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According to the Landau criterion, a phase transition should be first order when cubic terms of order parame-
ters are allowed in its effective Ginzburg-Landau free energy. Recently, it was shown by renormalization-group
(RG) analysis that continuous transition can happen at putatively first-order Z3 transitions in two-dimensional
(2D) Dirac semimetals and such non-Landau phase transitions were dubbed “fermion-induced quantum critical
points” (FIQCPs) [Z.-X. Li, Y.-F. Jiang, S.-K. Jian, and H. Yao, Nat. Commun. 8, 314 (2017)]. The RG
analysis, controlled by the 1/N expansion with N the number of flavors of four-component Dirac fermions,
shows that the FIQCP occurs for N � Nc. Previous quantum Monte Carlo simulations of a microscopic model
of SU(N) fermions on the honeycomb lattice showed that the FIQCP occurs at the transition between Dirac
semimetals and Kekule valence bond solids for N � 2. However, the precise value of the lower bound Nc has
not been established. Especially, the case of N = 1 has not been explored by studying microscopic models so
far. Here, by introducing a generalized SU(N) fermion model with N = 1 (namely, spinless fermions on the
honeycomb lattice), we perform large-scale sign-problem-free Majorana quantum Monte Carlo simulations and
find convincing evidence of the FIQCP for N = 1. Consequently, our results suggest that the FIQCP can occur
in 2D Dirac semimetals for all positive integers N � 1.

DOI: 10.1103/PhysRevB.101.085105

I. INTRODUCTION

Universal behaviors of interacting many-body systems near
quantum phase transitions are of central interest in modern
condensed matter physics [1–4]. In Landau-Ginzburg theory
[5], a prevalent understanding of phase transitions is provided
by order parameters the nonzero expectation value of which
characterizes spontaneously symmetry-breaking phases. Suf-
ficiently close to the transition point, fluctuations of order
parameters at low energy dominate and are described by a
continuum field theory of order parameters. In combination
with Wilson’s renormalization-group (RG) theory [6], the
Landau-Ginzburg-Wilson (LGW) paradigm has made seminal
contributions to understanding continuous phase transitions
in correlated many-body systems. Quantum criticality beyond
the LGW paradigm, often called Landau-forbidden or non-
Landau transitions, has attracted increasing attention in the
past few decades.

Landau proposed two main criteria about under what con-
ditions first-order transitions must occur. One criterion states
that a transition between two phases with noncompatible bro-
ken symmetries should be first order. Nonetheless, continuous
transitions violating this Landau criterion may be realized
in certain many-body systems [7–15] where fractionalized
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excitations at the transition are essential in rendering the
transition from first order to second order. Such continuous
non-Landau transitions were called “deconfined quantum crit-
ical points” (DQCPs) [7]. Tremendous progress has been wit-
nessed in looking for the DQCP in models [16–36]. Recently,
large-scale quantum Monte Carlo (QMC) simulations [37] of
microscopic fermion models obtained critical exponents that
are consistent with the conformal bootstrap bounds [38–40],
providing further support of DQCPs with emergent SO(5)
symmetry.

The other Landau criterion states that continuous phase
transitions are forbidden when cubic terms of order parame-
ters are allowed in their effective Ginzburg-Landau (GL) free
energy. For instance, the quantum three-state Potts model in
spacetime dimension 2 + 1 (2 + 1D) has been convincingly
shown to possess a first-order quantum phase transition [41]
since the allowed cubic terms of its Z3-order parameter in
the low-energy GL free energy are relevant in the sense of
RG. Recently, an intriguing scenario beyond this Landau
cubic criterion was introduced [42]: a putatively first-order
transition in the sense of the Landau cubic criterion can be
rendered into a continuous transition by coupling gapless
Dirac fermions to fluctuations of Z3 order parameters in its
low-energy 2 + 1D GL theory. Such continuous transitions
were dubbed as “fermion-induced quantum critical points”
(FIQCPs) [42–47]. The RG analysis in [42], controlled in
the 1/N expansion with N being the number of flavors of
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four-component Dirac fermions in 2 + 1D, showed that the
FIQCP can occur when N � Nc, where Nc is the lower bound
of N for the FIQCP. Namely, in RG analysis, for N larger than
a critical value Nc, cubic terms of the order-parameter field
become irrelevant, which results in a continuous quantum
phase transition violating the Landau cubic criterion.

