]

×
[

1 +
∞∑

n=1

(−1)n

n!

〈(∫
V

)n〉
H0

]−1

(A4)

with the notation
∫

V = ∫
dx dτV (x, τ ). As the mode θ1 is

pinned in Eq. (4.4), its dual field φ1 oscillates rapidly and
renders all terms involving φ+ and φ− irrelevant. Thus(∫

V

)n

= 0, n = odd. (A5)

We can keep the even-order terms

〈A〉H0+V = 〈A〉H0
+

∑
k=2,4

1

k!

〈(∫
V

)k

A

〉
H0

− 1

k!

〈(∫
V

)k
〉
H0

〈A〉H0
+ O

[(∫
V

)6
]
.

(A6)

1. Second-order contribution to the π-flux

For the integral at the second-order perturbation theory
level, it is more convenient to switch to the relative and
center-of-mass coordinates,

x = (x1 + x2)/2, x′ = x1 − x2,

τ = (τ1 + τ2)/2, τ ′ = τ1 − τ2. (A7)

Further, we introduce polar coordinates for the relative dis-
tances x′ and τ ′,

d12 =
√

(x′)2 + v2(τ ′)2, (A8)

and consider the virtual processes

|x′| = |x1 − x2| � ξ = v/�,

|τ ′| = |τ1 − τ2| � �−1. (A9)

Then ∫
dx′ dτ ′ =

∫
2π

v
d12d (d12). (A10)

Correspondingly,∫
dx1 dτ1 dx2 dτ2V (x1, τ1)V (x2, τ2)


 2πa

v
(ξ − a)

∫
dx dτV (x, τ )V (x + a, τ )


 2πa

�

∫
dx dτV 2(x, τ )

= 4t2
⊥

πa�

∫
dx dτ

[
cos(2

√
2θ−− 2χx)+cos

(
2k2

F x − 2φ2
)

+ cos(2
√

2θ− − 2χx) cos
(
2k2

F x − 2φ2
)]

. (A11)

We have dropped out fast-oscillating terms which involve φ1

fields together with other constant terms.
For the situation of two wires such that k2

F �= π/(2a), but
with the π -flux gauge choice χa = π , we obtain(∫

V

)2

= 4t2
⊥

πa�

∫
dx dτ cos(2θ2), (A12)

and in the last equality, θ1 is pinned to zero and we regard 2χx
as multiples of 2π .

On the other hand, when � � t⊥,〈(∫
V

)2
〉
H0

=
∫

dx1 dx2 dτ1 dτ2〈V (x1, τ1)V (x2, τ2)〉H0

=
(

2π

v

) ∫
dx dτ d12 d (d12)R(d12)e−d12/ξ



(

2π

v

)
a(ξ − a)R(a)

∫
dx dτ · 1



(

2πa

�

)
R(a)(Lβ ) ∼ 0, (A13)

where R(r) denotes a power-law decreasing function. There-
fore, the second-order contribution reads

H(2)
⊥ = −1

2

(∫
V

)2

= − 2t2
⊥

πa�

∫
dx dτ cos(2θ2). (A14)

This reproduces Eq. (4.10) and the proximity effect since
〈cos(2θ2)〉 now acquires a finite value, implying the pinning
of the mode θ2 in wire 2 and the opening of a superconducting
gap due to the presence of Andreev processes, coupling wires
1 and 2.

2. Fourth-order contribution to the arbitrary flux

Away from half-filling, under our gauge choice (4.19) for
the flux, the second-order term vanishes:

2χx = ±2
(
k1

F + k2
F

)
x �= ±2πn,

(∫
V

)2

= 0. (A15)

Now if we go to the fourth order, in the same way as in
Eq. (A7) by changing the basis twice—(1) from (x3, τ3, x4, τ4)
to (x̄, τ̄ , x̄′, τ̄ ′) and (2) from (x, τ , x̄, τ̄ ) to (X , η, X ′, η′)—we
reach(∫

V

)4

=
(

2πa

�

)2 ∫
dx dτ dx̄ d τ̄V 2(x, τ )V 2(x̄, τ̄ )



(

2πa

�

)2 2π · 2a

v
(ξ − 2a)

×
∫

dX dηV 2(X, η)V 2(X + 2a, η)
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 8t4
⊥

πa�3

∫
dx dτ cos{2

√
2[θ−(x) − θ−(x + 2a)]

