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Nonmonotonic plasmon dispersion in strongly interacting Coulomb Luttinger liquids
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We demonstrate that the plasmon in one-dimensional Coulomb interacting electron fluids can develop a finite-
momentum maxon-roton-like nonmonotonic energy-momentum dispersion. Such an unusual nonmonotonicity
arises from the strongly interacting 1/r Coulomb potential going beyond the conventional band linearization
approximation used in the standard bosonization theories of Luttinger liquids. We provide details for the
nonmonotonic plasmon dispersion using both bosonization and random-phase approximation theories. We
also calculate the specific heat including the nonmonotonicity and discuss possibilities for observing the
nonmonotonic plasmon dispersion in various physical systems, including semiconductor quantum wires, carbon
nanotubes, and the twisted bilayer graphene at subdegree twist angles, which naturally realize one-dimensional
domain-wall states. We provide results for several different models of long-range interaction showing that
the nonomonotonic charge collective mode dispersion is a generic phenomenon in one-dimensional strongly
interacting electron systems.
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I. INTRODUCTION

A Luttinger liquid describes the low-energy properties of
one-dimensional (1D) interacting electrons which cannot be
captured by the quasiparticle picture of Landau’s Fermi liquid
theory. Since the interacting 1D system loses its one-to-one
correspondence with the noninteracting Fermi gas, it does
not manifest the discontinuity in the momentum distribution
function defining a Fermi liquid [1–3]. This paradigmatic
non-Fermi liquid theory often assumes linear single-particle
dispersion and short-range interactions for simplicity because
bosonization techniques can then solve the interacting prob-
lem exactly. It is known that nonlinear bare single-particle
energy dispersion provides higher-order irrelevant corrections
to most of the critical properties of the Luttinger liquid,
justifying the use of linearized models for universal proper-
ties (although detailed system-specific results may very well
depend on the exact bare energy dispersion). The use of a
zero-range local interaction is actually less justified since
the critical exponent defining the Luttinger liquid properties
becomes a scale-dependent exponent in the presence of long-
range interactions.

For unscreened 1D electrons interacting via the long-
range 1/r Coulomb potential (e.g., semiconductor quantum
wires [4] and carbon nanotubes [5]), the low-energy prop-
erties are described by the Coulomb Luttinger liquid the-
ory [6–10], which leads to a scale-dependent velocity and a
scale-dependent Luttinger parameter. In particular, a Wigner-
crystal-like state with 4kF correlations (spatially falling off
slower than any power-law decay) is predicted as a universal
feature of zero-temperature Coulomb Luttinger liquids [8].
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This is very different from the usual short-range Luttinger
liquid theory.

In a Luttinger liquid, the low-energy elementary excita-
tions, instead of being single-particle-like as in a Fermi liquid,
are, in fact, bosonic collective excitations with linear energy-
momentum dispersion. This bosonic collective mode, often
called the Tomonaga-Luttinger boson, allows the interacting
fermionic problem to be studied in terms of bosonic excita-
tions, resulting in a considerable simplification of the theory.
In a Coulomb Luttinger liquid, this Tomonaga-Luttinger col-
lective mode is nothing other than the 1D plasmon mode of the
interacting electrons. (Note that the plasmon in the Coulomb
Luttinger liquid contains a square root of logarithmic cor-
rection in addition to the usual linear energy-momentum
dispersion [6–8].) The equivalence between the 1D plasmons
and the Tomonaga-Luttinger bosons is exact in a Coulomb
Luttinger liquid [7].

The main purpose of this work is to point out an overlooked
peculiar feature in the 1D plasmon properties of the Coulomb
Luttinger liquids: the existence of a nonmonotonic plasmon
dispersion at finite momenta (but still much smaller than the
Fermi momentum). For a sufficiently strong 1/r Coulomb
interaction (or, equivalently, a sufficiently small Fermi veloc-
ity), we find that a maxon-roton plasmon dispersion appears
at a nonuniversal, finite momentum in the 1D plasmon en-
ergy. The origin of such a nonmonotonic dispersion is the
long-range 1/r Coulomb potential. Moreover, the spectral
peak of the maxon part of the dispersion is sharp and es-
sentially δ-function-like. We emphasize that the low-energy
long-wavelength plasmon dispersion (i.e., ∼q

√
ln(2/q), with

q being momentum) is not affected by the interaction strength.
Besides the plasmon dispersion, we also compute the specific
heat associated with the nonmonotonic plasmon dispersion,
which may provide an experimental way to identify the
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strongly interacting regime that realizes the novel plasmon
dispersion. Establishing the nonmonotonic 1D plasmon dis-
persion for the strongly interacting Coulomb Luttinger liquids
is the main result of this work.

