PHYSICAL REVIEW B 101, 081403(R) (2020)

Rapid Communications

Topological phonons in graphene
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By means of first-principles calculations and a modeling analysis, we have predicted that traditional two-
dimensional graphene hosts four types of topological phononic Dirac points (DPs) and a phononic nodal ring
(PNR) in its phonon spectrum. In the phonon spectrum of graphene, there exist four types of DPs, DP1, DP2,
DP3, and DP4, with both DP1 and DP2 located at the Brillouin zone (BZ) corners K and K’, DP3 located along
the I'-K line, and DP4 located along the I'-M line, as well as the PNR surrounding the centered I" point in the g, ,
plane. The calculations further reveal that Berry curvatures are vanishingly zero throughout the whole BZ, except
for the positions of these four Dirac phonons, at which the nonzero singular Berry curvatures appear with a Berry
phase of & or —m, confirming its topological nontrivial nature. The topologically protected nontrivial phononic
edge states have been also evidenced along both the zigzag-edged and armchair-edged boundaries. These results
may pave the way for further studies of the topological phononic properties of graphene, such as phononic
destructive interference with a suppression of backscattering and intrinsic phononic quantum Hall-like effects.
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Graphene, consisting of one-atom-thick carbon in a two-
dimensional (2D) hexagonal lattice, distinguishes itself as an
ideal platform for various interesting and unusual properties,
such as large, tunable carrier densities n ~ 101-10" cm~2,
an ultrasmall, tunable Drude mass, exceptionally long intrin-
sic relaxation times, and so on. These are mainly because
its electronic structure can be described at low energies by
a massless Dirac-fermion model. On the basis of graphene,
Kane and Mele contributed a pioneering theoretical discovery
to predict its quantum spin Hall effect by breaking the Dirac
cone into a gap by forcing a spin-orbit coupling interac-
tion [1], witnessing a new phase of quantum matter, called
topological insulators in HgTe [2,3], with insulating bulk
and quantized and robust edge conductance. In parallel with
electrons, still on the basis of the structure of graphene, the
topological nature of the phonon Hall effect was theoretically
proposed by interplaying Raman-type spin-phonon interac-
tions [4], and infrared topological plasmons were also recently
proposed by breaking time-reversal symmetry under a static
magnetic field [5]. The other two time-reversal symmetry-
breaking two-dimensional systems were theoretically pro-
posed to show topological phonon states with robust one-way
elastic edge waves [6,7], which are immune to backscatter-
ing. Interesting, in all these studies [1,4—7], time-reversal
symmetry-breaking fields by gyroscopic inertial effects [6,7],
spin-orbit coupling effects [1], spin-phonon interactions [4],
and static magnetic fields [5] are necessary to induce topolog-
ically protected one-way electronic or phononic edge states on
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2D systems. As early as 2008, phononic band crossing points
were revealed in graphene [8]. Subsequently, chiral phonons
at both the K and K’ points in a two-dimensional hexagonal
lattice including graphene have been discussed [9-12] and
then such chiral phonons were called Dirac phonons [9-12].
In addition, Dirac phonons at the K and K’ points and their
corresponding boundary states have also been studied in detail
for the monolayer hexagonal Crl; [13]. Yet, it is still not clear
whether the other phonon modes of graphene are topological.