So far the precise value of Nc remains unknown, although
the previous large-N RG analysis predicted that Nc = 0.5
[42] and the functional renormalization group (FRG) analysis
obtained Nc ≈ 1.9 [46]. It is challenging to obtain the precise
value of Nc from RG analysis. However, for integer N , it
is possible to study such transitions in microscopic models
by numerical methods such as QMC simulations [48–50].
Reference [42] introduced a microscopic model of SU(N )
fermions on the honeycomb lattice and found a quantum phase
transition between 2 + 1D gapless Dirac semimetal (DSM)
[51–54] and Kekule valence bond solids (Kekule-VBS) for
N � 2 [55–63]. The Kekule-VBS transition can be charac-
terized by a Z3 order parameter the cubic terms of which
are allowed in the GL free energy, implying a first-order
transition according to the Landau cubic criterion. However,
from large-scale QMC studies, it was shown convincingly that
the FIQCP occurs for N � 2 (specifically N = 2, 3, 4, 5, 6).
However, whether the FIQCP may occur for the case of N = 1
(the lowest possible integer value of N) remains open.

Note that the SU(N) model introduced in Ref. [42] does
not support Kekule-VBS phase transition for N = 1. To study
the nature of Z3 quantum phase transition in DSM with N = 1,
it is desired to construct a microscopic model which features
a transition between DSM and Kekule-VBS for N = 1. Here,
we propose a generalized SU(N) fermion model for which the
transition between the DSM and Kekule-VBS can be realized
down to N = 1. Moreover, for this N = 1 model of spinless
fermions, QMC simulations can be made sign-problem free
using Majorana representation [64–66]. As an intrinsically
unbiased approach, QMC is often employed to explore in-
teracting quantum models that are sign-problem free [64–70]
(for a recent review, see, e.g., Ref. [71]). Consequently, we
employ sign-problem-free Majorana quantum Monte Carlo
(MQMC) simulations to investigate whether the Kekule-VBS
transition features a FIQCP or not for the case of N = 1.
From our large-scale MQMC simulations, we find convincing
evidences of a continuous quantum phase transition between
the N = 1 DSM and Kekule-VBS phases. At the critical point,
the U(1) symmetry emerges, indicating that the transition
falls into the chiral XY universality class [72–76]. Indeed,
the critical exponents obtained from MQMC simulations are
reasonably consistent with the ones obtained from previous
RG analysis of the chiral XY universality class. Consequently,
we believe that the FIQCP can occur at the transition between
DSM and Kekule-VBS phase for the case of N = 1. As it
was rigorously proved from supersymmetry that the transition
cannot be continuous for N = 1/2 [42,44], we conclude that
the lower bound Nc of the four-component fermion flavors for
realizing the FIQCP should satisfy 1/2 < Nc � 1.

II. MODELS

To investigate the nature of the transition between
DSM and Kekule VBS phase with N = 1, we introduce a

JQ
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FIG. 1. The schematic representation of the model on the 2D
honeycomb lattice. (a) The noninteracting part H0 describes Dirac
fermions at low energy, with two Dirac points located at ±K =
(± 4π

3 , 0). (b) For the interacting part HI , J is the strength of bond-
bond interactions on the same bond and Q represents the strength
of bond-bond interactions between two different bonds of the same
plaquette.

generalized sign-problem-free model of SU(N ) fermions on
the honeycomb lattice, which features a quantum phase tran-
sition between DSM and the Kekulu-VBS phases down to
N = 1. The generalized SU(N) model is given by

H = H0 + HI , (1)

H0 = −t
∑
〈i j〉

(c†
i c j + H.c.), (2)

HI =− J

2N

∑
〈i j〉

(c†
i c j + H.c.)2− Q

N

∑
〈i j〉〈kl〉∈P

�i j�kl , (3)

where c†
i c j = ∑N

σ=1 c†
iσ c jσ , c†

iσ creates a fermion on site i with
spin or flavor index σ = 1, . . . , N , and �i j ≡ c†

i c j + H.c. la-
bels the hopping operator on nearest-neighbor (NN) bond 〈i j〉.
Here t is the hopping amplitude on NN bonds, J is the strength
of NN bond interaction, and Q represents the strength of bond
interactions between two next-nearest-neighbor (NNN) bonds
〈i j〉 and 〈kl〉 within the same plaquette P, as shown in Fig. 1.
In the following, we set t = 1 as the unit of energy. The
low-energy physics of noninteracting Hamiltonian H0 of the
SU(N ) fermions at half filling in Eq. (2) can be described by
N flavors of massless four-component Dirac fermions.