Besides the 1D 1/r Coulomb interacting system, we find
that other long-range potentials (e.g., 1/r2) also manifest
similar finite-momentum nonmonotonic collective mode dis-
persion for sufficiently strong interaction. Thus, the predicted
features in this work are not due to the particular form of the
1/r potential. Possibly, these nonmonotonic features represent
the generic signatures of the strongly interacting 1D systems
with long-range potentials.

The rest of the paper is organized as follows: After intro-
ducing the model in Sec. II, we review the basic derivations
of the plasmon dispersion in Sec. III. Then, we show the
nonmonotonic dispersion and calculate the specific heat in
Sec. IV. In Sec. V, we discuss the possibility of observing our
predicted nonmonotonicity in candidate materials (e.g., sili-
con quantum wires and twisted bilayer graphene at subdegree
twist angles), explain potential experimental challenges, and
conclude.

II. MODEL

We are interested in the plasmon oscillation of 1D interact-
ing electrons. The simplest model for this is the 1D spinless
fermion along the x axis described by Ĥ = Ĥ0 + ĤI , where

Ĥ0 =
∫

dx c†(x)

[
− ∂2

x

2m
− μ

]
c(x), (1)

ĤI = 1

2

∫
dxdx′ ρ(x)V (x − x′)ρ(x′). (2)

In the above expressions, c is the fermionic annihilation
operator, m is the electron effective mass, μ is the chemical
potential, ρ(x) = c†(x)c(x), and V (x − x′), the interparticle
potential, encodes the density-density interaction. We are
particularly interested in the unscreened Coulomb interac-
tion, characterized by V (x) = e2/(κ

√
x2 + d2), where e is

the electron charge, κ is the dielectric constant, and d is the
“transverse size” (i.e., width of the quantum wire). Note that
it is important to have the transverse (i.e., normal to the x axis)
dimension d of the 1D system in the definition of the Coulomb
interaction in order to avoid the well-known singularity of
the 1D Coulomb coupling [6]. For any given system the
precise value of d (of the order of the transverse width of
the 1D system) can be calculated microscopically [11]. The
Fourier transform of the potential V (x) is given by Ṽ (q) =
2e2

κ
K0(|q|d ), where K0 is the zeroth-order modified Bessel

function of the second kind. The momentum transfer due to
this potential is relative to the inverse width of the quantum
wire (1/d), which determines the momentum scale of the
nonmonotonic maxon-roton behavior of the 1D plasmon dis-
persion to be described below.

The spinless model given by Eqs. (1) and (2) describes
the charge degrees of freedom in an interacting 1D system,
which is of interest in the current work since plasmons are
the collective charge density excitations of the system. In the
presence of spin or valley degrees of freedom, the instabilities
in the spin or valley collective excitations do not affect the

plasmon as long as the charge mode is decoupled from other
collective degrees of freedom. In addition, the degeneracy
due to spin and valley will effectively enhance the density-
density interaction, which is typically subsumed in an overall
multiplicative degeneracy factor N (N = 2 for spin degenerate
systems) in the electron polarizability function. These com-
plications affect only the plasmon dispersion quantitatively
and will be discussed if needed. We do not further consider
effects of spin or other degrees of freedom and focus on the
charge density excitations (i.e., plasmons) of the 1D system
(sometimes these modes are known as “holons”).

III. DERIVATION OF PLASMON DISPERSION

The 1D interacting fermion Hamiltonian given by Eqs. (1)
and (2) can be solved by bosonization [7,8] after lineariz-
ing the single-particle dispersion around the Fermi energy.
In particular, the bosonic mode associated with the density
fluctuation is precisely the plasmon. On the other hand, the
random-phase approximation (RPA) gives exactly the same
energy dispersion for plasmon excitations as that obtained
from bosonization [6,7,12]. We will first review the derivation
of 1D plasmon dispersion with both bosonization and RPA
calculations to set a context for our predicted maxon-roton
feature in the plasmon dispersion.

