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An extensive theoretical and experimental investigation has been conducted on fermion-pair condensation and
exciton condensation as distinct classes of Bose-Einstein-like condensation. In this Rapid Communication, the
existence of a fermion-exciton condensate—a single quantum state in which the characters of both fermion-
pair and exciton condensates coexist—is established computationally in the low-particle-number (N) limit and
theoretically in the large-N thermodynamic limit. The trade-off between the fermion-pair and excitonic character
of the fermion-exciton condensate is shown to be elliptic in nature. The possibility that the properties of fermion-
exciton condensates could be a hybrid of the properties of fermion-pair condensates and exciton condensates
is discussed, and future experimental and computational exploration of this class of condensate, which may
potentially be realizable in a bilayer of superconductors, is anticipated.
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Introduction. Ample experimental and theoretical inves-
tigations have centered around the condensation of fermion
pairs [1–4] and excitons [5–11]. Fermion-pair condensates—
the most familiar of which include the class of Bardeen-
Cooper-Schrieffer (BCS) superconductors [1]—occur when
particle-particle pairs condense into a single quantum state
to create a superfluid. For condensates of Cooper (electron)
pairs, the superfluidity of the electrons causes the material
through which they flow to be both a perfect conductor
and a perfect diamagnet [3]. Similarly, exciton condensates
involve the condensation of particle-hole pairs (excitons) into
a single quantum state to create a superfluid associated with
the nondissipative transfer of energy [7,12]. Exciton con-
densates have been experimentally observed in optical traps
with polaritons [13–16] and the electronic double layers of
semiconductors [5,6,17–19] and graphene [10,20,21].

In order to combine the frictionless transfer of electrons
of fermion-pair condensates and the frictionless transfer of
energy of exciton-pair condensates, it may be beneficial to
explore a system composed of both fermion-pair and exci-
tonic condensations. Both condensates are known to exist
in systems designed to use exciton condensates to mediate
the creation of Cooper pairs at higher temperatures [22,23].
However, this coexistence of fermion-pair and excitonic con-
densation occurs in two adjacent systems that interact with
one another (such as a superconducting ring deposited around
a semiconductor microcavity [23]) instead of existing in a
joint fermion-exciton condensate state. As such, the properties
of each condensate exist separately from one another instead
of creating a system with the combined properties of both.
As fermion-pair condensation and exciton condensation are
known to exist in superconductors and bilayer systems, re-
spectively, a more promising prospective avenue for obtaining
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this coexistence may be in bilayer systems constructed from
superconducting layers.

In this Rapid Communication, we address the possible
coexistence of a fermion-exciton condensate that contains
both fermion-pair condensation and exciton condensation in
a single quantum state (see Fig. 1). To this end, we use
the theoretical signatures of fermion-pair condensation—
independently discovered by Yang [24] and Sasaki [25]—
and exciton condensation—derived by Garrod and Rosina
[8,26]—to explore the fermion-pair and exciton character
of few-particle systems. Furthermore, we prove that a large
class of fermion-exciton condensate wave functions can be
constructed by entangling any fermion-pair condensate wave
function with any exciton-condensate wave function, from
which we establish the dual condensate’s existence in the
large-N thermodynamic limit.

Theory. Bosons are able to condense into a single, lowest-
energy orbital. A signature of this so-called Bose-Einstein
condensation is a large eigenvalue of the one-boson reduced
density matrix [27] with elements given by

1Di
j = 〈�|b̂†

i b̂ j |�〉, (1)

where |�〉 is defined to be a N-boson wave function with i, j
corresponding to one-boson orbitals in a finite basis set of rank
r and with b̂† and b̂ being bosonic creation and annihilation
operators, respectively.

Fermions, however, must obey the Pauli exclusion prin-
ciple. Hence, the occupation of a given spin orbital must
be either zero or one, and the one-fermion reduced density
matrix (1-RDM) must have eigenvalues bounded above by
one. For fermion condensation to occur, pairs of fermions
(creating a bosonic state) must condense into a single two-
electron function [24,25,28,29]; this two-electron analog to
the one-electron orbital is referred to as a geminal [30,31].
The signature of fermion condensation is hence related to the
two-fermion reduced density matrix (2-RDM) with elements
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FIG. 1. A figure demonstrating the elliptic trade-off between the
signatures of fermion-pair condensation λD and exciton condensation
λG is shown.

given by

2Di, j
k,l = 〈�|â†

i â†
j âk âl |�〉, (2)

where |�〉 is defined to be a N-fermion wave function with
i, j, k, l corresponding to one-fermion orbitals in a finite basis
set of rank r and with â† and â being fermionic creation
and annihilation operators, respectively. In fact, Yang [24]
and Sasaki [25] have independently demonstrated that a large
eigenvalue of the 2-RDM (above the bound of one from
the Pauli exclusion principle) is a signature of fermion-pair
condensation. Additionally, Sasaki [25] has proven that the
eigenvalues of the 2-RDM are bounded by N for systems of
2N or 2N + 1 fermions in the limit of strong correlation.