When Q = 0, the Hamiltonian in Eq. (1) is reduced to the
model introduced in Ref. [42], which was shown to undergo
a continuous quantum phase transition from DSM to Kekule-
VBS phases with increasing value of J for N � 2. However,
the DSM-VBS phase transition is absent in the model with
Q = 0 and N = 1 because the interaction − J

2 (c†
i c j + H.c.)2 =

J (ni − 1
2 )(n j − 1

2 ) is effectively density-density repulsion be-
tween NN sites that favors charge-density wave (CDW) order
instead of Kekule-VBS at half filling. For the N = 1 case, a
nonzero Q is needed to realize a transition between the DSM
and Kekule-VBS.

III. MQMC SIMULATIONS

By employing the Majorana representation introduced in
Ref. [64], it was shown that the model at half filling with N =
1 and Q = 0 is sign-problem free. For a finite Q, there is still a
large sign-problem-free region in the (J, Q) parameter space
for the case of N = 1, which allows us to perform unbiased
QMC simulations to investigate the nature of quantum phase
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FIG. 2. The schematic quantum phase diagram of the generalized
model for the N = 1 case. The shaded region is sign problematic
while for J � Q > 0 the model is sign-problem free. For Q = 0, the
quantum phase transition between DSM and CDW phases occurs at
J = Jc ≈ 1.36, consistent with results obtained in Ref. [64]. Along
the line of J = Q, our MQMC simulations show the continuous
phase transition between DSM and Kekule-VBS happens at Q =
Qc = 0.16. The phase transition between CDW and Kekule-VBS
ordered phases is presumably first order due to the incompatible
symmetries of the two phases.

transition in systems with large lattice sizes. After rewriting
HI in the following way,

HI = −J−Q

2

∑
〈i j〉

(c†
i c j+ H.c.)2− Q

2

∑
P

[(
�i1i2+ �i3i4+ �i5i6

)2

+(
�i2i3 + �i4i5 + �i6i1

)2]
, (4)

where i1, . . . , i6 represent six sites of hexagon plaquette P,
it is clear that the model is sign-problem free in the param-
eter region satisfying J � Q � 0. Hereafter, we focus on the
case of N = 1 and perform MQMC simulations in this sign-
problem-free parameter region. The schematic phase diagram
of the model as a function of J and Q is shown in Fig. 2. When
the ratio of Q/J is large enough, a quantum phase transition
between DSM and Kekule-VBS phases can be realized with
increasing Q. In the following, we fix J = Q, which is at
the boundary of the sign-problem-free region, and tune the
value of Q to explore the nature of quantum phase transition
between DSM and Kekule-VBS phases.

As we are interested in quantum (namely, zero-
temperature) phase transitions, we use projector QMC [77,78]
to explore the ground-state properties of the model in Eq. (1).
To identify the Kekule-VBS ordering, we calculate the struc-
ture factor of VBS order parameters by MQMC: SVBS(k, L) =
1

L4 �i, je−ik(ri−r j ) 〈�i,i+δ� j, j+δ〉, where the system has 2 × L ×
L sites with periodic boundary condition and the summation
of δ over three directions of NN bonds is implicitly assumed.
The Kekule-VBS order parameter �VBS can be obtained
through �2

VBS = limL→∞ SVBS(K, L) where K is the VBS
ordering momentum ±K = (± 4π

3 , 0). It should be a finite
value when the system lies in the Kekule-VBS phase. As
shown in Fig. 3(a), when the interaction is strong, namely,
Q > 0.16, the VBS structure factor is extrapolated to a finite
value as L → ∞, indicating that the ground state possesses
Kekule-VBS long-range order.
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FIG. 3. MQMC simulations of the N = 1 model Eq. (3) with
J = Q. (a) Extrapolation of Kekule-VBS structure factor SVBS(K, L)
with Q = 0.10, 0.12, 0.16, and 0.20 for N = 1 as a function of 1/L.
The Kekule-VBS order parameters are extrapolated to finite values
as L → ∞ when Q is larger than 0.16. (b) Binder ratio B(L) with
different Q and L. The phase transition occurs at Q = 0.16. (c) The
first-order derivative of the ground-state energy density with respect
to Q. The system size in our simulation is L = 12, 15, 18.

