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The average spectrum method is a promising approach for the analytic continuation of imaginary time or
frequency data to the real axis. It determines the analytic continuation of noisy data from a functional average
over all admissible spectral functions, weighted by how well they fit the data. Its main advantage is the apparent
lack of adjustable parameters and smoothness constraints, using instead the information on the statistical noise
in the data. Its main disadvantage is the enormous computational cost of performing the functional integral.
Here we introduce an efficient implementation, based on the singular value decomposition of the integral kernel,
eliminating this problem. It allows us to analyze the behavior of the average spectrum method in detail. We find
that the discretization of the real-frequency grid, on which the spectral function is represented, biases the results.
The distribution of the grid points plays the role of a default model while the number of grid points acts as a
regularization parameter. We give a quantitative explanation for this behavior, point out the crucial role of the
default model and provide a practical method for choosing it, making the average spectrum method a reliable

and efficient technique for analytic continuation.

DOLI: 10.1103/PhysRevB.101.085111

I. INTRODUCTION

Strongly interacting quantum many-particle problems re-
quire nonperturbative solvers. Quantum Monte Carlo (QMC)
approaches provide, in the absence of a sign problem, numer-
ically exact results and are therefore widely used. Their key
drawback is that they work well only for imaginary time or
frequency. To make contact with experiment these data have
to be analytically continued to obtain the spectral function
A(w) on the real-frequency axis. This requires solving an
integral equation, presenting an ill-posed inverse problem.
The standard approach to this problem for strongly correlated
electron systems is the maximum entropy method (MaxEnt)
described in Ref. [1], which is, with some variations, also
used in Eliashberg theory [2] as well as in lattice QCD
simulations [3].

The ill-posedness of the inverse problem implies that the
spectral function A(w) giving the best fit to the imaginary-
axis data in a least-squares sense, while easily determined,
is completely useless: it is dominated by rapid oscillations
of diverging amplitude, arising from fitting the inevitable
statistical noise in the QMC data. The standard approach for
overcoming this problem is to impose smoothness on the
solution, i.e., to regularize [4]. The maximum entropy method
provides a regularization based on Bayesian arguments. It
penalizes deviations of the spectral function from a default
model, measured by the relative entropy of the two func-
tions. While the nonlinearity of the entropy function makes
optimization more difficult, it has the important advantage
of ensuring the non-negativity of the spectral function. The
method provides good results and is so efficient that it is the de
facto standard for analytic continuation problems. Still there
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remains the problem of choosing an appropriate default model
and regularization parameter, the latter giving rise to a number
of different flavors of MaxEnt [5].

An alternative approach, the average spectrum method
(ASM), that promises to avoid these ambiguities was pro-
posed by White [6] and, independently, in Refs. [7,8]. The
basic idea is of striking elegance: the spectral function is
obtained as the average of all physically admissible spectral
functions weighted with how well they fit the data given
on the imaginary axis. Due to the ill-posedness of the in-
verse problem there are many spectral functions that differ
drastically but fit the data equally well. Taking the average
is thus expected to smooth out features that are not sup-
ported by the data, providing a regularization without the
need for explicit parameters. The practical application of
this conceptually appealing approach has, however, so far
suffered from the computational cost of its implementations
[6-10].

Here we introduce the blocked-mode sampling technique,
which overcomes the main limitation of the average spectrum
method: The commonly used recipe is to update the sampled
spectral function at several points simultaneously, keeping a
number of moments of A(w) fixed [7,8]. Our more systematic
approach introduces global moves, updating not individual
components of A(w), but changing it at all frequencies at
once by an amount proportional to a singular mode of the
kernel. This is very efficient when the global moves are not
constrained too much by the non-negativity of A(w). When the
constraint limits these moves significantly it becomes more
efficient to partition the frequency axis and perform global
moves on the individual frequency blocks.
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Blocked-mode sampling makes the average spectrum
method fast enough that we can systematically investigate
how well it performs the analytic continuation. We find that
the results depend on the way the real-frequency axis is dis-
cretized: the density function used for picking grid points acts
as a default model, i.e., determines the result in the absence of
data, while the number of grid points acts as a regularization
parameter. That the ASM includes, via the parametrization
of the real axis, a default model has already been noticed in
Refs. [10,11], while in Ref. [12], it was observed that the
results of the ASM are becoming more biased with increasing
number of grid points. We find an explanation for this, which
provides us with ways to undo the effect of a specific grid.
Moreover, we develop a method for judging the reliability
of the results of the average spectrum method, making it a
reliable approach to analytic continuation.

II. AVERAGE SPECTRUM METHOD

The average spectrum method is designed to solve linear
integral equations of the form

o) = f K(v.x) f(x)dx )

for f(x). Calculating g(y) given f(x) merely involves a nu-
merically stable integration. The inverse problem, on the other
hand, is ill-conditioned since it is numerically hard to recon-
struct sharp features in f(x) that enter g(y) only after being
integrated over. That becomes harder the smoother the kernel
K (y, x) as a function of x. The problem is further complicated
by the fact that g(y) is usually determined by Monte Carlo
methods, i.e., it is only known within the statistical errors of
the simulation.

An important application is the determination of the spec-
tral function A(w) from the finite-temperature Green function
at the fermionic Matsubara frequencies w,, = 2m + 1)/
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its expansion in Legendre polynomials P;(x) [13]
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where i )(x) are the modified spherical Bessel functions of
first kind [14].