Analogous to fermion-fermion condensation into a single
particle-particle function, exciton condensation is the conden-
sation of particle-hole pairs (excitons) into a single particle-
hole function. By comparison, one may hence expect a sig-
nature of exciton condensation to be a large eigenvalue in the
particle-hole RDM [8,26,32] with elements given by

2Gi, j
k,l = 〈�|â†

i â j â
†
l âk|�〉, (3)

similar to the large eigenvalue of the fermionic 2-RDM
for fermion-pair condensation. However, there are two large
eigenvalues of the particle-hole RDM with one corresponding
to a ground-state-to-ground-state projection, not excitonic
condensation [26]. To eliminate the extraneous large eigen-
value, we construct a modified particle-hole matrix with the
ground-state resolution removed with elements

2G̃i, j
k,l = 2Gi, j

k,l − 1Di
k

1D j
l , (4)

which we denote as the 2G̃ matrix. While in the noninteracting
limit the eigenvalues of the 2G̃ matrix are zero or one, Garrod
and Rosina have shown that the largest eigenvalue of the 2G̃
matrix is bounded by N

2 for an N-electron system in the limit
of strong correlation [26]. This bound also describes the
maximum number of excitons in a condensate.

Results: Unconstrained calculations. In order to determine
whether there is possible coexistence of exciton character
and fermion-pair character, general N-fermion wave functions
in r = 2N orbitals were constructed, and the coefficients
of the wave functions were then optimized with respect to
the signatures of fermion-pair condensation (λD) and exciton
condensation (λG). Specifically, multiobjective optimization
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FIG. 2. Plots showing scans of λD vs λG are shown for un-
constrained optimizations with a characteristic elliptical fit for the
(a) N = 3 and (b) N = 4 cases.

was performed on |�〉 with respect to a variable λDG, which
depends on the largest eigenvalues of the 2G̃ matrix (λG) and
the 2D matrix (λD) according to

λDG = wG
(
λG − λo

G

)2 − (1 − wG)λD, (5)

where wG describes the weight given to the optimization of the
largest eigenvalue of 2G̃ to the specified eigenvalue provided
(λo

G) and where λD is left unconstrained. This optimization
was conducted through use of a sequential quadratic program-
ming (SQP) algorithm [33,34] with gradients computed by
second-order centered finite differences [35].

To visualize the entirety of λD vs λG space, we system-
atically varied the weight (wG) and the specified eigenvalue
of 2G̃ (λo

G). These visualizations for three and four electrons
(N = 3 and N = 4) can be seen in Figs. 2(a) and 2(b). The
λD vs λG space for each case was then fit with a characteristic
ellipse that defines the maximum λD for a given λG and whose
equation is given by(

λD − γ min
D

γ max
D − γ min

D

)2

+
(

λG − γ min
G

γ max
G − γ min

G

)2

= 1, (6)

where the maximum eigenvalues of the 2D and 2G̃ matri-
ces are bounded by λD ∈ [γ min

D , γ max
D ] and λG ∈ [γ min

G , γ max
G ],

respectively, and where these maxima (γ max) and minima
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(γ min) were obtained from the previously described scan over
λD vs λG space. Such an elliptical nature of the boundary of
the convex set of 2-RDMs when projected onto two dimen-
sions has been previously observed in the context of quantum
phase transitions [36–38].

Figure 2(a) shows that for the case of three electrons in six
orbitals (N = 3, r = 6), the eigenvalues of the 2D matrix lie in
the range λD ∈ [0.5, 1], and the eigenvalues of the 2G̃ matrix
lie in the range λG ∈ [1, 1.5]. As explained in the Theory
section, strong fermion-pair correlation is only seen when λD

exceeds one; hence, for the N = 3 case, fermion-pair con-
densation is not observed. However, exciton condensation—
seen when λG exceeds one—can be obtained for this system.
In fact, maximum exciton condensation (λG = 3

2 = 1.5) can
be achieved. Thus, while exciton and fermion-pair conden-
sation cannot coexist for the N = 3 case (as fermion-pair
condensation is not achievable), this small system can be used
to further explore the properties of exciton condensation in
future works.