To determine accurately the critical value Qc, we compute
the RG-invariant Binder ratio of Kekule-VBS order B(L) =

SVBS(K,L)
SVBS(K+δK,L) for L = 9, 12, 15, 18, 21, where |δK| = 2π

L labels
minimal momentum shift from K. At the putative critical
point, the RG-invariant ratios of different L should cross at
the same point for sufficiently large L. The QMC results of
the RG-invariant ratio are shown in Fig. 3(b), which clearly
show that the critical point of DSM-VBS transition is about
Qc = 0.16. The case with Q = 0 and finite J is the same as the
model studied in Refs. [64,79–83], which features a transition
from DSM to CDW phases. The quantum phase transition
between CDW and VBS phases, as schematically shown in
Fig. 2, should be first order since the broken symmetries of
these two order parameters are incompatible with each other
such that a second-order transition between these two phases
is forbidden by the Landau criterion (here it is not expected to
feature a DQCP).

To investigate whether the transition between DSM and
Kekule-VBS phase is continuous or discontinuous, we first
compute the first-order derivative of the ground-state energy
with respect to Q in the vicinity of the transition. If a sharp
kink in the derivative appears at the transition, it would in-
dicate a first-order transition. The first-order derivative of the
ground-state energy density E0 with respect to Q is given by

∂E0

∂Q
= −1

2L2

∑
P

〈(
�i1i2 + �i3i4 + �i5i6

)2

+(
�i2i3 + �i4i5 + �i6i1

)2〉
. (5)
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FIG. 4. MQMC simulation results of the N = 1 model Eq. (3)
with J = Q. (a) The anomalous dimension η ≈ 0.79(6) is obtained
from log-log fitting of SVBS(K, L). (b) Collapsing of data points with
different Q and L occurs when ν ≈ 1.20.

From MQMC simulations we obtain the results of the
first-order derivative of the ground-state energy for system
size L = 12, 15, 18, as shown in Fig. 3(c). The tendency of
discontinuity around the transition Qc = 0.16 is absent with
all system sizes under study. It implies that the DSM-VBS
transition is continuous.

To better demonstrate whether the transition is continuous,
we further investigate the critical behavior around the DSM-
VBS transition point. More explicitly, we perform finite-size
scaling analysis to extract the putative critical exponents ν and
η [74,84,85], from which other critical exponents can be ob-
tained using hype-scaling relations. The VBS structure factors
satisfy the following scaling relations with Q close enough to
Qc at relatively large L: SVBS(K, L) = L−z−ηF [L

1
ν (Q − Qc)].

The dynamical exponent z is assumed to be 1 due to the
existence of gapless Dirac fermions at the transition point.
First we obtain η by plotting SVBS(K, L) at Qc with system
size L in a log-log way and fit it to a linear function with slope
−1 − η. With η determined, there exists an appropriate value
of ν such that data points of (SVBS(K, L)L1+η, L

1
ν (Q − Qc))

at different Q in the vicinity of Qc and different size L should
collapse in a single smooth curvature F . Such finite-size
scaling and data collapse analysis [84,85] give rise to η =
0.79(6) and ν = 1.20, as shown in Figs. 4(a) and 4(b). The
collapsing of data points with different Q and L to a single
smooth function by choosing appropriate values of η and ν

is a strong indication that the phase transition is continuous.
Furthermore, the fitted result of correlation length exponent
ν is much larger than 1/d , where d = 3 is the spacetime
dimension. Such a large value of correlation length exponent
ν also implies that the DSM-VBS transition should not be a
first-order transition.,

We summarize the QMC results of η and ν for N = 1
obtained in the present paper and N = 2, 3, 4, 5, 6 of the
previous work, and compare them with the results obtained in
RG analysis [42,46], as shown in Table I. Our numerical re-
sults indicate that the quantum phase transition between DSM
and Kekule-VBS phases for N = 1 is continuous, namely,
realizing a FIQCP, which is consistent with the result of RG
analysis with large-N expansion. As discussed in previous
works, the values of η obtained from QMC and RG are in good
agreement with each other for N � 2, especially for larger N .
The agreement in ν is not as good as η, but still exhibits the

TABLE I. Critical exponents η and ν at FIQCP obtained by QMC
and one-loop RG, respectively, for N = 1, 2, 3, 4, 5, 6.

