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Localized charges in thin films by Kelvin probe force microscopy: From single to multiple charges
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The study of thin-film materials is a subject of growing interest. Some of these materials are insulating due to
the presence of disorder, which also produces localization of charges. Kelvin probe force microscopy (KPFM) is
a unique tool to characterize these materials, but a full quantitative interpretation of the results is still lacking. To
address this problem, we propose a simple and fast procedure based on the image charge method that represents
an advance in this direction since it is not limited to any film thickness or the nature of the underlying substrate.
Even more, it can be combined with fast Fourier transform algorithms to generate theoretical images from known
charge distributions or to obtain charge distributions from the Kelvin voltage images. Within this framework,
we analyze the problem of the lateral resolution of the technique, providing a criterion to estimate it. Finally,
we address the problem of systems with hopping conductivity where multiple localized charges coexist. We
demonstrate that even in these complex systems, the KPFM gives valuable information, allowing us to distinguish
between noninteracting and interacting electronic systems. Furthermore, it is possible to calculate the charge
density in the noninteracting case.

DOI: 10.1103/PhysRevB.101.075432

I. INTRODUCTION

The characterization of localized charges on insulating sur-
faces is a key point in many fields ranging from triboelectric
charging studies [1,2], defects in solids [3–5], and nanoclus-
ters [6–8] to biological systems such as adsorbed molecules
on dielectric substrates [9,10]. Moreover, the development of
smaller, faster, and ecofriendly optoelectronic devices lies in
the use of thin films of novel materials such as conducting
polymers, low- and high-κ materials, and two-dimensional
(2D) flakelike materials such as graphene oxide (GO), reduced
GO, transition-metal dichalcogenides, etc. These materials
usually present low or moderate conductivity and are treated
as low-crystallinity or glassy systems in which the high degree
of disorder induces the localization of the electron wave func-
tion, with their conductivity being via hopping mechanisms
[11–15]. In these systems, a direct observation of the charge
distribution would be of great importance. It could permit
us to map the energy landscape and could give quantitative
validity to the theoretical models. Similarly, the possibility
of monitoring the charge dynamics, both in equilibrium and
when the system is perturbed, is fundamental to link the
conductivity with the microscopic parameters, and it would
help to elucidate the role of the different underlying processes.

Kelvin probe force microscopy (KPFM) has been revealed
as a unique tool to monitor localized charges [16,17]. It can
give invaluable information inaccessible with other techniques
since it can be used in highly insulating samples [12]. Inde-
pendent of the experimental KPFM mode, amplitude modula-
tion (AM), frequency modulation (FM), or a heterodyne mode
in a static, open-loop, or closed-loop configuration, the KPFM
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signal VKPFM is

VKPFM = VCharge + VCPD, (1)

where VCPD = �φ/e is the classical surface contact poten-
tial difference of the electrode work functions �φ (tip and
sample in this case) and VCharge is the term that includes the
localized charge contribution [18]. The quantitative analy-
sis of the VCharge signal is not straightforward and demands
further theoretical modeling. On the one hand, it depends
on the tip geometry, the tip-sample distance z, and the rela-
tive permittivity (εr = ε/ε0) of the different materials of the
system. Thus, all these parameters should be characterized
during the data acquisition. On the other hand, the absence of
analytical expressions, even for the simplest systems, forces
us to address the problem numerically. This may require a
large computational effort, especially when many charges are
involved.

Recently, it was shown that this computation can be
drastically reduced by using fast Fourier transform (FFT)
algorithms both to generate the theoretical VCharge(x, y, z)
image of a preestablished charge distribution and to directly
obtain the charge distribution q(x, y) from an experimental
VCharge(x, y, z) image [19]. However, in both cases, the Kelvin
voltage image that would generate a point charge placed at
the center of the image Vpoint (x, y, z) for a specific system
and specific working conditions is needed. Simple charge
distributions in thick dielectrics for different tip geometries
have already been modeled using different approximations
[7,20–23]. Nevertheless, a model to calculate Vpoint for local-
ized charges in thin films supported on metallic or dielectric
substrates is still lacking.