Figure 2(b) shows that for the case of four electrons in eight
orbitals (N = 4, r = 8), the eigenvalues of the 2D matrix lie in
the range λD ∈ [0.5, 1.5], and the eigenvalues of the 2G̃ matrix
lie in the range λG ∈ [0.7, 2]. Therefore, both excitonic and
fermion-pair condensation can be observed as both λG and
λD exceed one for certain N = 4 calculations. Interestingly,
there is indeed a region in λD vs λG space where both eigen-
values surpass one, demonstrating the simultaneous existence
of exciton and fermion-pair condensations. However, as is
apparent from the elliptical nature of the fit, there is a trade-off
between the ability of the model system to exhibit high exciton
character (a large λG) and high fermion-pair character (a large
λD). This compromise between the two behaviors is shown
schematically in Fig. 1 and can be rationalized through analy-
sis of the pairing behavior of the r orbitals shown in Fig. 3.

Since excitons are particle-hole pairs and fermion pairs
are particle-particle pairs, the existence of an excitonic
relationship between orbitals should preclude a fermionic
relationship between the same orbitals and vice versa.
Figures 3(a) and 3(b) present the fermion-paired orbitals
(red) and the exciton-paired orbitals (blue), respectively, for
an unconstrained N = 4 calculation which demonstrated
simultaneous fermion-pair and excitonic condensation
(λG = 1.52, λD = 1.22). Note that the darker the shade of
each color, the greater the extent of particle-particle (red)
or particle-hole (blue) pairing between the corresponding
orbitals in the matrix plots. As can be seen from Fig. 3(a),
the orbital pairs with the largest particle-particle character are
{1,8}, {3,4}, and {5,6}, and as can be seen from Fig. 3(b), the
orbital pairs with the largest particle-hole character are {1,3},
{2,7}, {3,6}, and {4,5}. As expected, there is no overlap
between strong fermion-pair particle-particle orbital pairing
and strong exciton particle-hole orbital pairing. These figures
thereby confirm the apparent trade-off between exciton
and fermion-pair character explicitly given by Eq. (6) and
observed in Fig. 2(b). Note that despite the trade-off, neither
the excitonic nor fermion-pair character is trivial. Both are
delocalized across almost every pair of orbitals as can be seen
by the scarcity of white squares in Figs. 3(a) and 3(b). As
such, the coexistence of fermion-pair and excitonic character
seems to be enmeshed in a significant manner.
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FIG. 3. Visualizations of the (a) particle-particle pairs (red) and
the (b) particle-hole pairs (blue) for optimizations of an N = 4 cal-
culation demonstrating both exciton and fermion-pair condensation
(λG = 1.52, λD = 1.22) are shown. Note that the darker the shade
of each color, the greater the extent of particle-particle/particle-
hole pairing between orbitals. The units of pair character are
dimensionless.

Large-N thermodynamic limit. To explore fermion-exciton
condensation behavior in the thermodynamic limit (N → ∞),
we construct a general class of fermion-exciton-condensate
wave functions |�FEC〉. We first introduce model Hamiltoni-
ans known to exhibit fermion-pair condensation and exciton
condensation separately—the extreme antisymmetrized gemi-
nal powers (AGP) Hamiltonian (ĤA) [28,39,40] and the Lipkin
Hamiltonian (ĤL) [41–45], respectively. As the extreme AGP
model demonstrates maximal fermion condensation [40],
there exists an eigenfunction of ĤA—|�A〉—whose largest
eigenvalue of the particle-particle RDM (λD) approaches the
maximal limiting value

Tr(d̂ d̂†|�A〉〈�A|) = λ
(A)
D = N (7)

for systems of 2N or 2N + 1 fermions [25,40], where d̂ is
the operator of the eigenstate of 2D corresponding to λ

(A)
D .
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Similarly, there exists an eigenfunction of the large-coupling
ĤL—|�L〉—whose largest eigenvalue of the modified particle-
hole RDM (λG) approaches the maximal limiting value

Tr(ĝĝ†|�L〉〈�L|) = λ
(L)
G = N

2
(8)

for systems of N fermions [26] where ĝ is the operator of the
eigenstate of 2G̃ corresponding to λ

(L)
G .