N η (RG) η (QMC) ν (RG) ν (QMC)

1 0.5 0.79(6) 1.15 1.20
2 0.67 0.71(4) 1.25 1.04
3 0.75 0.77(4) 1.26 1.05
4 0.80 0.80(4) 1.25 1.12
5 0.83 0.85(4) 1.23 1.08
6 0.86 0.89(4) 1.22 1.07

same trend of better agreement at larger N . The values of η

and ν obtained from QMC for N = 1 are slightly different
from the results of RG’s calculation, which might originate
from the fact that RG’s calculation is controlled by the param-
eter 1/N such that obtaining accurate critical exponents for
N = 1 is beyond RG’s scheme. Our numerical study provides
an unbiased numerical result of critical exponents for the
N = 1 Gross-Neveu chiral-XY universality class in 2 + 1D,
which could serve as a benchmark for the higher-order RG
calculation or other theoretical analysis in future studies.

IV. CONCLUSION AND DISCUSSION

In conclusion, we proposed a generalized SU(N) fermionic
model on the honeycomb lattice, which hosts the quantum
phase transition between DSM and Kekule-VBS phases for
the case of N = 1 (namely, the spinless fermions on the
honeycomb lattice). By employing state-of-the-art MQMC
simulation, we obtain convincing numerical evidences that the
scenario of the FIQCP, which drives the putative first-order
transition to a continuous one, is realized in Dirac semimet-
als with flavor N = 1. Combining with results obtained in
previous works, our results indicate that the FIQCP can occur
in SU(N) Dirac semimetals for all positive integers N � 1
and the lower bound Nc of the flavor of four-component
Dirac fermions for realizing the FIQCP is constrained to the
range 1

2 < Nc � 1. Moreover, to the best of our knowledge,
our MQMC simulation is the first sign-problem-free QMC
study of the critical exponents in the 2 + 1D N = 1 chiral-
XY universality class, which provides a benchmark for the
analytical calculation and numerical simulations in the future.
It is also desired to derive quasirigorous bounds of critical
exponents from conformal bootstrap calculations [38–40],
which is deferred to the future, and see whether the QMC
results of critical exponents η and ν are consistent with the
conformal bounds.
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APPENDIX A: FINITE-SIZE SCALING ANALYSIS OF
CRITICAL PROPERTIES

In the present paper, we investigate the nature of quantum
phase transitions from Dirac semimetal to the Kekule-VBS
phase by evaluating their structure factors in the QMC sim-
ulations, which are defined as the Fourier transform of the
correlation function:

SO(k, L) = 1

L4
�i, je

−ik(ri−r j ) 〈ÔiÔ j〉 , (A1)

where Ô represents the VBS order parameter, i and j are site
indices, L denotes the system size, and k is the crystalline
momentum. For VBS order, the observable is Ôi = c†

iσ ci+δσ +
H.c., where δ labels the direction of the NN bond, and the
peaked momentum is K = (± 4π

3 , 0).
The RG invariant ratio, which is the ratio of the structure

factor defined in the main text, is a powerful tool to determine
the phase transition point. In the long-range ordered phase, the
RG invariant ratio B(L) → ∞ for L → ∞, whereas B(L) →
1 for L → ∞ in the disordered phase. When the system is
large enough, the RG-invariant ratio is independent of system
size at the putative QCP as the system is scale divergent
due to the divergence of order-parameter correlation length.
Consequently, the phase transition point can be identified
through the crossing point of RG-invariant ratio curves for
different system sizes.

The critical exponents can also be extracted by the structure
factor and RG-invariant ratio according to their universal
scaling behaviours around the QCP. The universal scaling
functions describing the structure factor at peaked momentum
and the RG-invariant ratio around the QCP are

S(K, L) = L−(d+z−2+η)F1[L
1
ν (Q − Qc)],

B(L) = F2[L
1
ν (Q − Qc)], (A2)
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FIG. 5. The extrapolation of the anomalous dimension η to the
thermodynamic limit for Kekule-VBS phase transitions. The system
size in our simulation is L = 12, 15, 18. The extrapolated η(L → ∞)
at the thermodynamical limit is approximately 0.79(6).

where d represents the spatial dimension and K is the peak
momentum of the VBS structure factor. The critical exponent
η is the anomalous dimension and ν is the correlation function
exponent. z is the dynamical critical exponent, which has the
value z = 1 due to Dirac physics. F1 and F2 are unknown
ansatz scaling functions. Based on the above scaling function,
we can extract the critical exponent η:

η(L) = 1
log(L)

log(L+3)

log
S(K, L + 3)

S(K, L)
|Q=Qc (L) − (d + z − 2), (A3)

where η(L) is, as shown in Fig. 5, the anomalous dimension η

extracted at the crossing point PC (L) of B(L) and B(L + 3) in
Fig. 3(b).