Another important application is the determination of the
susceptibility x”(w) from the correlation function at the
bosonic Matsubara frequencies w,, = 2mm /8
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In all these cases, the function A(w) or x”(w)/w to be
determined is known to be non-negative.

In practice the QMC data is given as a discrete vector g =
(g1, ...,8u)" of M data points. The mean over K samples is

1 K
E=2) & ®)

k=1

and its statistical uncertainty, when the samples are uncorre-
lated, is characterized by the covariance matrix

K(K 1)Z<gk DE -0 ©)

By the central limit theorem, the probability density of mea-
suring g instead of the exact result gz, iS proportional to
exp(—(g - gexact)TC71 (g - gexact)/2)~

Given some function f(x), it is straightforward to calculate
the corresponding g[ f](y) by integration (1) and discretizing
it to obtain g[ f]. Assuming that f(x) is the exact model, the
probability density for measuring g given covariance C is

P(@|f, C) o e sE RV C@8l/) —. ,—3C°U1  (10)

The idea of the average spectrum method is to average all
functions f(x) with the probability that they are the exact
model, given the measured data (g, C), i.e., to perform the
functional integral

Fasm@, C; x) = f DFp(fE.C) f).  (1D)

By the Bayes theorem, the posterior probability density is

_ @S, C) p(f)
O =—==, 12
p(f1g. C) 2EIC) (12)

where the likelihood is given by (10), p(f) is the prior
probability density, and p(g|C) = [ Df p(g|f, C) p(f) is the
normalization. For the spectral function and susceptibilities
we know that f is non-negative. Setting the prior probability
to zero for models that violate this constraint and constant
otherwise, (11) becomes

fasm(@, C; x) / Dfe VI f(x).  (13)

f(x)=0

Estimating f(x) just requires performing an integral over non-
negative models while there is no need for any adjustable pa-
rameters. Instead, the regularization results exclusively from
the uncertainty in the data as given by the covariance C:
the larger the statistical noise, the stronger the contribution
of models that do not fit the data particularly well. We can
thus expect that accurate data will give us spectra with sharp
features, while for noisy data the spectra will contain less
information, being more smoothed out by the averaging [6-8].
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III. TEST CASES

For illustrating how the average spectrum method performs
we use the test cases introduced in Ref. [15]: we try to
reconstruct an optical conductivity given by

o(w) =

1 Z VVIP\
I+ @/Te)® 4= 1+ (@ + sgn(p)eyp)/Tip)*

(14)

where the overall factor with ', = 4 cuts off o (w) for large
frequencies and the terms in the sum give a (Drude) peak
of weight Wy = 0.3 and width 'y = 0.3 (model 1) or 0.6
(model 2), and two symmetric peaks of weight W; = 0.2 and
width T} = 1.2 centered at w = +¢; = £3. The correspond-
ing correlation function on the bosonic Matsubara frequencies
iw, =2mmi/B

) 2 [ w?

can be calculated analytically. The input data for the analytic
continuation is the imaginary-frequency correlation function
I1,, = N(iw,)(1 + r,,) on the first 60 Matsubara frequencies
m =0, ...,59 with Gaussian (relative) noise r,, of variance
o, where oy = 0.01 (noisy data) or 0.001 (accurate data).
The inverse temperature is § = 15.

IV. BLOCKED-MODE SAMPLING

To evaluate the functional integral (13) numerically, we
discretize f(x). Introducing a grid of N intervals, we can, e.g.,
represent it as a piecewise constant function of value f, on
interval n: f = (fy, ..., fy)'. The integral equation (1) then
becomes a linear equation

g = Kf (16)
and the functional y2[f] is approximated by
x@®) =@—-KH C' g- K. an

It is then easy to modify (17) such that the covariance matrix
no longer appears explicitly. For this we factorize C™! = T'T,
e.g., by Cholesky decomposition, to obtain

@) =@-KbOH'@—-Kf) =g —Kf|* (18)

with g := Tg and K = TK. The covariance C of the trans-
formed data g is, by construction, the unit matrix.
The functional integral (13) is then estimated from

N o0
fasm(@ o [ | f dfyf 2. (19)
n=1 0

This N-dimensional integral can be evaluated by Monte Carlo
techniques.

A. Component sampling

The straightforward method for evaluating (19) is to per-
form a random walk in the space of non-negative vectors f,
updating a single component, f, — f,, at a time. Detailed
balance is fulfilled if we sample f, from the conditional

AN

FIG. 1. Schematic contour plot of the Gaussian probability den-
sity exp(—x2(f)/2) in the plane of two values f; and f,. The
unphysical region f < 0 is shaded in gray. In components sampling
the moves f; — f/ are proposed parallel to the coordinate axes,
resulting in narrow Gaussians of widths that are of the order of
1/max(d;). In modes sampling, moves e¢; — ¢; are proposed along
the principal axes of the multivariate Gaussian, so that the moves
in directions corresponding to small singular values can take large
steps. Note that for ill-conditioned problems the singular values d;
vary over many orders of magnitude.

distribution oc exp(—x2(f; £1)/2) with
X2 f) =118 — KE =K, (f,—f)lI?
——

=
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(20

where K, is the nth column of K. We thus have to sample
£, from a univariate Gaussian of width o = 1/ IK., || centered
at uw=f, + E)if(j;f'/ [IK,|I? and truncated to the non-negative
values f, € [0, co). This can be done very efficiently [16].