A. Linearized theory: Coulomb Luttinger liquid

The interacting theory in one dimension can be studied
via the standard bosonization method [3,13]. To incorporate
the interaction, we first linearize the band in the vicinity of
the Fermi energy. The physical fermion can be approximated
by c ≈ eikF xR + e−ikF xL, where R and L denote the long-
wavelength fermionic fields near the right and left Fermi
points, respectively, in the 1D noninteracting Fermi surface.
Ĥ0 given by Eq. (1) becomes

Ĥ0 → vF

∫
dx [R†(−i∂xR) − L†(−i∂xL)], (3)

where vF = √
2μ/m is the Fermi velocity, with μ being the

chemical potential equal to Fermi energy at zero temperature.
Since we are interested in only the long-wavelength fluctua-
tion (i.e., momenta smaller than kF , the Fermi momentum),
the density operator in Eq. (2) can be expressed as ρ ≈ ρ0 =
R†R + L†L (where we ignore the 2kF and 4kF components)
considering only small momenta. With these approximations,
the interacting fermions can be mapped to a noninteracting
bosonic model. This bosonized Hamiltonian is

Ĥ =
∫

dx
vF

2π
[(∂xφ)2 + (∂xθ )2]

+ 1

2

∫
dxdx′

[
1

π
∂xθ (x)

]
V (x − x′)

[
1

π
∂x′θ (x′)

]
(4)

=
∫

dq

2π

v(q)

2π

[
K (q)q2φ̃(−q)φ̃(q) + 1

K (q)
q2θ̃ (−q)θ̃ (q)

]
,

(5)

where φ and θ are the phaselike and plasmonic (phonon-
like) bosonic fields, respectively, v(q) is the scale-dependent
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FIG. 1. Scale-dependent Luttinger parameter and Luttinger ex-
ponent. We plot the Luttinger parameter K (q) with differ-
ent α = 2e2

πvF κ
. Inset: The Luttinger exponent, γ (q) = [K (q) +

1/K (q) − 2]/8, is plotted. Both K (q) and γ (q) approach the nonin-
teracting limit for a sufficiently large |q|d . Yellow line: α = 10; blue
line: α = 50; green line: α = 100; brown line: α = 250; red line:
α = 500. Note that the momentum is relative to 1/d rather than the
Fermi wave vector kF .

velocity, and K (q) is the scale-dependent Luttinger parameter
(not to be confused with K0 in the 1D Coulomb potential,
which is a modified Bessel function). We can obtain the
scale-dependent velocity and Luttinger parameter by solv-
ing v(q)K (q) = vF and v(q)/K (q) = 1 + Ṽ (q)

π
. Straightfor-

wardly,

v(q) = vF

√
1 + Ṽ (q)

vF π
, (6)

K (q) = 1√
1 + Ṽ (q)

vF π

. (7)

Since the Luttinger parameter depends on the momentum,
we might be interested in the scale-dependent Luttinger
exponent as defined by γ (q) = [K (q) + 1/K (q) − 2]/8 �
0. γ (q) = 0 suggests K (q) = 1 (noninteracting limit). The
scale-dependent K (q) and γ (q) are plotted in Fig. 1.

The equation of motion of the plasmonic boson θ can be
obtained by integrating over the phase boson φ in the partition
function. The plasmonic dispersion [8] is

ωp(q) = vF |q|
√

1 + Ṽ (q)

vF π
= vF |q|

√
1 + 2e2

πvF κ
K0(|q|d ).

(8)

Now, we express the above equation in dimensionless units as
follows:

ω̃p(q̃) = q̃
√

1 + αK0(q̃), (9)

where ω̃p(q̃) = ωp(q) d
vF

, q̃ = |q|d , and α = 2e2

πvF κ
. The long-

wavelength property is distinct from the conventional (short-
range) Luttinger liquids. For q̃ � 1, ω̃p(q̃) ≈ q̃

√
ln(2/q̃). For

q̃ � 1, ω̃p(q̃) ≈ q̃, the same as the noninteracting dispersion.
For fermions with additional degrees of freedom (e.g., spin
and valley), the dimensionless interacting parameter α will be
enhanced by the degeneracy factor N . (We take N = 1 above;
for spinful fermions, N = 2). Another important remark is

that the Luttinger liquid approach can apply beyond the strict
long-wavelength limit in the 1D Dirac system (e.g., edges
of topological insulators and 1D domain-wall states in the
twisted bilayer graphene) since the curvature is basically
absent.