APPENDIX B: RENORMALIZATION-GROUP ANALYSIS
OF THE DSM-VBS TRANSITION FOR N = 1

The low-energy field theory describing the quantum phase
transitions between DSM and Kekule-VBS phases has been
constructed in previous works [42]. Near the quantum phase
transition, the system can be described by SU(N ) Dirac
fermions ψ , fluctuating Z3-order parameters φ, and their cou-
plings: S = Sψ + Sφ + Sψφ . The action Sψ for SU(N ) Dirac
fermions on the honeycomb lattice is given by

Sψ =
∫

d3xψ†[∂τ − v(iσ xτ z∂x + iσ yτ 0∂y)]ψ,

where τ i (σ i) are Pauli matrices on valley (sublat-
tice) spaces, v denotes the Fermi velocity, and ψ =
(ψ†

KA(x), ψ†
KB(x), ψ†

−KA(x), ψ†
−KB(x)) is the four-component

fermion creation operator with ±K = (± 4π
3 , 0) denoting val-

ley momenta of Dirac points and A, B labeling the sublat-
tice. The flavor index σ = 1, 2, 3, ..., N is implicit in the
action. For spin- 1

2 fermions on the honeycomb lattice (e.g.,
graphene), N = 2. For spinless fermions on the honeycomb
lattice, N = 1, which is the focus of the present paper.

The Kekule-VBS ordering breaks the lattice translation
symmetry with wave vectors ±2K and C3 rotational sym-
metry. The action effectively describing the fluctuations of
order-parameter bosons is given by

Sφ =
∫

d3x[|∂τ |2 + c2|∇φ|2 + r|φ|2 + b(φ3 + φ∗3) + u|φ|4],

where φ(x) = φ2K (x) is the complex-valued order parameter
and r, c, b, and u are real constants. Note that the cubic term
with coefficient b is allowed by symmetry in the action above.
According to the Landau cubic criterion, the cubic term
should drive the phase transition to first order. However, as
shown in Refs. [42,44], the coupling between Dirac fermions
and fluctuating order parameters,

Sψφ = g
∫

d3x(φψ†σ xτ+ψ + H.c.),

where τ± = (τ x ± iτ y)/2 and g labels Yukawa coupling
strength, can qualitatively affect the nature of the Z3 transi-
tion and may render this putative first-order transition into a
continuous one.

The large-N RG analysis of the transition between DSM
and Kekule-VBS described by the action S above was per-
formed in Ref. [42]. By solving the RG flow equations
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describing the flow of coupling constants upon integrating
out fast modes, it was shown that for N > 1/2 there is
only one stable fixed point: (g̃2, b̃2, ũ) ≈ ( 2

πN , 0, 2
πN ) on the

critical surface (r = rc), where the dimensionless constants
(g̃2, b̃2, ũ) were obtained from (g2, b2, u) upon rescaling. In
other words, for N > 1/2 the cubic term b is irrelevant and
the putative first-order DSM-VBS transition is induced to
a continuous one. The RG flow for the case of N = 1 is
shown in Fig. 6. When N > 1/2, by solving the linearized RG
equations in the vicinity of the Gross-Neveu-Yukawa (GNY)
fixed point, the critical exponents are given by η = N

N+1 and

ν = 2 − 1+4N+√
1+38N+N2

5(1+N ) . For N < 1/2, the cubic term b is
shown from the large-N analysis to be relevant and features
a run-away flow. Consequently, the large-N RG analysis at
the one-loop level predicted a critical Nc = 1

2 . Here we would
like to mention that the scaling dimension of the cubic term is
exactly 2 at the N = 1/2 GNY fixed point with emergent su-
persymmetry, which is less than spacetime dimension 2 + 1,
implying that the cubic term is relevant and the DSM-Kekule
VBS transition of N = 1/2 should be a first-order transition,
as shown in Ref. [42]. Because it is a first-order transition

FIG. 6. RG flow of coupling constants in the critical hypersur-
face r = rc at one-loop level for N = 1, according to RG equations
obtained in Ref. [42]. The only stable fixed point, denoted by the red
point, is the Gross-Neveu-Yukawa (GNY) fixed point representing a
FIQCP.

at N = 1/2, we can conclude that the exact value of Nc should
obey Nc > 1

2 .
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