Still, sampling components can be very slow because the
width of the Gaussian is, in general, extremely small, i.e., the
random walk performs only exceedingly small steps. This is
evident when sampling spectral functions: we cannot change
just a single f;, without violating the sum-rule. A common way
out is to update several components simultaneously under the
constraint that, e.g., a number of moments of f is conserved,
and to use tempering techniques [6—10]. A simpler and more
systematic way is to sample along the principal axes of the
multivariate Gaussian exp(— x2(£ )/2), i.e., to change basis.
This is illustrated in Fig. 1.

B. Mode sampling

To implement moves along the principal axes of x2, we
use the singular value decomposition of the kernel K =
UDV', where U is a unitary matrix whose column vectors,
U,,, define a basis in the M-dimensional data space, V is
a unitary matrix whose columns, V,, define a basis in the
N-dimensional space of discretized models, and D is an
M x N diagonal matrix with diagonal elements d, > d, >
-+ 2 dminv,ay 2 0. The singular values d, >~0 determine
how a mode in model space affects the data: KV, = d,U,,
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while the zero modes U,, with d,, = 0 or n > M do not affect
the data. To simplify the notation we define d, := 0 for n =
min(N, M)+1, ..., max(N, M).

Transforming to the new bases h:=U'g and e:=VTf diag-
onalizes the quadratic form

M
X)) =U'g—DVE|]> =) (i —dieiy’  (21)
i=1

and we can write (19) as fasm(8) = Veasm(h), where the
integral in the new basis factorizes

me»a/ dejei exp(—(dies — W P/2).  (22)

£20

For evaluating the integral, we perform a random walk, now
updating one mode e¢; — ¢/ at a time. When the corresponding
singular value does not vanish, we sample ¢; from a univariate
Gaussian of width o = 1/d; centered at h;/d; while for d; = 0
we sample from a flat distribution. In both cases, the distribu-
tion is truncated to the interval for which £ > 0.

Without the non-negativity constraint, the components of
easm(h) for d; > 0 would be given by A;/d;, resulting in a
least-squares solution that, in general, would be completely
dominated by the noise in data modes h; with exceedingly
small singular values. The coupling of the modes through the
global condition f > 0 is thus crucial for regularization.

We find the allowed values of ¢; from the condition ' =
f + (¢ — e;)V; > 0, which, in terms of the components, is
equivalent to e; > ¢; — f,/Vj; for V,; > 0 and correspondingly
for V,; < 0. Thus ] is constrained by

n

Vi <O} gei—eggminn{%

ni

max,,{ Vi > 0}. (23)

ni

Sampling modes ¢; is usually much more efficient than
sampling components f,: for modes with large singular value,
the Gaussian is narrow so that the random walk quickly jumps
close to the expected value h;/d; corresponding to the best
fit, and then stays close to it. For modes with a small or a
zero singular value, the distribution is very broad so that the
random walk can take large steps, allowing for an efficient
sampling of the degrees of freedom that are not strongly
supported by the data.

Still, sampling may become quite inefficient when non-
negativity restricts ¢; to a narrow interval. This will happen
when f has regions where the f,, are very small. For a mode
V, that changes sign on such a region, e, cannot differ much
from e; without violating (23). Since the modes form a basis,
there are many such modes. In particular, modes sampling can
become quite slow when sampling spectral functions on grids
with large cutoff. In the tail of the spectral function, where
there are many small values f,, it can be more efficient to
sample the components f, directly since they tend to change
%2, Eq. (20), only little.

C. Blocked-mode sampling

The reason for the slow-down of modes sampling is that
the narrow intervals originating from regions where the f,, are
small also limit the changes in regions where they are large,
i.e., where large steps could be taken. We can avoid this by

FIG. 2. Example of the hierarchy of grid partitionings used in
blocked-mode sampling. At the highest level (top), the grid on which
f is represented forms a single block. Sampling on this block is
modes sampling. At the level below, the grid is split into two blocks.
If going to a lower level we split the blocks in half, there would
always be a block boundary at the center of the grid. To avoid this,
we shift the intervals at every other level by half their width. At
the lowest level (bottom), the blocks are the individual intervals f;.
Sampling on these blocks is components sampling.

decoupling such regions and sampling them separately. To do
this, we split the kernel matrix K into blocks corresponding to
the different regions, perform an SVD for each of them, and
sample the resulting blocked modes. Now the non-negativity
constraint (23) involves only components in the same region.
Thus the intervals over which the blocked modes can be
sampled will be larger than in modes sampling. On the other
hand, the blocked modes no longer give the principal axes of
the fit function x 2 so that the Gaussians from which the modes
are sampled will be more narrow than in modes sampling.
When we choose the regions as just the individual grid points
we are back to components sampling, where the intervals are
semi-infinite f, € [0, c0), while the Gaussians become quite
narrow.

The idea of blocked-mode sampling is thus to exploit
this trade-off between wide Gaussians and large intervals by
interpolating between the limits of modes and components
sampling. In practice, we use a hierarchy of partitionings of
the grid as shown in Fig. 2 and sample in each step all blocks
of a randomly chosen hierarchy level.