+ 4χa}. (A16)

In the second equality, we notice the relative distance |X ′| =
|x − x̄| = |x1 + x2 − x3 − x4|/2 ∈ [2a, ξ ]. Meanwhile,〈(∫

V

)4
〉
H0



(

2πa

�

)2∫
dx dτ dx̄ d τ̄ 〈V 2(x, τ )V 2(x̄, τ̄ )〉H0

= 2

(
2πa

�

)3

R(2a)(Lβ ) ∼ 0. (A17)

Taken into account the pinned mode θ1(x) ∼ 0, we find in the
effective Hamiltonian Heff, that the leading-order contribution
from t⊥ becomes

H(4)
⊥ = − t4

⊥
3πa�3

∫
dx cos{2[θ2(x + 2a) − θ2(x)] + 4χa}.

(A18)

APPENDIX B: EDGE THEORY

Here we study the effective edge theory in the quantum
Hall phase found in Sec. IV D, in the case of two wires or
a two-leg ladder implying that the two edges are not fully
separated from the bulk. We then perform an integration on
the bulk (gapped) degrees of freedom to build the edge theory.
The form of the interwire tunneling Hamiltonian H⊥ (4.20)
satisfies the classification of the edge theory at the filling
ν = 1/m [29,30]. Here we briefly review the construction
approach.

The effective edge Hamiltonian can be built in the Lut-
tinger liquid form

H = H+
0 + H−

0 + H⊥, (B1)

where H±
0 is given in Eq. (4.2) and H⊥ in Eq. (4.20). We are

then able to integrate out the other bulk mode θ in the action

S[θ±, φ±] = 1

2π

∑
α=±

∫
dx dτ

[
vK (∇θα )2 + v

K
(∇φα )2

+ 2i∂τφ
α∇θα

]
. (B2)

Changing the basis from [θ+, φ+, θ−, φ−] to [θ, φ, θ ′, φ′] via
Eqs. (4.21), (4.23), and (4.24), we get∑

α=±
(∇θα )2 =m2

2
[(∇θ )2 + 2∇θ ′∇θ + (∇φ)2

− 2∇φ′∇φ + (∇θ ′)2 + (∇φ′)2],∑
α=±

(∇φα )2 =1

2
[(∇θ )2 − 2∇θ ′∇θ + (∇φ)2

+ 2∇φ′∇φ + (∇θ ′)2 + (∇φ′)2]. (B3)

As the bulk mode φ is pinned, we can safely drop out all
terms involving ∇φ. In the total action (B2), the bulk θ mode

contributes to

S[θ ] =
∫

dx dτ
v

2π
[G(∇θ )2 + F∇θ ′∇θ ] + i

π
∂τφ∇θ,

(B4)

with

G = 1

2

(
m2K + 1

K

)
, F = m2K − 1

K
. (B5)

We define a general Fourier transform with periodicity on
[0, L] (L length of the wire),

f (r) = 1

�

∑
q

fqeiqr, (B6)

where � = βL, β = 1/T , r = (x, vτ ), q = (k, ωn/v), and
qr = kx − ωnτ . ωn = 2πn/β(n ∈ N ) denote the Matsubara
frequencies for bosons. S[θ ] can then be transformed into the
momentum space

S[θ ] =
∑

q

[
ikωn

π
φqθ

∗
q

]
+ v

2π

∑
q

k2(Gθ∗
q θq + Fθ ′

q
∗
θq).

(B7)

Integrating out θ , we get the edge Hamiltonian

He = ve

2π

∫
dx

[
Ke(m∇θ ′)2 + 1

Ke
(∇φ′)2

]
, (B8)

with the Luttinger parameters

veKe = v

m2

(
G− F 2

4G

)
= v

2

[(
K + 1

m2K

)
−

(
K − 1

m2K

)2(
K + 1

m2K

) ]
,

ve

Ke
= vG = v

2

(
m2K + 1

K

)
. (B9)

Therefore, when K = 1 and m = ±1,

Ke = 2

m2 + 1
= 1, ve = v. (B10)

In terms of edge chiral fields, L(x) = φ1
+1(x) = θ ′ +

φ′, R(x) = φ2
−1(x) = θ ′ − φ′,

He = v

8π

∫
dx[ARR(∇R)2 + ALL(∇L)2 + ARL(∇R)(∇L)].