Conventionally, for a quadratic single-particle dispersion,
only the long-wavelength limit [i.e., Eq. (8)] is considered
in the literature discussing 1D plasmons and Luttinger liquid
holons. Going beyond the long-wavelength limit where terms
higher than leading order in momenta are kept in the theory,
we need to worry about the finite band curvature (e.g., non-
linear Luttinger liquid theory [14]). In the next section, we
turn to a complementary approach that incorporates the band
curvature exactly.

B. Random-phase approximation

In addition to the bosonization approach, we study the
problem using the RPA. In fact, the 1D plasmon dispersion
was originally computed using the RPA a long time ago [6],
and much theoretical work has been done on 1D plasmon
dispersion using the RPA in the context of studying collec-
tive modes in semiconductor quantum wires [12,15,16]. In
contrast to the band linearization approximation in bosoniza-
tion, we keep the full quadratic single-particle dispersion and
treat the interaction effect via the summation of the infinite
series of the “bubble” diagrams. We emphasize that the 1D
RPA plasmon mode reproduces the exact bosonization long-
wavelength result, but RPA enables us to go beyond the long-
wavelength linearized limit.

The standard dynamic dielectric function in RPA is given
by

ε(ω, q) = 1 − Ṽ (q)0(ω, q), (10)

where the irreducible polarization function [6]

0(ω, q) = m

2π |q| ln

[
ω2 − ω2

−
ω2 − ω2+

]
(11)

and ω± = vF |q| ± q2

2m = vF |q| ± vF
2kF

q2. The plasmon corre-
sponds to the zero of the dielectric function ε(ω, q) [given
by Eq. (10)]. The plasmon dispersion in RPA is then

ωp(q) =
[

A(q)ω2
+ − ω2

−
A(q) − 1

] 1
2

, (12)

where A(q) = exp [ 2|q|π
kFṼ (q)/vF

]. Equation (12) is consistent with
the results in Ref. [6] when setting the spin degeneracy factor
N = 1 (spinless case). In the limit |q|/kF � 1, we expand
ωp(q) to O(q2/k2

F ) and recover the Luttinger liquid result [8]
given by Eq. (8). The plasmon dispersion in the large |q|d
limit [A(q) � 1] is precisely the upper bound of the particle-
hole continuum. Note that the long-wavelength limit in the
formal many-body theory corresponds to q � kF , whereas
the 1D plasmon dispersion depends also on an independent
dimensionless parameter qd in addition to the parameter q/kF .
Thus, the 1D plasmon dispersion depends on two independent
length parameters: d and 1/n, where n is the 1D electron
density in the system defining kF = πn/N .
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FIG. 2. Plasmon dispersion in the Coulomb Luttinger liquids.
The plasmon dispersion given by Eq. (9) with different α = 2e2

πvF κ
.

Inset: The plasmon velocity, vp ≡ dωp(q)
dq , is plotted. The zeros of vp

identify the maxon and roton wave vectors. Yellow line: α = 10;
blue line: α = 50; green line: α = 100; brown line: α = 250; red
line: α = 500. The black dashed line (α = 0) corresponds to a non-
interacting 1D linearly dispersing fermion and sets the upper bound
of the particle-hole continuum. The plasmon dispersion develops
a rotonlike minimum when α > 33 (estimated numerically). Note
that the momentum is relative to 1/d rather than the Fermi wave
vector kF .

IV. STRONGLY INTERACTING COULOMB
LUTTINGER LIQUID

Most of the low-energy properties of the Coulomb Lut-
tinger liquids have been studied systematically [7–9]. In
particular, the ground state develops a Wigner-crystal-like
quasi-long-range order with slowly spatially decaying (slower
than any power law) 4kF oscillations regardless of the inter-
action strength [8]. Therefore, the Coulomb Luttinger liquids
cannot, in general, be characterized by a single exponent as
in the short-range case, and the Luttinger parameter is now
scale dependent [9]. Here, we show that “strongly” interact-
ing Coulomb Luttinger liquids can develop a nonmonotonic
plasmon dispersion. Concomitantly, the specific heat in the
strongly interacting regime develops a low-temperature sup-
pression arising directly from the plasmon nonmonotonicity.

A. Nonmonotonic plasmonic dispersion

The plasmon dispersion derived in the previous section has
been verified in a number of experiments [4,17,18]. We can
simply take Eq. (9) and insert the material-dependent inter-
action parameter α, which depends only on the background
dielectric constant κ and the bare Fermi velocity. In principle,
therefore, α can be tuned by changing the electron density
(e.g., through gating) and/or by changing the substrate to
modify the dielectric background. Since vF = πn/(Nm), one
can enhance α simply by decreasing the 1D carrier density
through external gating.