Let the model wave function of the fermion-exciton con-
densate be given by the entanglement of the fermion-pair-
condensate (AGP) and exciton-condensate (Lipkin) wave
functions,

|�FEC〉 = 1√
2 − |�| (|�A〉 − sgn(�)|�L〉), (9)

in which � = 2〈�A|�L〉. For this wave function, a lower
bound on the largest eigenvalue of the particle-particle RDM
is given by

1
2 Tr[d̂ d̂†(|�A〉〈�A| + |�L〉〈�L|

− 2 sgn(�)|�A〉〈�L|)] � λ
(FEC)
D . (10)

From Eq. (7), the contribution to λ
(FEC)
D from |�A〉〈�A| would

be λ
(A)
D ; additionally, as the extreme AGP model does not sup-

port exciton condensation, the contribution of |�L〉〈�L| to the
eigenvalue must satisfy the Pauli-like bounds of 0 � γ

(L)
D � 1.

Limits on the cross terms can be obtained by representing the
positive semidefinite matrix d̂ d̂† in the {|�A〉, |�L〉} basis,(

〈�A|d̂ d̂†|�A〉 〈�A|d̂ d̂†|�L〉
〈�L|d̂ d̂†|�A〉 〈�L|d̂ d̂†|�L〉

)
=

(
λ

(A)
D x

x γ
(L)

D

)
� 0.

(11)

As the determinant of this matrix must be greater than or equal
to zero, the maximum contribution of the cross terms is

λ
(A)
D γ

(L)
D − x2 � 0 ⇒ |x| �

√
λ

(A)
D γ

(L)
D �

√
λ

(A)
D . (12)

Inserting these values into Eq. (10) yields the lower bound

λ
(FEC)
D � 1

2
λ

(A)
D −

√
λ

(A)
D = N

2
−

√
N (13)

for 2N or 2N + 1 fermions. Thus, as the number of fermions
gets arbitrarily large (N → ∞), λ

(FEC)
D is simultaneously

large.
Through an analogous derivation, it can be shown that a

lower bound on the largest eigenvalue of the particle-hole
RDM is given by

λ
(FEC)
G � 1

2
λ

(L)
G −

√
λ

(L)
G = N

4
−

√
N

2
(14)

for a system of N fermions. Thus, as the number of fermions
gets arbitrarily large (N → ∞), λ

(FEC)
G is simultaneously

large. As an entanglement of the AGP and Lipkin wave func-
tions demonstrates simultaneous large eigenvalues of 2D and
2G̃, |�FEC〉 does indeed represent a fermion-exciton conden-
sate in this large-N thermodynamic limit. As superconducting
systems exhibit fermion-pair condensation and as bilayer
systems are known to exhibit exciton condensation, a possible
experimental avenue for entangling the fermion-pair conden-
sate (|�A〉) and exciton condensate (|�L〉) wave functions—
and hence obtaining a fermion-exciton condensate—may be
to construct a bilayer system composed of superconducting
layers.

Discussion and conclusions. In this Rapid Communica-
tion, we have theoretically observed the coexistence of both
fermion-pair and exciton condensation in a single quantum
state: a fermion-exciton condensate. This concurrent char-
acter is not disparate; rather, the fermion-pair and excitonic
characters are entwined in a highly nontrivial manner. Still,
there does appear to be an inherent trade-off between fermion-
pair and excitonic character following an elliptic relation-
ship, which precludes the simultaneous presence of maximum
fermion-pair and maximum excitonic condensation. However,
as the number of electrons (N) is increased, the lengths
of the major and minor axes of the ovular fit increase, causing
the compromise between characters to become less and less
stark.

We have also shown that a large class of fermion-exciton
condensates can be constructed by entangling the wave func-
tions of traditional fermion-pair condensates with exciton
condensates. Bounds on the large eigenvalues of their particle-
particle and particle-hole RDMs establish the fermion-exciton
condensates in the large-N thermodynamic limit. The entan-
gled wave functions can be used for further theoretical and
experimental explorations of properties.

A significant motivation for investigating fermion-exciton
condensates is the possible hybridization of the properties
of both fermion-pair condensates and exciton condensates. A
material that combines the superconductive nature of fermion-
pair condensation [1,2] with the dissipationless transport of
energy of excitonic condensation [5–7] would have obvious
applications in energy transport and electronics. Now that
the coexistence of fermion-pair and excitonic character in
a fermion-exciton condensate has been computationally and
theoretically established, further theoretical and experimental
studies—possibly including studies on bilayer systems com-
posed of superconductors—are needed. There are certainly
many open questions regarding the formation, the properties,
the applications, and the stability of fermion-exciton conden-
sates that still need to be explored.
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