In this work we propose a simple and fast procedure based
on the image charge method to obtain the Vpoint signal when
the charges are localized on thin films. This versatile method

2469-9950/2020/101(7)/075432(8) 075432-1 ©2020 American Physical Society

https://orcid.org/0000-0002-0785-8566
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.075432&domain=pdf&date_stamp=2020-02-27
https://doi.org/10.1103/PhysRevB.101.075432


A. M. SOMOZA AND E. PALACIOS-LIDÓN PHYSICAL REVIEW B 101, 075432 (2020)

is not limited to any film thickness or nature of the underly-
ing substrate, and it shows that Vpoint is a key quantity that
plays an important role in any quantitative interpretation of
VCharge images. We then combine the obtained Vpoint with FFT
algorithms to generate the expected VCharge images for known
charge distributions and discuss the final lateral resolution of
the technique. Finally, we address the problem of systems with
hopping conductivity where multiple localized charges coex-
ist. We demonstrate that even in these complex systems, the
KPFM gives valuable information, allowing us to distinguish
between noninteracting and interacting electronic systems.
Furthermore, it is possible to calculate the charge density
in the noninteracting case as well as to validate different
models for the electron-electron interaction in the interacting
systems.

II. MODEL DESCRIPTION

In order to simplify the following discussion, from now on,
we will focus on the VCharge contribution of the VKPFM signal
considering VCP = 0. Following the notation of Refs. [18,23],
the electrostatic energy of the tip-sample system in the pres-
ence of charges is

Welec(V, z) = u0(z) + u1(z)V + u2(z)V 2, (2)

where V is the bias voltage between the tip and the sample.
The term proportional to V , u1(z), is due to the interaction
of the localized charges with the potential generated by the
tip-sample capacitor, while the term u2(z) is the energy of
the capacitor, which is independent of the localized charges.
Depending on whether the force or the frequency is used for
the KPFM measurements, the VCharge signal is

V AM
Charge = − u′

1(z)

2u′
2(z)

, (3)

V FM
Charge = − u′′

1 (z)

2u′′
2 (z)

. (4)

Therefore, in order to obtain VCharge, the derivatives of u1(z)
and u2(z) (with respect to z) should be calculated. The image
charge method was previously used to calculate both u′

1 and
u′

2 for systems with localized charges in thick dielectrics,
modeling a metallic spherical tip in front of a semi-infinite
dielectric [17,23,24]. The case of thin films was already con-
sidered in Refs. [25–27], but only the u2 term was obtained.
However, to fully solve the problem of localized charges on
thin films, the u1 term is of vital importance and should also be
obtained.

According to the superposition principle a general
VCharge(x, y, z) can be expressed as

VCharge(x,y,z) =
∫

dx′dy′dz′ q(x′,y′,z′)Vpoint (x,y,z; x′,y′,z′),

(5)

where q(x′, y′, z′) is the charge density of the problem and
Vpoint (x, y, z; x′, y′, z′) is the VCharge image corresponding to a
single point charge located at (x′, y′, z′). This expression can
be further simplified if we assume that all localized charges

are located at the same height z′ = d . Then, as explained in
Ref. [19], we can use FFT algorithms:

VCharge(x, y) = IFT[q(k)Vpoint (k)], (6)

q(x, y) = IFT[VCharge(k)/Vpoint (k)], (7)

where IFT corresponds to inverse Fourier transform. We see
that we can use Vpoint (k) either to construct the expected
VCharge image from a known charge density q(x, y, d ) or to
determine it from an experimental VCharge image. The assump-
tion of charges at the same height is reasonable in many exper-
iments where the Vpoint signal is similar for not very different
charge heights, such as deposition of charged particles on the
surface or in very thin 2D materials. There is no a generic
formula to know a priori the validity of this approximation,
and the dependence of Vpoint on the tip height should be
computed for each specific system see Sec. II and Figs. 2(c)
and 2(d) below. However a generic rule can be given: the
lower ε1 and ε2 are, the better the approximation is. In the
opposite limit, when the Vpoint signal strongly decreases with
the charge depth (large ε1 and/or ε2), the KPFM technique
is sensitive to only the upper charges, and the “same-height”
approximation is still useful to determine the density of these
upper charges. For simplicity, in this work we will consider
only the case where Eqs. (6) and (7) are valid, although
a generalization to the case of charges located at different
planes is straightforward and is described in the Supplemental
Material [28].