D. Efficiency

The computational complexity of the sampling methods
per Monte Carlo step are comparable. For components sam-
pling, calculating the Gaussian parameters, Eq. (20), for up-
dating f, — f, scales as O(MN) and there are N components
to be updated. In modes sampling, the Gaussian parameters
are given by the singular values, which are calculated only
once, at the beginning of the simulation. Determining the
constraint intervals, Eq. (23), takes O(N) operations, and
there are N modes to be updated. In blocked-mode sampling,
the singular value decompositions for all blocks are calcu-
lated once at the beginning. The computational cost of this
is dominated by the SVD for the full block and scales as
O(M N?) when there are more grid than data points, N > M.
Sampling a block of length N/B takes O(N/B) operations
for determining the constraint intervals on the block plus
OMN(1 — 1/B)) operations to calculate the contribution of
the other blocks to the Gaussian parameters for each of the
N/B modes in the block. There are B such blocks to be
updated. Thus, the computational cost per Monte Carlo step
is similar for all three approaches, so that their efficiency
depends on how much the model f is changed per MC step.
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FIG. 3. Efficiency of different sampling methods comparing the
changes in f between Monte Carlo steps, defined as A; = ||f (D _
£O)1/1£9]|. For a grid with small cutoff (top), modes and blocked-
mode sampling are of comparable efficiency, while the steps taken
when sampling components are exceedingly small. When the cutoff
is large enough so that the tail of the spectral function is repre-
sented on the grid (bottom) the steps taken when sampling modes
also become extremely small. Only blocked-mode sampling always
efficiently samples the space of models f.

For a practical comparison of the different approaches, we
apply them to the test cases, Sec. III. We try to recover the
optical conductivity (14) from (15) for accurate data (¢ =
0.001) generated from model 1 (I'y = 0.3) on an equidistant
frequency grid w, = 0.1(n—1/2) with small (n =1, ..., 40)
and large (n = 1, ..., 120) cutoff. The first cutoff is so small
(about the width of the overall factor I',) that the tail of the
optical conductivity is hardly represented on the grid. The
cutoff for the second grid is chosen such that it covers a large
region of the tail where the model is going to zero.

In both cases, blocked-mode sampling updates f most
efficiently so that we obtain uncorrelated samples after only
a few Monte Carlo steps. In components sampling f is hardly
changed in a MC update, so that very many steps are needed
to obtain statistically independent samples. Modes sampling
is as efficient as blocked-mode sampling when the model f
does not go to zero. In case the tail is represented on the grid,
however, it can become even less efficient than components
sampling. Figure 3 shows that not every MC step in blocked-
mode sampling results in a large change in f. Since the level in
the hierarchy of blockings (Fig. 2) is chosen randomly, there

are steps where components or the modes of the full grid are
updated. But most of the time a blocking in between these
extremes is chosen, leading, on average, to an extremely rapid
random walk in the space of models.

Since blocked-mode sampling moves so efficiently, it is not
very important from which initial vector f© the simulation
is started. Still, a good choice is to start from non-negative
least-squares (NNLS) solution [17] of Eq. (16), since this is
gives the best fit under the constraint f > 0. An even better
starting point is obtained by choosing the NNLS solution of
Eqg. (16), after adding some noise to the data. This moves the
initial vector £(©) slightly away from the best fit solution, such
that in effect we can immediately take data without having to
warm-up the Monte Carlo run.

E. Linear constraints

Besides being non-negative, spectral functions can fulfill
other constraints, e.g., the sum rule f dwA(w) = 2. After
discretization, such linear constraints can be written as Cf =
c¢. For C independent constraints, C is a C x N matrix. Using
the reduced singular value decomposition C = UcDc V., we
see that the constraint is only active in the C-dimensional
subspace that Pc = VCVZ projects to. Fixing Pcf to fulfill the
constraints, we can sample in the orthogonal space using the
methods discussed above. In practice, we find that sum-rules
are strongly represented in the data so that it is not really
necessary to enforce them explicitly.

V. ROLE OF THE GRID

To implement the functional integral (13) numerically, we
discretize the models f(x) as a finite vector f representing
f(x) on a grid. We now analyze how the results depend on
this discretization. As test cases we use again the optical
conductivity described in Sec. III.

A. Uniform grid

The most natural choice is to represent o(w) on a uni-
form grid w, = wp + n Aw. The number of grid points n €
{1, ..., N} must be finite, so that such a grid necessarily has
a cutoff. Since the optical conductivity quickly goes to zero
for large frequencies, we would expect that once the cutoff is
large enough so the tail of o (w) is well represented, the result
should hardly change when increasing the cutoff further while
keeping the step width Aw fixed.

With our efficient blocked-mode sampling we can easily
check this. For the optical conductivity test cases of Sec. III
on grids with Aw =0.25 and N = 32, 64, 128, and 256
frequency points, it is a matter of seconds on a modern laptop
to obtain the average spectra with good statistical accuracy.
The result for model 2 with noise oy = 0.001 is shown in
Fig. 4. To our great surprise, we find that the results change
drastically: with increasing cutoff a set of pronounced spuri-
ous peaks develops. For the more noisy data, or; = 0.01, the
effect gets even stronger.
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FIG. 4. Optical conductivity o (w) obtained by analytic contin-
uation to uniform grids w, = (n—1/2)Aw for n € {1, ..., N} with
fixed grid spacing Aw = 0.25 and increasing number of grid points
N =32, 64, 128, and 256, corresponding to a cutoff wy,, ~
8, 16, 32, and 64. For comparison, the dashed line shows the
optical conductivity from which the imaginary-frequency data for
the analytic continuation was calculated. Even though all functions
are essentially zero for @ > 8, the result depends very strongly on the
length of the grid: the result of the analytic continuation develops
spurious peaks that get sharper with increasing cutoff.