In Ref. [7], a modeling analysis for four phonon bands
with the occurrence of a complete band gap for a hexagonal
phononic crystal reveals that this gap is topologically trivial,
since the time-reversal symmetry is not broken and the Chern
numbers of the bands are all zero. It was the reason why the
authors introduced gyroscopic coupling to their modeling to
obtain the nontrivial topological nature. In similarity to this
work, in Ref. [9] various novel topological effects of phonons,
including topologically protected pseudospin-polarized in-
terface states and the phonon pseudospin Hall effect, have
been theoretically modeled in a Kekulé lattice. Returning to
graphene, its unit cell has two carbon atoms allowing six
degrees of freedom for atomic displacements. Even with equal
masses for two carbon atoms, it is possible to have intrin-
sically topologically protected phononic states in graphene
because of the two extra freedoms—vibration modes—along
the direction normal to the xy plane, which definitely increase
its perturbations. With such a purpose, we have revisited
the issue of phonon dispersions of graphene. Interestingly,
we have found that the topology is an intrinsic property of
the phonon spectrum for graphene. Our calculations reveal
that, in the 2D hexagonal Brillouin zone (BZ), Dirac phonons
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not only exist at two inequivalent K and K’ points but also
appear on the I'-L and I'-K lines. Four types of Dirac phonons
are revealed in its BZ. More interesting, there still exists a
phononic nodal ring (PNR) surrounding the centered I point.
Furthermore, we have evidenced nontrivial edge states along
both zigzag-edged and armchair-edged boundaries, which are
indeed confined to the boundaries in one-way propagation.
Based on the density functional theory (DFT) [14,15]
and density functional perturbation theory (DFPT) [16], we
have calculated stable lattice constants and the phonon dis-
persion. Both DFT and DFPT calculations have been per-
formed by the Vienna ab initio simulation package (VASP)
[17-19]. We adopted the projector augmented-wave (PAW)
[20,21] potentials and the generalized gradient approximation
(GGA) within the Perdew-Burke-Ernzerhof (PBE) exchange-
correlation function [22]. They treat semicore valence elec-
trons as valence electrons. To obtain stable phonon spectra,
a highly accurate optimization of the lattice constants has
been performed by minimizing the interionic forces to within
0.0001 eV/A. The cutoff energy for the expansion of the wave
function into the plane waves was 550 eV. A Monkhorst-Pack
k mesh (21 x 21 x 1) was used for the BZ integrations with
a resolution of 27 x 0.01 A. By trying various supercells for
the calculations of phonon dispersions, it has been found that
the 7 x 7 x 1 supercell yielded a high accuracy to provide
the most reliable force constants by combining both the VASP
and PHONOPY codes [23]. Of course, we have also computed
the phonon spectrum by including the spin-orbital coupling
(SOC) effect, and the SOC does not exhibit any influence
on the phonon. By using the force constants as hopping
parameters, we have built dynamic matrices to analyze the
topological nature. The boundary phonon dispersions have
been performed by constructing a chain model, and the
boundary-edged phonon densities of states have also been
obtained by using the iteration Green’s function method [24].
We have recalculated the phonon dispersions of graphene
in Fig. 1, which is in good agreement with previous calcu-
lations [25-27]. Importantly, we have observed several linear
crossings of the phonon bands in Fig. 1. At the K point, the
BZ’s corners, there are two linear crossings of the phonon
bands, clearly stemming from the band crossing between the
ZA and ZO branches at 15.92 THz and from another band
crossing between the LA and LO branches at about 36.36
THz. The former is marked with DP1 and the latter with DP2
in Fig. 1. In addition, we still note that there exist two types
of band crossings between the LO and TO branches along
the I'-M and I'-K (or I'-K’) paths, defined as DP3 and DP4,
respectively. In particular, these four crossing points (DP1,
DP2, DP3, and DP4) are isolated points, showing a conical
band structure on the g., plane. The DP1 has the lowest
frequency among those four crossings. We have plotted the
band structure between the ZA and ZO branches on the g, ,
plane of the BZ in Figs. 2(a) and 2(b) from which the conical
structure can be clearly evidenced. Interestingly, the conical
shapes of DP2 and DP3 are very similar to that of DPI,
although their frequencies are different. However, the conical
shape of DP4 is highly different, as its conical structure on
the g., plane is tilted as shown in Fig. 2(c). To identify
whether these four DPs exhibit a topological nature, we have
calculated their Berry curvatures on a 2D ¢, , plane. It needs
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FIG. 1. The DFT-PBE derived phonon dispersions of graphene.
ZA: Out-of-plane acoustic branch. ZO: Out-of-plane optical branch.
TA: Transverse-acoustic branch. TO: Transverse-optical branch. LA:
Longitudinal-acoustic branch. LO: Longitudinal-optical branch.
Note that the seven phononic Dirac nodes are marked by pink trans-
parent circles, and the three blue circles are three nodal points on the
nodal line formed by the crossing between the lowest out-of-plane
optical (ZO) and the highest longitudinal-acoustic (LA) branches.
The Berry phases of these Dirac nodes are marked as “+” for & and
“—>for —m.