Calculation of Vpoint in thin-film materials

Form the previous section it is realized that
Vpoint (x, y, z, x′, y′, z′) plays a key role in the interpretation
of Vcharge images. This quantity was calculated for thick
dielectrics, but it has not been estimated for the important
case of thin-film geometry. Thus, in this section we solve the
electrostatic problem, Eqs. (2)–(4), for a single point charge
inside a thin film. A scheme of our system is shown in Fig. 1.
A metallic spherical tip (of radius R at constant potential V )
is placed (at a tip-surface distance z) on top of a thin layer
of thickness h and relative permittivity ε1 supported by a
semi-infinite substrate with relative permittivity ε2. Then, a
point charge q0 is placed inside the layer (at z = d � 0).

Since we are interested in calculating the force acting
on the sphere due to electrostatic interactions, we need to
properly describe the electrostatic potential in the region of
ε0. This is done using the image charge method by locating
image charges inside the sphere and in the subsurface (z < 0)
region. To do so, we first calculate the capacitance-related u2

term in a way similar to Refs. [25,27], but we generalize the
result to any ε2 and not only to metal substrates (we recover
their results when ε2 → ∞).

In order to calculate the image charges, the general prob-
lem is divided into two parts. First, due to the layer geometry
and the two boundary conditions that need to be fulfilled
(at z = 0 and z = −h) any charge q located at z0 > 0 will
produce an infinite set of image charges in the region z < 0
according to Table I, where s1 = (ε1 − 1)/(ε1 + 1) and s2 =
(ε2 − ε1)/(ε2 + ε1). Second, to guarantee a constant potential
at the surface of the sphere, any charge q located at r outside
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FIG. 1. Scheme of the model used.

the sphere will produce an image charge q′ located at r′ inside
the sphere according to the equations

q′ = q
R

|rs − r| , (8)

r′ = rs + R2

|rs − r|2 (r − rs), (9)

where rs is a vector pointing to the center of the sphere.
According to these equations, we calculate all the image

charges proportional to V , starting the procedure with a point
charge Q0 = 4πε0RV , located at the center of the sphere, that
produces the desired potential at the sphere surface. Then,
the equations in Table I must be applied to this charge,
producing an infinite set of image charges located at z < 0.
Each of these charges will generate a new image inside the
sphere, which again will produce another infinite set inside
the dielectrics and so on. This results in infinite series of
infinite charges, both in the sphere and at z < 0, that must be
truncated to afford the numerical calculation. Afterward, the
image charges inside the sphere are used to calculate the u2

term [27,29]. As QV = CV , u2 is directly obtained:

u2(z) = − 1
2C(z), (10)

TABLE I. Image charges associated with a charge q located at
z0 > 0.

i qi zi

i = 0 −s1q −z0

i � 1 (−s1)i−1si
2(s2

1 − 1)q −z0 − 2ih

TABLE II. Image charges associated with a charge q0 located at
−h < d < 0.

i qi zi

i � 0 (−s1s2)i(1 − s1)q0 d − 2ih
j q j z j

j � 0 −(−s1s2) j (1 − s1)s2q0 −(d + 2( j + 1)h)

where QV is the sum of all the charges proportional to V inside
the sphere and V is the potential of the battery connected to
the sphere.

Now, to obtain u1, we need to extend the image charge
method to describe a localized charge inside the thin layer.
As shown in the Supplemental Material [28] (see also
Refs. [25–27] therein), one charge q0 located at −h � d � 0
will generate two infinite sets of image charges in the z < 0
region, as indicated in Table II. Each of these charges will
generate new image charges inside the sphere and in z < 0
that, as in the previous case, are calculated with Table I and
Eq. (9), all of them proportional to the initial charge q0.