B. Nonuniform grids

To eliminate the cutoff for a finite grid on an infinite inter-
val, we need to choose the grid points such that their spacing
increases with their value. We can construct such a grid x,, on
a general interval Xy, . - - Xmax USing a positive and normalized
function p(x) that defines the density of the grid points. The
cumulative distribution function P(x) := fx );m dx'p(x') is then
a monotonous function mapping the interval Xpi, . . . Xmax tO
[0,1]. Choosing a uniform discretization z, = (n—1/2)/N €
[0, 1] with n € {1,..., N}, we obtain a grid x, = P (z,).
To get a more intuitive notation, we write the cumulative
distribution function as z(x) := P(x) and its inverse as x(z) :=
P~'(z). Then the x-grid x, = x(z,) is given in terms of the
uniform z grid. This mapping is illustrated in Fig. 5 for the
interval 0. . . co.

The following table lists a few useful nonuniform grids for
the semi-infinite interval [0, co0). The names for the grids are

0 Yorotro-o—o—o—0—o— ‘ >
X

FIG. 5. Grid mapping from uniform grid on the interval [0,1] to
anonuniform grid on the half infinite interval [0, co). Grid points are
indicated as dots, limits of intervals by bars.

derived from their density function. Note that our exponential
grid is also known as logarithmic mesh, while our Lorentzian
grid is sometimes called a conformal parametrization [18,19].
For the Gaussian grid, inverf is the inverse of the error
function [14].

dz da

plx) =% x(2) b
. —x2 /242 . V2ra/2

e T
Gaussian Jimari V2a inverf(z) et o2

exponential eﬁ;w —BIn(1—2) T f
. 2/my _my/2
Lorentzian Tro/ 2 y tan(rrz/2) cos(nz/2)?

The Gaussian and Lorentzian grids are easily extended
to the interval (—oo, oo) by replacing z by 2z — 1, giving
XGaug(2) = V2a inverf (2z — 1) and xo(z) = —y cot(wz).

We express the integral equation in the new variable

! d
g(y)=/K(y,X)f(X)dX=/0 Ky, x(z))f(x(z))d—)zc dz.

To obtain a matrix equation as in (16) we write the integral as
a Riemann sum [20]

0~ L3 K fn D) 24)
s8y)~ N 2 v, Xn) f (xn e
Since w, := (1/N)dx(z,)/dz = 1/Np(x(z,)) is approxi-

mately the width of the interval [x(z,—1/2), X(zZut1/2)], We
can interpret = f(x,) w, as the integral of f(x) over that
interval.

Writing the matrix form of the integral equation as g = Kf,
we perform the integral [cf. (19)] over the f. The results for
model 2 of Sec. III are shown in Fig. 6. We find that using
nonuniform grids tends to give a dramatic improvement over
the results for uniform grids with cutoff (Fig. 4). Still, results
do depend on the choice of the grid, the more so the larger the
noise in the data.

We can understand this by considering the limit where the
data contains no information about the model except a sum
rule }_ f, = 1 to keep the result finite. Then (19) becomes

N s N
fASMO(H/O dﬁ,fS(Zﬁ—l). (25)
n=1 n=1

In this integral, all £, play the same role, so that by symmetry
all components of fasy must be the same and, by the sum
rule, equal to 1/N. Consequently, in the absence of data except
for a sum rule, the average spectrum is equal to fasm(x,) =
1/Nw, = p(x,). In that sense, the grid density acts as a default
model.

In the average spectra of Fig. 6, the effect of the grid is most
clearly seen in the way the tail goes to zero. The Fredholm
integral for the optical conductivity (15), e.g., depends, except
for the sum rule given by IT(0), only very weakly on the form
of o (w) at large frequencies,

o(w)

T F @y 20

M(iwy,) — T1(0) = —;f d
0
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FIG. 6. Optical conductivity o (w) obtained by analytic contin-
uation to different grids of N = 64 points. The uniform grid has a
spacing Aw = 0.125, corresponding to a cutoff wp.x &~ 8. The width
parameter of the Gaussian grid was chosen o = 4, for the exponential
B =3, and for the Lorentzian y = 2.5. The dashed line shows the
exact result. Removing the cutoff by going to a nonuniform grid
improves the result significantly, and the results depend much less
on the chosen width parameter than on the cutoff. Still, the average
spectra obtained for different grid densities differ by more than their
error bars. This grid dependence becomes somewhat stronger for
larger noise in the data [(top) on = 0.001 and (bottom) 0.01].

so that the data contains only little information about the shape
of the tail. Indeed, as expected from (25), we find that for large
w the average spectrum vanishes as the chosen grid density.

It is important to realize that this behavior does not depend
on our choice of including the width factor from (24) in the
model vector f_,, = f,w, or, f = WF, where W = diag(w).
If we include it, instead, in the kernel, the kernel matrix
is modified K := KW, so that x*(f) = ||g — Kf||> = ||lg —
Kf|?> = 32(f), and, by a change of variables

_ N s
fasm = c52 l_[/ df,fe20®
0

n=1

N N oo
=cp 1—[ Wy 1_[/0 df, Wf e — Wiasm,
n=1 n=1

27

where the constants w, account for the change in normal-
ization of the Gaussian after the change of variables: c¢,> =
cz2 det(W) = cz2 [, w.