to be emphasized that for 2D crystals the Berry curvature only
has a nonzero value (£2,,) along the ¢, direction, whereas
Q,. and 2, have to be zero. Here, we have selected DP1
and DP4 as the examples. Figures 2(d) and 2(e) show the
Berry curvatures of the ZA/ZO crossing (DP1) at K and K’
indicating that their Berry curvatures only have an extremum
exactly at K and K’ but with opposite signs, and at all other
positions the Berry curvature is strictly zero. This reveals that
the DP1 at K and K’ have opposite charges. Furthermore, both
DP2 and DP3 show a similar feature to DP1. We have also
calculated the Berry curvature of DP4 on the 2D g, , plane
in Fig. 2(f), evidencing the isolated maximum value only at
the defined A point along the I'-K path, whereas the Berry
curvature at any other g point is almost zero. Moreover, we
have calculated their Berry phases as

v = f An(@) - dl. (1)
C

where A, (q) = i(u,(q)|V4|u,(q)) is the Berry connection and
u,(q) is the Bloch wave function of the nth band. For this
purpose, we have defined a circle on the g, , plane centered at
the ¢ = K momentum to calculate the Berry phase. The radius
of the circle going around this K point can be selected to be
arbitrarily large, as long as it does not also cover another K
or K’ point. Interestingly, the Berry phase for this crossing
point DP1 at K is —m, whereas another crossing point at
K’ has an opposite Berry phase of 7. This means that the
two crossing points of DP1 at K or K’ are topologically
nontrivial and it also proves that the topological properties
of the band crossings at K or K’ are opposite in their Berry
phase. Therefore, these band crossing points, DP1, at K and
K’ are indeed a pair of Dirac nodes with an opposite Berry
phase. Thus, we have also analyzed the Berry phases of the
other three crossing points (DP2, DP3, and DP4), revealing
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FIG. 2. Dirac phonons at K and K’ in graphene. (a) The 3D visualization of the DFT-PBE derived phonon ZA and ZO branches of graphene
to show the linear crossing, PW1, at the K and K’ point in the BZ. (b) Zoom-in 3D visualization of both ZA and ZO branches surrounding
the K point of the BZ. (c) Visualized DFT-PBE derived phonon LO and TO branches of graphene to show the linear crossing, PW4, along the
I' and K path in the BZ. (d) and (e) Derived Berry curvature surrounding the phononic Dirac point, DP1, at K (or K”) point on the ¢, , plane
(g« = 0.31-0.36; g, = 0.31-0.36) of the BZ. (f) Distribution of Berry curvature of the Dirac point, DP4, at the defined A point of the 2D BZ.
(g)—() Distribution of the Dirac points in the first BZ of graphene, DP1, DP2, DP3, and DP4, respectively.

that they have the same topological property as DP1 with a
value of w or —mr. Therefore, all four crossing points of DP1,
DP2, DP3, and DP4 are 2D phononic Dirac points. It needs
to be emphasized that all these 2D phononic Dirac points
in graphene are intrinsically different from Weyl fermions
[28-60] or phonons [61-67], although both of them are
twofold degenerate. Because the lattice of graphene is such a
system with both inversion and time-reversal symmetries, the
phononic band crossing points do not possess the character-
istics of Weyl nodes. Of course, 3D shapes for these DPs are
physically not allowed for graphene. In addition, DP1, DP2,
and DP3 exhibit a normal conical shape, whereas the DP4 has
a tilted conical shape. All these Dirac nodes obey threefold
rotation symmetry and thus each type of Dirac point has three
pairs in its 2D first BZ, as illustrated in Figs. 2(g)-2(j).

We have still noted that at 24 THz the phononic linear band
crossings occur between the LA and ZO branches along the
I'-K (or K') and I'-M directions (Fig. 1). Importantly, these
three linear crossing points are not isolated and, instead, they
form a closed PNR around the I' point in the BZ. In order
to clearly see the shape of the PNR, we have visualized the
phonon bands of both ZO and LA branches on the g, , plane
in Fig. 3(a). The specified location of the PNR is shown in the
BZ in Fig. 3(b) in which we have used the gap between the ZO
and LA branches to obtain the PNR distribution, evidencing
the occurrence of the black circle centered at the I" point.