The computation of the force between all charges inside
the sphere with all charges outside directly leads to the force
acting on the sphere (−u′

1 and −u′
2). Unfortunately, as stated

above, for thin layers we are dealing with an extremely large
number of charges that results in a large computational effort
(for large ε1 and ε2, if high precision is required, the number
of image charges can be larger than 108). To solve this
problem, a practical solution (similar to the one used for u2) is
used to calculate u1 directly and then calculate the derivative
numerically. As shown in Ref. [30], the electrostatic energy of
the problem (including the battery) can be written as

Ueff = 1
2 q0V (r) − 1

2 QtotV, (11)

where V (r) is the electrostatic potential at the location of
the charge q0 and Qtot is the total charge in the sphere. The
charge Qtot has two contributions: (i) the sum of all the charges
proportional to V inside the sphere QV and (ii) the sum of
all the charges proportional to q0 inside the sphere Qq0 . As
shown above, the first contribution produces a V 2 dependence
and is used to calculate u2. The potential V (r) also has two
contributions: (i) VV (r), the potential generated by all charges
proportional to V , and (ii) Vq0 (r), the potential generated by
all charges proportional to q0 (except q0 itself). Collecting the
contributions proportional to V , we get

u1V = (1/2)q0VV (r) − (1/2)Qq0V, (12)

but it turns out that both terms produce identical contributions
[30], so

u1 = −Qq0 . (13)

In summary, not only u2 but also u1 can be obtained by adding
the different image charges inside the sphere. This result is
of great importance for the numerical calculation. We not
only save computing time, avoiding the double sum that a
direct calculation of forces would require, but also, during
the numerical calculation, we can save computer memory,
deleting all charges for which the corresponding images have
been taken into account. Equation (13) also justifies a simple
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truncation procedure of the infinite series neglecting any
image charge smaller and err × q0, where we typically used
err < 10−13.

Finally, once u1 and u2 for different tip distances are
computed, we calculate the derivatives numerically in order
to obtain the corresponding V AM

point and V FM
point from Eq. (4). In

this way, typical V FM
point curves (horizontal or lateral profiles),

with absolute error lower than 10−6, can be computed with a
common modern laptop in a few seconds. We will be pleased
to share our code upon request.

From now on, we will focus on the V FM
Charge = VCharge signal

since in our model the spherical tip assumption neglects the
cone and cantilever contributions and it is well known that
V FM

Charge is less sensitive to them than the V AM
Charge one [31]. A

similar analysis could be done for the V AM
Charge signal. Finally,

we would like to note that in this work the contribution of u0

is not used, but according to Eq. (11), it can also be easily
calculated if needed, adding the potential generated at r by all
charges proportional to q0.

III. RESULTS

A. Model applications

It is not the aim of this work to exhaustively explore and
analyze all the possible systems but to show the potential
of the proposed method, especially for complex multiple-
point-charge distributions. However, to show its versatility,
some relevant examples are calculated in Fig. 2, where Vpoint

of a point charge as a function of the tip-sample distance
together with the corresponding lateral profiles at z = 0.5R
for different configurations are plotted.

Figures 2(a) and 2(b) show the dependence of Vpoint on the
film thickness h. Another important case is when the localize
charge is not at the surface but buried within the thin layer, as
shown in Figs. 2(c) and 2(d). In this situation, depending on
the depth of the charge d , Vpoint may increase or decrease with
the tip-sample distance. However, for a fixed distance, the
deeper the charge is, the smaller the V FM

point signal is [Fig. 2(d)].
This means that, in systems with localized charges at different
depths, the main contribution to VCharge will come from the
upper charges. Finally, changing ε1 with respect to ε2 [see
Fig. 2(e)], Vpoint decreases for short distances and increases for
large distances with a minimum at z ≈ R. Besides that, other
behaviors can be found for different parameter combinations;
the previous results highlight that not only h, d , and ε1 but
also z and ε2 of the underlying substrate greatly affect the
contrast of the VCharge images. While the former are usually
related to the studied thin-film material, the latter can be tuned
(selecting the appropriate substrate) to optimize the KPFM
measurements.