To understand the grid dependence of fagm we can use
a similar argument. Let f, and f, be the models on two
different grids, p(x) and p(x), that cover the same range, e.g.,
x € (0, 00), and have the same number of grid points N. fn is
the integral of the model over the interval I, centered around
x(z,,). Following (24), we may express it in terms of the f as
a weighted sum of the f;, defining a linear transformation
f = Wf. The situation is quite similar to (27), but with a
crucial difference: In general W will not be diagonal, so that
the transformation will change the limits of integration from
fu >0 for f, to Wf, >0 for the integration over f, and
consequently Fasy # WEasm. Apparently, choosing different
grids implies different definitions of what values of the model
are allowed.

This becomes even more evident when we consider what
happens when we refine the grid by halving each interval:
instead of the original N values f, on the original grid, we
now have twice as many values f; representing the integral
of the model over the halved intervals. The two sets are thus
related by f, = fon_1 + fo.. Sampling the f; > 0, we find that
the probability of sampling a given value f,, is proportional to

oo o . f,l~_
A Wﬂqﬂcmﬁﬁfﬁkrﬁm=ﬁ dfon = fi
28)

i.e., sampling the f; on the fine grid with a flat distribution
implies sampling on the coarse grid with a distribution that
is biased against small values of f;. In other words, the naive
discretization of the functional integral (19) does not have a
proper continuum limit. We, consequently, have to investigate
the definition of a functional integral more carefully.

C. Functional integrals

We have just seen that the naive discretization of the
functional integral, used so successfully in Feynman path in-
tegrals [21], does not work for averaging spectra. The problem
is that sampling with a flat distribution on different grids
gives incompatible results so that the discretized functional
integral has no proper continuum limit [22]. We can, however,
enforce such compatibility in (28) by introducing (separate)
probability distributions for the £, and the f; on the original
and the halved intervals

I
/0 df2n ﬁ(on)ﬁ(fn _f2n) zﬁ(fn) (29)
In principle, the probability distributions on the two subin-
tervals could be chosen independently, p,,—; and p,,. To
avoid any bias we assume, however, that the distribution only
depends on the width but not the position of the interval. Thus
Pan—1 = Pan =: P, since each subinterval is half the width of
the original interval.

The compatibility condition (29) means that the convolu-
tion of p with itself equals p which, in terms of the Laplace
transform

aM®=L dt ptye™, (30)
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is equivalent to (L{p})> = L{p}. To find the compatible dis-
tribution on the fine grid given the distribution on the original
grid, we just have to take the inverse transform of the square
root of its Laplace transform: p = £~ {\/Z{p}}.

We want the distribution on the original grid to re-
semble a flat distribution. An obvious choice is to sim-
ply introduce a cutoff: p.(f) = (O(f) — O(f—¢))/¢, where
®(x) is the step function that vanishes for r<0 and is
one for r>0. The square root of its Laplace transform is
V1—e=%/./¢s. Expanding the numerator for s>0 in ¢~
and using that L{O(t—a)/s/t—a}(s) = e “ T'(5 ! )/+/s, where

I'z)= f x*~'e™ dx is the Gamma function, we find

_ . 1 (o) 1e(-o
LYWL ) = = ),
W) m<¢} 2 Ji— )

€19

which is negative due to the divergences at integer multiples
of the cutoff ¢. Thus, for flat distributions p.(f) with cutoff
there exist no compatible distributions j.(f) on the halved
intervals. They are called indivisible [22].

Alternatively, we can start from an exponential p,(f) =
re ', which for AN\, O approaches a flat distribu-
tion. Its Laplace transform is L{p.}(s) = A/(s + 1). Us-
ing L{e " /J/mt}(s) = (s+a)"'? we see that Pe(f) =

e /v/7 /. Thus the exponential distribution is divisible.
In fact, from L{f(t) e " }(s) = L{f(t)}(s+A) and

LE Y s) =s7" v/.ooxwfl e fdx=s5"T(m), (32)
0

it follows that it can be divided into any number, n, of intervals
of width @ = 1/n, i.e., it is infinitely divisible. Note that @ is
the width of the subinterval in units of the width of the original
interval. The process of subdivision is consistent: halving
the small intervals produces a distribution p = £~ {/Z{p}},
which, by L{p} = /L{p], is equal to L~ {/L{p}}, so that the
continuum limit of the functional integral is well defined. Of
course, we are not restricted to subintervals of equal width.

For
= L7V L{e M)
fwfl ef)hf

Pwa(f)
— AY w-l —xf _ _ J € 7
“tw’ ¢ T Eeema P

which is a gamma distribution with shape parameter w and
scale A, we find the generalized compatibility relation

f
/0 A pas(F) poas G- = par(D, (%)
where the scale A remains unchanged, while the shape param-
eter changes with the width of the interval.

Using gamma distributions, we can now write down a
discretization of the functional integral with a well defined
continuum limit. For a particular grid of N points and density
p(x), we start with the naive discretization (19), i.e., we
sample the £, from a flat distribution

N 3
P T = Pia(fn) 5 —Llz2)
fASM—iL‘%CfUlfo SO

exact

0.35 F exp128

0.30 [ simulated on exp064
 exp064 with 20

exact

0.35 F expo64

0.30 [ simulated on exp128
F exp128 with 0/2

FIG. 7. Simulating one finite grid on another. For the same
problem as in the upper panel of Fig. 6, we compare the result
for an exponential grid with g =3 and N = 128 points with the
simulation on the same exponential but with N = 64 (top) and vice
versa (bottom). The results agree within error bars. In addition, runs
on the N grid are shown, where the noise in the data is scaled by
N/N. We do not plot the large symbols distinguishing the curves as
they would obscure the near perfect agreement.

where convergence in the limit A — 0 is guaranteed by the
Gaussian. On a different grid of N points with grid density
p(x) we then have to sample the f; from a gamma distribution,
where the shape parameter is the width of the interval of grid
[N, p(x)] in units of the width of the corresponding interval
on grid [N, p(x)]. Approximating the width of an interval
containing X by 1/N p(X) as in (24), we obtain

Np(Fz)

fasm ~ l_[/ dfs f; A

=1

o ini®) (36)

which for N — oo has a well defined continuum limit, i.e.,
defines a specific functional integration.