(B11)

The backscattering term vanishes: ARL = 2m2Ke − 2/Ke = 0
and ARR = ALL = m2Ke + 1/Ke. In the end,

He = v

4π

∫
dx[(∇R)2 + (∇L)2], (B12)

we reach a quantum Hall phase at ν = 1/m = ±1 in the
presence of an arbitrary uniform magnetic flux.

APPENDIX C: THOULESS PUMP

Here we study the bulk response in quantum Hall phases.
We address interaction effects and compare the results with
those for the CDW phase.

085116-21



FAN YANG et al. PHYSICAL REVIEW B 101, 085116 (2020)

FIG. 11. Thin-torus lattice with θx,y.

1. Thin-torus geometry

One approach to probe the quantum Hall phase is the
detection of the bulk polarization through the Thouless pump
[28,61]. We can now gap out the edge mode by mapping
the two-wire system to a thin torus, shown in Fig. 11. We
add to the field operators two Aharonov-Bohm phases θx, θy

along the torus with the periodicity Lx = L, Ly = 2. The torus
Hamiltonian reads

H(θy) = − t⊥
∑

j

[c†
1( j)c2( j)ei(aχ j+θy/2) + H.c.]

− t ′
⊥

∑
j

[c†
2( j)c1( j)ei(aχ j+θy/2) + H.c.]

− t
∑

j

[c†
1( j)c1( j + 1)e−iθx/L

+ c†
2( j)c2( j + 1)e−iθx/L + H.c.]

+ �
∑

j

[c†
1( j)c†

1( j + 1)eiθx (2 j+1)/L + H.c.]. (C1)

The condition θx = θy = 0 and t ′
⊥ = 0 gives back the original

Hamiltonian. In the following analysis, for simplicity we take
t ′
⊥ = t⊥. In the bosonization picture, accordingly, the hopping

term between two wires becomes

H⊥(θy) = − 4t⊥
πa

∫
dx cos(χx + θy/2) cos(

√
2θ−)

× cos
[(

k1
F + k2

F

)
x −

√
2φ+]

. (C2)

2. Bulk polarization

Under the gauge choice (4.19) for the arbitrary flux,

H⊥(θy) = −2t⊥
πa

∫
dx cos(

√
2θ−) cos(θy/2 + m

√
2φ+),

(C3)

with m = ±1. In this geometry, the two modes θ− and φ+ are
pinned separately. Therefore, from Eq. (4.24), we obtain that
the edge mode φ′ = (θ−/m + φ+)/

√
2 is indeed gapped out

in this geometry. The variation of θy enters into the original
bulk mode φ = (−θ−/m + φ+)/

√
2 = −θy/(4m). By chang-

ing θy periodically, one can probe the bulk polarization.
During the process, one mode θ− remains pinned and the
magnetization current in the bulk stays fully suppressed:
〈 j‖(x)〉 ∝ 〈∇θ−〉 = 0. For the other mode φ+, when θy = 0,
φ+ ∼ 0. A charge gap is formed in the total charge response,
and the system behaves as a CDW.

On an experimental setup [28], in order to induce a varia-
tion in θy, one can exert a constant force around the smaller
perimeter ŷ of the torus (see Fig. 11) and adiabatically reach
twisted boundary conditions: F ∝ ∂tθy. When θy goes from 0
to 2π , one charge e is transported along the wires,∫ L

0
dx�(n1(x) + n2(x)) = 1

m

�θy

2π
= 1

m
= ν = ±1. (C4)

It gives rise to a quantized Hall current perpendicular to
the force

IH = eνω, (C5)

where ω denotes the frequency of variation. In Eq. (C5),
one identifies the filling factor with Chern number, which
manifests the Zak phase on the thin-torus geometry

ν = −
∫ 2π

0
dθy

∫
BZ

dθx

2π
�θxθy

=
∫ 2π

0
dθy∂θy

∫
BZ

dθx

2π
A(θx )

=
∫ 2π

0

dθy

2π
∂θyϕZak(θy). (C6)

Here we use the fact that the Berry connection A(θy) is
periodic in θx. In the Berry curvature �θxθy = ∂θxA(θy) −
∂θyA(θx ), the first term thus vanishes.