B. VCharge image generation and lateral resolution

From the lateral profiles shown above and taking advantage
of the uniaxial symmetry, we directly obtain the Vpoint image
for a specific system (ε1, ε2, h, and d) and measurement
parameters (R, z, image size L × L, and image number of
points n × n). Then, by using Eq. (6) we generate a theoretical
VCharge(x, y, z) image produced by an ad hoc charge distribu-

FIG. 2. Left: V FM
Charge as a function of the tip-sample distance

z. Right: Lateral profiles at z = 0.5R. (a) and (b) ε1 = 3.9, ε2 =
12, d = 0, and h = 0.05, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 10, 20 and 50 (R
units). The two limits h = 0 and h = ∞ have been included (dashed
lines). (c) and (d) ε1 = 3.9, ε2 = 12, h = 1, and d = 0, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1 in R units. (e) and (f) ε2 = 3.9, h = R, d =
0, and ε1 = 3.9, 4, 6, 8, 10, 12, 15, 17, 20, 30, 40, 50, 70.

tion q(x, y) [19]. In order to show this procedure, two Vpoint

calculated for the same system (h = R = 15 nm, d = 0, ε1 =
3.9, ε2 = 12, L = 600 nm) but at different tip-sample dis-
tances (z = 7 and 28 nm) are used to obtain the corresponding
VCharge images of a charge distribution consisting of three pairs
of charges separated 7, 14, and 28 nm, respectively [Figs. 3(a)
and 3(b)]. This simple example is useful to address the lateral
resolution question that in any KPFM experiment is typically
discussed directly from VKPFM profiles. In the presence of
localized charges, this lateral resolution is directly related to
the broadness of the corresponding Vpoint and mainly depends
on the measurement parameters (R and z) [17]. However, it
is important to note that a better lateral resolution can be
achieved by analyzing the q(x, y) image that is obtained from
Eq. (7). A noisy experimental VCharge image can be expressed
as

VCharge(x, y, z) = V ideal
Charge(x, y, z) + σ noise(x, y), (14)

where V ideal
Charge(x, y) is the ideal noise-free image generated by

an underlying charge distribution and σ noise(x, y) is the noise
matrix. Then,

q(x, y) = IFT

(
V ideal

Charge(k) + σ noise(k)

Vpoint (k)

)
. (15)
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FIG. 3. (a) Generated V FM
Charge image of q(x, y) of three pairs of charges separated 7, 14, and 28 nm in a system with parameters h = R =

15 nm, d = 0, ε1 = 3.9, ε2 = 12, L = 600 nm, and z = 7 nm. (b) Simulated experimental images with a random Gaussian noise (σ = 15 mV).
(c) q(x, y) image obtained after IFT deconvolution with kc given by Eq. (17). (d)–(f) Same images as (a)–(c), but obtained at z = 28 nm.
(g) q(k) = VCharge (k)

Vpoint (k) . The dashed vertical lines indicate the kc used in each of the cases.

In an ideal noise-free image (σ noise = 0), Eq. (15) would lead
to the exact charge distribution. In practice, the final lateral
resolution of the q(x, y) image is limited by the cutoff kc of
the filter applied to [V ideal

Charge(k) + σ noise(k)]/Vpoint (k) needed
to avoid nonphysical artifacts produced by different sources
of noise [19]. This cutoff determines the real lateral resolution
δx that can be achieved, as it is roughly half of the wavelength
related to kc:

δx ≈ π

kc
. (16)

This kc can be easily estimated from Eq. (15) [see also
Fig. 3(g)]. If the main source of noise is white noise, σ noise(k)
is approximately constant in amplitude, while Vpoint (k) decays
exponentially with k [as does V ideal

Charge(k)]. So a good estimation
of kc is obtained from the ratio

σ noise(kc)

Vpoint (kc)
≈ 1. (17)

Actually, under an appropriate data filtering this resolution can
be slightly improved [19]. These ideas are shown in Figs. 3(b)
and 3(e), where experimental images are simulated by adding
a random Gaussian noise to each image point of Figs. 3(a)
and 3(d). In order to obtain the corresponding q(x, y) images
[Figs. 3(c) and 3(f)], the cutoff radius has been used in each
case following the previous criterion. In Fig. 3(g) it can be
observed how the apparent q(k) grows exponentially after the
dashed line due to the effect of σ noise(k) (the flat behavior for
large k is due to numerical errors).