We can actually use (36) to simulate on grid (N, p(x)) the
result we would obtain sampling with a flat distribution on a
different grid (N, p(x)). This is illustrated in Fig. 7. Note that
for Np(%;) > Np(%;) the reweighting factor in (36) diverges
for small f; (but still giving a probability distribution). In
the limit N — oo individual samples f will therefore be zero
almost everywhere except for finite values on a few intervals,
i.e., they will look like a collection of discrete peaks [22].
This atomicity property of the gamma distributions makes
sampling coarse grids on finer ones somewhat noisy.

Still, we are left with the problem of how to choose the
grid [N, p(x)] used in (35), which determines the functional
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FIG. 8. Dependence of the average spectrum on the number N of
grid points for the same problem as in Fig. 7 on a Lorentzian with
y = 2.5. For larger N, the average spectra get worse. The reason
becomes clear from the histograms in the bottom panel, showing the
contribution of spectra with a given fit x to fogy: with increasing N
the histogram moves to the right, i.e., worse fits.

measure. Our first impulse might be to choose N as large
as possible as to minimize discretization errors. As shown
in Fig. 8, however, for larger N the average spectra tend to
develop spurious structures. To understand the origin of this
counterintuitive behavior, we analyze what models actually
contribute to the average fasm. Figure 8 shows that with in-
creasing N, the average spectrum is eventually dominated by
models that fit the data less and less well. We can understand
this qualitatively by realizing that N is the number of degrees
of freedom in a model. So increasing N allows for a larger
variety of different models. Still, for any given N there is only
a single model that gives the best fit yynLs. Thus the density
of models with worse fit increases with N, explaining the drift
of the histogram towards larger y.

We can make a more rigorous argument and gain further
insights by using the reweighting approach. Let us assume
that we are calculating (35) on a very fine grid [N, p(x)].
We can simulate the result on a much coarser grid of the
same density [N, p(x)] with N < N. Imposing the sum rule
Do fa = F, (36) becomes

fASM"’H/ dfs f, w"15( an)f R

with @5:=N/N > 1. The models are thus sampled from a
Dirichlet distribution

7wﬁ;fla-”7f1\~/)

(Z w” Wr—1
FZw,,—l 1‘[ F(wn) Hf
(37)

pD(ﬁ)],...

with fixed F', where the normalization constant

F-/i F-Y3 0 B
f dfi fo! f dpfit f Ay,
0 0 0

wy—1
Z fa
follows from Euler’s Beta integral [14] for o, 8 > 0

1
f 11—t = B (38)
0 (o + B)

For @; > 1, using Stirling’s formula InI'(z) &~ zlnz — z, we
obtain

1“PD~Z<wn ~f‘"’f”>=——2f i (39)

n

lel

which is proportional to the entropy S( FIE) of f:=
relative to f;. Hence

¥ -
=170 i

For N — oo, the entropy term will dominate x2 so that the
integrals of the model over the intervals, fagm, will tend to
a constant, independent of the data. The situation is quite
analogous to that discussed for (25): Sampling on a very dense
grid gives a model proportional to the grid density, which,
again, acts as a default model.

In fact, the prior on the models in (40) is strikingly
similar to the maximum entropy prior, which, however, uses
the entropy of the model relative to the default model. The
two relative entropies are closely related, with the MaxEnt
entropy — » faIn £/ f penalizing models deviating from the
default somewhat less than the average-spectrum entropy
=2 fInf/f.

While the grid density acts as a default model, the number
N of grid points plays the role of a regularization parameter:
going from N to N’ grid points changes the prefactor of the
entropy term relative to that of the fit function by N'/N.
In (40), we can reach the same effect by staying with the N
grid points but scaling the fit function by N/N’, i.e., scaling
the overall variance in the data. Fig. 7 shows that this is a
simple, efficient, and remarkably accurate way of simulating
grids with the same density but different number of points.
This explains why the idea of rescaling the noise of Monte
Carlo data is widely used in practice [7,8,10,12]. Moreover,
it beautifully confirms the intuition underlying the idea of the
average spectrum method stated after Eq. (13): the noise in
the data leads, via the averaging of spectra, to a smoothing of
the model, and the larger the noise, the larger this regularizing
effect.

F/N
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FIG. 9. Determining a reasonable default model by fitting the
grid density p(x) (Gaussian of standard deviation «, exponential
with rate B, or Lorentzian of width y, uniform with cutoff w.) to
the data (dotted line) for the same problem as in Fig. 8. The inset
shows Y (IT(w,,) — l'[def(a),,,))2 as a function of the grid parameter,
highlighting the importance of choosing a reasonable default model.