For a 2D crystal, the topologically nontrivial nature can
be observed by the edge states. To elucidate this feature, we
have employed the phononic tight-binding model to construct

the supercell of a ribbon model [Fig. 3(a)] along different
directions, and the edge phononic bands are obtained by a
truncated chain of graphene. Through the Green’s function
iteration method, the 2D and edge phononic densities of
states can be obtained through the imaginary parts of the
Green’s function. Currently, we have mainly focused on the
two representative edge states of the zigzag-edged boundary
[the [100] direction in Fig. 4(a)] and of the armchair-edged
boundary (the [110] direction) as shown in the Supplemental
Material [68]. From the phonon dispersions of the zigzag-
edged boundary in Fig. 4(b), four distinct topologically pro-
tected nontrivial edge phononic states can be observed. In the
first, at about 16 THz of the zigzag-edged phononic states,
a straight-line state is formed to connect two projected DP1
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FIG. 3. (a) The 3D visualization of the DFT-PBE derived phonon
Z0 and LA branches of graphene to show the phononic nodal line
surrounding the I point in the BZ. (b) The gap between these two
Z0O/LA branches in the first BZ. The black circle represents the PNR
on ¢y plane.
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FIG. 4. The phonon dispersions of the zigzag-edged boundaries (along the [100] direction) of graphene. (a) The ribbon model of graphene
with a zigzag-edged boundary. (b) The phonon dispersion of the ribbon model derived by the tight-binding calculations along the zigzag-edged
high-symmetry paths. (c)—(e) Zoom-in local phonon dispersions connecting to the projection sites of the DP3, PNR, and DP1 phonons around
the M point. Note that we have plotted the edge states in (a) on a selected point [as marked by a circle in (b)] of the DP1-induced topologically

protected phononic edge dispersion.

points with opposite Berry phases. To illuminate the edge
states, we have analyzed the Bloch modes of a selected
point on the edge states. As shown in Figs. 4(b) and 4(e),
the point is marked by a blue circle on the edge states and
its coordinate is g = (0.45, 0.0)27”. This twofold degenerate
band originates from the ZA and ZO modes of the pristine
phonons of graphene. From the tight-binding model, we have
analyzed the vibration modes of these two phononic bands
on the edge states. As expected, these two edge bands are
associated with the out-of-plane vibration modes only along
the k, direction for the edged carbon atoms in Fig. 4(a), which
are exactly the same as the ZA and ZO modes correlated with
the DP1 Dirac nodes of pristine graphene. In particular, at
q = (0.5,0.0) 27”, each of the twofold degenerate phonon edge
bands is only contributed by the carbon atoms at the zigzag
boundaries. As illustrated in Fig. 4(a), the sharp spatial Bloch
modes of those two phononic bands are strictly confined at
the zigzag edges. This means that the twofold degenerate
edged states only propagate along the edged boundaries.
Remarkably, this straight-line phononic edge state has a nearly
flat phononic dispersion upon various ¢ momenta from K to
K, as illustrated in Fig. 4(e). It reveals that the phononic
edge states originating from the DP1 Dirac points have nearly
zero phonon group velocity [namely, v(g) =~ 0] in the phonon
one-way transport direction along the zigzag-edged boundary
of graphene. This interesting feature of a zigzag-edged narrow
ribbon of graphene may have potential applications for the
emitting of ultraslow light. Of course, we have also analyzed
other points of the phononic edge states, revealing similar
spatial and local properties of the vibrations. In the second,
for DP2 at 36.36 THz there is a distinct twofold edge state
connecting two PW2-projected points with a different Berry

phase as shown in Fig. 4(b), which is marked by red and blue
lines. At around 41.50 THz, the other phonon edge states can
be also visualized to connect the DP3 Dirac points with op-
posite Berry phase, as shown in Fig. 4(c). In comparison with
the edge states induced by DP1 and DP2, the DP3-induced
edge states are not only shorter in the ¢ momentum but also
exhibit relatively larger dispersions. Moreover, it needs to
be emphasized that for DP4 no edge states can be clearly
observed because the DP4-induced topologically protected
phononic edge states fully overlap with the edge projection
from the phonon dispersions of pristine graphene. In the third,
in similarity to the nodal lines in 3D crystals which exhibit
nontrivial drumheadlike surface states for pure alkali-earth
metals (Be, Mg, Ca, and Sr) [69,70], and the compounds of
BaSn,, Ca;P, TITaSe,, TiSi, and ZrSiS [71-75], as well as
the phononic nodal line MgB, [63], the existence of PNR
of pristine graphene at 24.38 THz induces straight-line edge
states, simultaneously, with an arclike downwards parabola in
its frequencies upon the ¢ momentum, as shown in Fig. 4(d).
Moreover, the topological phonon-induced edge states for
an armchair-edged boundary of graphene are also further
discussed in the Supplemental Material [68].