C. Multiple-charge distributions: Effect of charge correlations

The previous methodology allows us to address the study
of systems where multiple charges coexist [1,2,32–34]. In
this section we will focus on thin-film systems with hopping
conductivity where charge localization plays a crucial role

[11–15]. These systems are characterized by a large amount
of disorder that produces the localization of charges, and
the electronic transport takes place via activated tunneling:
electrons hop from a localized occupied state to an empty one
assisted by phonons. Coulomb interaction between charges is
especially important in the strongly localized regime because
the low mobility of charges results in a drastic reduction of
the screening. One significant effect of the interaction is that,
at low temperatures, the density of states is greatly reduced,
and a soft gap is opened at the Fermi level, as predicted by
Pollak [35] and characterized by Efros and Shklovskii [36]. In
this case conductivity follows an Efros-Shklovskii variable-
range hopping (VRH) law. At high temperatures, interactions
become less important, and as a result the soft gap is filled, and
conduction changes to a Mott VRH law. In general, we can
expect that correlations between charges become negligible
when kT > U , where U is the typical interaction energy
between nearest-neighbor localized charges. In order to an-
alyze how the interactions and correlation between charges
modify the VCharge images, we have generated correlated and
noncorrelated q(x, y) distributions using a standard electron
glass model [37,38] considering a squared system of size
L × L with N sites randomly distributed:

H =
N∑

i=1

εini + U0R
∑
i< j

(ni − K )(n j − K )

ri j
, (18)

where N is the number of sites. The first term on the right-
hand side includes the effect of disorder, ni is the occupation
of one site (which is either 0 or 1), and εi is a random energy
in the interval [−W/2,W/2], where W measures the strength
of disorder. The second term corresponds to the Coulomb
interaction between sites, where K is the mean occupation of
one site (we consider K = 1/2). The strength of interaction
is determined by U0R, where R is the tip radius. Then, U0
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FIG. 4. V FM
Charge images from q(x, y) with an increasing number of charges generated with the same Vpoint (ε1 = 3.9, ε2 = 12, h = 15 nm,

R = 15 nm, z = 7 nm); image lateral size L = 500 nm for (a)–(d) noninteracting and (e)–(h) interacting systems. To highlight the differences
between the two types of systems, the z scale has been fixed to ±120 mV in all the images.

corresponds to the interaction energy of two unit charges
separated by a tip radius, and we will fix U0 = 1 as the unit
of energy. Although, so far, this analysis must be considered
qualitative, we have fixed some quantities to realistic values:
L = 500 nm, W = 2U0, and the localization length is assumed
to be smaller than 2 nm to consider a point charges distribution
in a VCharge image. Finally, to get typical equilibrium configu-
rations of q(x, y), we performed Monte Carlo simulations us-
ing a metropolis algorithm for electron glasses [39]. With this
model, we can generate multicharge distributions for systems
both with interacting, correlated charges (we fixed tempera-
ture kT = 0.03U0) and with uncorrelated charges (we fixed
U0 = 0, although similar results would have been obtained
for interacting systems at high temperatures) and therefore
compare their expected VCharge images.