VI. PRACTICAL METHOD

To make the average spectrum approach a practical
method, we have to understand how to choose the regu-
larization. As we have seen in Fig. 8, results can depend
strongly on the number of grid points. Most striking about this
dependence is that with increasing regularization the average
spectra are not smoothed but rather develop increasingly sharp
features—the opposite of what one would expect from a
regularization! To understand this, we look at how the default
model fits the imaginary-axis data. For this we need to relate
the grid density to the default model. We can, e.g., write the
default optical conductivity as og.f(@) := 7 I1(0)p(w)/2 from
which we can calculate the values on the imaginary axis as

p(w)
1+ (w/wn)?

The deviation of ITgs from the actual data tells us how
compatible the default model is with the data. This is shown
in Fig. 9. We find that the grid density used in Fig. 8, a
Lorentzian of width y = 2.5, does not even remotely repre-
sent the imaginary-axis data. The situation is even worse for
the uniform grids of Fig. 4, which, with increasing cutoff,
become more and more inconsistent with the data. In all these
cases the default model does not resemble the data on the
imaginary axis at all. This misfit has dramatic consequences,
since the information we try to extract from the data is hidden
in the tiny details on the imaginary axis—the very reason
why analytic continuation is so ill-conditioned. Regularizing
towards a grossly wrong default model then forces the models
to develop unphysical features in order to somehow achieve a
decent fit nevertheless.

The problem completely disappears when using a reason-
able default model. An example is shown in Fig. 10, using
a Gaussian grid with o = 2.4. As we read off from Fig. 9,
this default model is compatible with the data and we see that
with increasing regularization the resulting spectra become
smoother. Moreover, this smoothing is not very strong so that
the results are remarkably robust under changes in the number

Mger(wm) = H(0)<1 - /00 da)). 41)
0

32
4 64
5 128
= 256
o
2 512
1
8501 02 03 04 05 06 07 0.8

X

FIG. 10. Dependence of the average spectrum on the number N
of grid points for the same problem as in Fig. 8 on an optimized
Gaussian grid with o« = 2.4. The average spectra are largely inde-
pendent of N and the histograms show a consistently good fit.

of grid points. It thus turns out that the choice of the default
model is much more important than that of the regularization
parameter.

In this respect, a flat default model with cutoff is a par-
ticularly unfortunate choice. As we see from Fig. 9, for a
cutoff w, & 3.7, we actually obtain quite a reasonable default
model so that we would expect robust average spectra. Such
a grid, however, has no points in the tail of the model. If
we want to resolve the model at higher frequencies we need
to “improve” the cutoff, necessarily giving increasingly poor
default models that are responsible for the disastrous results
obtained in Fig. 4.

VII. CONCLUSIONS

We have seen that the average spectrum method is not the
parameter free method suggested by the deceptively written
functional integral (13): We have to choose a grid density
p(x), which acts as a default model, and a number N of
grid points, which acts as a regularization parameter. The
reason for this is that the naive discretization (19) does not
converge to a well defined functional integral. Instead we
have to sample the components of the models we are inte-
grating over from distributions that are consistent for different
discretizations. For general non-negative functions these are
gamma distributions (33), when, in addition, the functions
fulfill a sum-rule they are Dirichlet distributions (37). This
raises, of course, the question why the naive discretization
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does work for path integrals. In the Feynman approach, the
integrand itself already fulfills the consistency relation giving
rise to a complex Wiener measure [23], so that the appropriate
functional measure is inherent in the path integrand. This is
not the case for the functional integral (13), requiring us to
explicitly specify the functional measure by singling out a spe-
cific grid on which to evaluate (19). Using the corresponding
family of gamma or Dirichlet distributions, we can then take
the continuum limit.

We find that approaching this limit we sample models f
with a prior given by the entropy of the flat distribution on
that grid relative to f, making the grid density act as a default
model, while the number of grid points acts as the regular-
ization parameter. The similarity with the maximum-entropy
method (MaxEnt) is obvious. Of course, the entropies differ,
but this only means that MaxEnt regularizes large deviations
from the default model somewhat less. More importantly,
MaxEnt determines the model from maximizing rather than
averaging. This appears to avoid having to specify a functional
measure. However in the derivation of MaxEnt marginaliza-
tions over the model space do, in fact, require functional
integrals. To quote Ref. [24], p. 137: “This shortcoming has
been missed earlier due to a deceptive side-effect of the
Gaussian approximation made in the calculation, and because
the quantitative answers from the analysis were generally
sensible in practice.”

To make the average spectrum method a practical tech-
nique for analytic continuation we need reliable recipes for
choosing grid density and number of grid points. As we
have demonstrated, the results can depend quite strongly
on these choices. A badly chosen default model will bias
the results towards models that give an extremely bad fit
to the imaginary-axis data. In such cases, we obtain utterly
unreasonable results: with increasing regularization the result
develops stronger and stronger features. Interestingly this is
particularly true for flat default models with cutoff, which are
by their very nature ill suited for analytic continuation. A good
default model should, instead, not only be featureless but also
be overall consistent with the data. For such default models,
the features in the results will be suppressed with increasing
regularization—as it should be. In fact, then results become
fairly independent of the actual choice of the regularization
parameter over a wide range, highlighting the importance of
the default model rather than the regularization parameter.

Finally, a practical method must be efficient. This has so far
been the cardinal problem of the average spectrum method.
We have described an optimized implementation, without
which we could not have analyzed the method in such detail.
While we have discussed here only one specific test case,
more can be found in Ref. [25].

In addition, we make an efficient web-based implementa-
tion freely available at [26].
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