Meanwhile, the Zak phase can also be interpreted through
the electric polarization [92]. From macroscopic electrostat-
ics, one relates the polarization density P(�r) to the charge
density ρ(�r) through ∇ · P(�r) = −ρ(�r). Combined with the
continuity equation ∂tρ(�r) + ∇ · �j(�r) = 0, we obtain

∇ · [∂t P(�r) − �j(�r)] = 0, �P =
∫ T

0
dt �j′. (C7)

The second equation is valid up to a divergence-free part. It is
given by the magnetic current in the bulk, which is identically
zero due to the pinned mode θ−. �j′ represents the adiabatic
current induced by the variation in external potentials [93] and
is related to the total velocity by

�j′ = en0v(�r) = e
1

L

∑
�r

v(�r) = e
∫

BZ

dq

2π
v(q),

v(q) = ∂ε(q)

h̄∂q
− �qt . (C8)

For completeness, in this formula, we have restored the Planck
constant h̄. One immediately sees, after the integration, the
normal group velocity ∂ε(q)/(h̄∂q) vanishes. The anomalous
velocity, on the other hand, comes from the Berry curvature
�μν = ∂

∂Rμ Aν (R) − ∂
∂Rν Aμ(R) in the parameter space R =

(q, t ). Explicitly,

�qt = i

[〈
∂u

∂q

∣∣∣∣ ∂u

∂t

〉
−

〈
∂u

∂t

∣∣∣∣ ∂u

∂q

〉]
, (C9)

with |u(q, t )〉 defined in the Bloch form of the
instantaneous eigenstates |ψq(x, t )〉 = eiqx|u(q, t )〉. Now
�qt gives nonzero contribution to the difference of the
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polarization

�P = −e
∫ T

0
dt

∫
BZ

dq

2π
�qt . (C10)

On the torus, in one period we can perform a change of
variables from dt dq to dθy dθx. It follows

�P = e
∫ 2π

0
dθy∂θy

∫
BZ

dθx

2π
A(θx )

= e

2π
[ϕZak(θy = 2π ) − ϕZak(θy = 0)]. (C11)

Along the wires, we conclude P = lxeϕZak/(2π ) where lx
is the number of magnetic unit cells we measure on the �x
direction. Upon the time period T , when θy changes from 0
to 2π , the Zak phase in Eq. (C6) goes continuously from 0
to 2πν and a quantized change in polarization density P/e =
lxν = ±lx can be observed.

Another way to prove Eq. (C11) is to reexpress the anoma-
lous velocity in Eq. (C8) in two dimensions �θ = (θx, θy):

�v(θx, θy)anom. = −∂�θ
∂t

× [∂�θ × A(θx, θy)]. (C12)

Applying a × (b × c) = b(a · c) − c(a · b) and θy = 2πt/T ,
the anomalous velocity along the x direction reads

v(θx )anom. = −2π

T
[∂θxA(θy) − ∂θyA(θx )]. (C13)

Correspondingly, the difference in polarization

�P = − e

2π

∫ T

0
dt

∫
BZ

dθxv(θx )anom. (C14)

gives back Eq. (C11) after a change of the variable from dt to
T dθy/(2π ).

3. Comparison with the π-flux and stability
under Coulomb interactions

Switching to the π -flux configuration, the strong tunneling
Hamiltonian (4.8) pins two modes together, θ−, φ+. The
edge mode φ′ = (θ−/m + φ+)/

√
2 is now gapped out from

the beginning. The system turns into a CDW. If we perform
the same Thouless pump measurement in the torus geometry
(C2),

H⊥(θy) = − 2t⊥
πa

∫
dx cos(

√
2θ−)

× [cos(θy/2 +
√

2φ+) + cos(θy/2 −
√

2φ+)].
(C15)

As soon as θy is varied by an external force, the responses in
the φ+ mode differ in signs and cancel with each other. No
charge pumping would occur in the charge density wave state
formed by the π -flux.

Here we comment briefly on the effects of Coulomb inter-
actions on the Thouless pump at filling factor ν = 1, including
both contributions parallel and perpendicular to the wires. The
parameters in the Luttinger Hamiltonian are then modified as
v±K± = vK , v±/K± = v/K ± (aV⊥)/π . During the charge
pumping, however, the velocity of the parallel current remains
unaffected:

∇ j̃‖(x) = −∂t [n1(x) + n2(x)],

j̃‖(x) = −v+K+√
2

π
∇θ+(x) = −vK

√
2

π
∇θ+(x). (C16)

Under Coulomb interactions, we find the bulk is still stable
in the Thouless pump measurement, and pumping effects are
effectively described through Eq. (C4).
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