An example of how the VCharge images evolve as the number
of charges N is increased is shown in Figs. 4(a)–4(d) for
noninteracting systems and Figs. 4(e)–4(h) for interacting
systems for ε1 = 3.9, ε2 = 12, h = 15 nm (e.g., a 15-nm
polymer or SiO2 on silicon) imaged with a tip of R = 15 nm
at a tip-sample distance z = 7 nm, with the image lateral size
L = 500 nm. For these parameters, the typical distance be-
tween nearest charges corresponds to l = 50, 22, 15, 11 nm.
At low charge densities, the localized charges can be resolved
individually, and the effect of interaction is almost negligi-
ble as the mean distance between particles is large. As N
increases (decreasing the mean distance between charges),
VCharge of the noninteracting system develops large bright
and dark domains, increasing the overall image contrast. On
the contrary, in the interacting system, the domain size and
domain contrast are basically constant and insensitive to the
number of charges, with the VCharge image being very similar
independent of N . This is understood by noticing that, in a

noninteracting system (U0 = 0 or kT � U0), the probability
of charge aggregation of the same sign increases with N and
therefore the domain size and contrast of the generated VCharge

domains increase. Conversely, in the interacting system (kT =
0.03U0), this possibility is not allowed as charges of the same
sign strongly repel each other and tend to be surrounded by
charges of the opposite sign. In this situation, the average local
charge should always be about ±e independent of N . Then, an
alternate domain contrast is expected in the VCharge image, with
the domain size being about the width of the corresponding
Vpoint (x, y, z). The above results show that it is possible to
distinguish between interacting and noninteracting systems
from the overall appearance and contrast of the VCharge image,
as the two kinds of systems generate very different images.

According to this discussion we have found that the vari-
ance of a V FM

Charge image is a sensitive quantity to determine
the effect of interactions (see Fig. 5). This is a simple but
interesting quantity also because it is easy to demonstrate that,
for the noninteracting case,

Var
[
V FM

Charge

] = NVar[Vpoint] + σ 2
noise, (19)

where σ 2
noise is the variance of the experimental noise (as-

sumed to be uncorrelated white noise). This relation provides
a useful tool to estimate the charge density in noninteracting
systems if the parameters of the system are properly character-
ized. Verification of the results can be obtained by measuring
at different tip-sample distances.

The dependence of Var[VCharge] on N in the interacting
system is more complicated, and it is out of the scope of
the present work. However, we note that it is related to
charge correlations due to interactions. It strongly depends
on the model and the parameters used, as well as on the
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FIG. 5. Var[V FM
Charge] vs N for noninteracting and interacting sys-

tems (ε1 = 3.9, ε2 = 12, h = 15 nm, R = 15 nm, z = 7 nm). The
solid black line corresponds to Eq. (19).

temperature. Nevertheless, Var[VCharge] could be a simple and
useful quantity to validate different theoretical interacting
models. Also, if Vpoint is well characterized for a system, the
charge correlation function can be obtained from the VCharge

image using FFT methods.

IV. CONCLUSIONS

There is no doubt that the KPFM is a very promising
technique to study systems with localized charges, but at the
same time, it becomes necessary to improve the quantitative
interpretation of the results. In this sense, the image generated
by a point charge Vpoint is a key quantity. On the one hand, it

allows us to generate theoretical VCharge images to test different
physical models. It is also needed in order to calculate the
underlying charge distribution from experimental images. In
this context, we have proposed a charge image method to
calculate it for geometries consistent with most experiments
(a layer of thickness h and relative permittivity ε1 on top of
another material with relative permittivity ε2). Even more, we
have analyzed the influence of Vpoint in the lateral resolution
as well as the role of the image noise, which is the limiting
factor of the final lateral resolution of the technique.

In systems with multiple-charge distribution, the VCharge

image is always composed of bright and dark potential do-
mains. At large charge densities, each domain cannot be as-
signed either to an individual charge or to an effective charge
density. Due to the long-range nature of the electrostatic
interaction not only is the VCharge contrast due to the charge
below the tip, but the nearby charges also have important
contributions. However, even in this situation, the quantifica-
tion of Var[VCharge] makes it possible to determine the density
of localized charges for noninteracting systems or at least to
measure the importance of interactions. In addition, working
with the q(x, y) images obtained from the VCharge images by
using the Vpoint image calculated with the proposed method
would lead to a more accurate analysis. This is particularly
important in the study of heterogeneous charge distributions
or charge dynamics.
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