It needs to be emphasized that, in general, a nodal ring
in a two-dimensional material, which hosts a nontrivial topo-
logical charge within its interior, would not exhibit any topo-
logical edge states, because the codimension of the projected
nodal line of this nodal ring onto any edge boundary is zero
[76,77]. In contrast, the PNR in graphene is different and it
hosts topologically nontrivial drumheadlike edge states on the
zigzag-edged boundaries. It is clear that the PNR in graphene
is formed by an inverted phononic band between an optical
branch (ZO) and an acoustic branch (LA) centering at the "
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point and, hence, the topological charge of this PNR must
be trivial within its interior by also including the centered
I' point. Because the frequency of the acoustic LA branch
has to be zero at the I point, within the PNR’s interior the
normal phononic band ordering always exists. This reveals
that outside this PNR the nontrivial topological charge cer-
tainly occurs. Otherwise, it is impossible to form the PNR
between the ZO and LA branches. The details are analyzed in
the Supplemental Material [68]. Because the phononic band
inversion occurs outside the PNR, the general principle of the
codimension [76,77] no longer fits the PNR case of graphene.
Therefore, the PNR in graphene will certainly induce the
topologically nontrivial edge states outside its projection line.
This is what we have exactly observed, as shown by the
derived edge states in Fig. 4(d), which are formed by the ZO
and LA phonon modes on the edged boundary.

The occurrence of phononic Dirac nodes in the BZ is
very important for graphene, which provides an ideal plat-
form to study novel topological phononic properties, such as
destructive interference and quantum (anomalous/spin) Hall-
like topological effects. First, the chiral electrons in graphene
[78] moving along a closed path have been demonstrated to
exhibit a phase change of the two components of the wave
function. This leads to a different phase, which contributes
to the interference processes. In similarity to electrons in
graphene, the Dirac phonons at both K and K’ have opposite
Berry phases for both DP1 and DP2. If a phonon traverses
such a closed path without being scattered, protected by the
DP-induced nontrivial phononic edge states, from a DP at
K to the other DP at K’, the Berry phase definitely changes
its sign of the amplitude of one path with respect to the
time-reversed path [78]. Therefore, these two paths possi-
bly form so-called destructive interference, as accompanied

with a suppression of backscattering. As shown in Fig. 4(a)
for the robust phononic nontrivial edge states induced by
DP1 along the K to K’ path, phonon destructive interference
would be reasonably expected. Similar behaviors would also
hold for both DP3 in the T'-M direction and DP4 along the
I'-K direction. Second, it is interesting to emphasize that, as
shown in Fig. 2, the Berry curvatures are vanishingly zero
throughout the BZ, except for the positions of the four types
of DPs (Fig. 2). At these DPs, the nonzero Berry curvatures
(corresponding to the Berry phase of w and —m) appear,
associated with DP1, DP2, DP3, and DP4 (Fig. 2). They
can be indeed viewed as a magnetic field in the momen-
tum space, accordingly leading to the possible occurrence
of phononic quantum (anomalous/spin) Hall-like topological
effects.

Through first-principles calculations and a modeling anal-
ysis we have revealed the existence of intrinsic topological
Dirac and PNR phonons in pristine graphene, as accompanied
with the robust appearance of topologically protected one-way
phononic edge states. Given the fact that many interesting
physical properties are related with phonons, graphene would
be an ideal case to elucidate the fundamental physical phe-
nomena related to topological phonons, possibly including
heat conduction, electrical resistance, and phonon waveg-
uides, as well as electron-phonon coupling effects for super-
conductivity.
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National Natural Science Foundation of China (Grant No.
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