A natural question arises: can a larger α, corresponding
to a stronger interacting system, give a qualitatively different
plasmon dispersion? To answer the above question, we ex-
amine Eq. (9) by varying α = 2e2

πvF κ
. In Fig. 2, the calculated

plasmon dispersion develops an enhanced peak and a local
minimum for a sufficiently large α > αc, where αc is the

FIG. 3. Plasmon dispersion of 1D Coulomb interacting fermions
with RPA. We plot Eq. (12) with different α = 2e2

πvF κ
. Yellow line:

α = 10; blue line: α = 50; green line: α = 100; brown line: α =
250; red line: α = 500. For |q|d > 6, the plasmon dispersion merges
with the upper bound of the particle-hole continuum. We have set
kF d = 5 for all of the curves. Note that the momentum is relative to
1/d rather than the Fermi wave vector kF .

critical value of the dimensionless interaction parameter for
producing this nonmonotonicity. The nonmonotonic disper-
sion is reminiscent of the famous roton-maxon dispersion
in liquid helium. Large α corresponds to either a strong
interaction (i.e., small κ) or a small Fermi velocity (low carrier
density). To identify αc, we compute the derivative of the
plasmon dispersion with varying α. The condition of getting
zero plasmon velocity [vp(q) = dωp(q)/dq = 0] corresponds
to α[ q̃

2 K1(q̃) − K0(q̃)] = 1. We find that αc ≈ 33 numerically
using the linearized Luttinger liquid theory [i.e., Eq. (9)].
In addition, the maxon and roton wave vectors are around
2/d (i.e., where the plasmon dispersion nonmonotonicity
occurs). Note that the nonmonotonicity disappears for α < αc,
explaining why earlier work missed the maxon-roton structure
in the plasmon dispersion since the regime of large α (small
κ and small vF ) was never studied before in the context of 1D
plasmon dispersion theories.

An important question is the stability of this predicted dis-
persion in finite-wave-vector Coulomb Luttinger liquid calcu-
lations, especially the robustness against the finite curvature.
To answer this, we check Eq. (12), which follows from the full
quadratic band using the full RPA theory. In Figs. 3 and 4, we
show that the nonmonotonic plasmon dispersion persists but
with a value of αc strongly depending on kF d . In Fig. 5, we
show that αc monotonically decreases as a function of kF d and
saturates at ∼33 [the same αc as obtained from the Luttinger
liquid dispersion in Eq. (9)] for kF d � 1. We conclude that
the nonmonotonic 1D plasmon dispersion does survive in the
presence of the band curvature effects, and both the standard
bosonized Luttinger liquid theory and the full RPA give the
maxon-roton plasmon dispersion at finite momenta (q ∼ 2/d)
provided the Coulomb coupling exceeds a critical value. As
presented in Figs. 4 and 5, a larger value of kF d indeed
enhances the maxon-roton feature in the full RPA plasmon
dispersion. Thus, the maxon-roton feature, arising in the
strongly interacting system, is not an artifact of the linearized
Luttinger liquid theory as it exists in the full RPA theory too
except that in the full RPA, the nonmonotonicity depends both
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FIG. 4. Plasmon dispersion using RPA with varying kF d . We plot
Eq. (12) with various α [(a) 50, (b) 100, and (c) 200] and different
values of kF d . Yellow dashed line: kF d = 0.5; blue dashed line:
kF d = 1; green dashed line: kF d = 2; brown dashed line: kF d = 5;
red dashed line: kF d = 50. Note that the momentum is relative to
1/d rather than the Fermi wave vector kF .

on the dimensionless Coulomb coupling strength α and the
dimensionless Fermi momentum kF d .

The maxon (peak) and roton (local minimum) wave vectors
depend on the width of the quantum wire d instead of the
Fermi wave vector. With a wide quantum wire (i.e., large
d), the maxon and roton wave vectors can be much smaller
than the Fermi wave vector. This suggests that the nonmono-
tonicity in the plasmon dispersion comes from the “low-
energy” properties of the Coulomb Luttinger liquids since
it can occur already for q � kF . Mathematically, the long-
wavelength 1D plasmon dispersion ωp(q) ≈ vF q

√
ln[2/(qd )]

already gives the nonmonotonic dispersion, clearly showing
that the maxon-roton feature is inherent in the long-range
nature of the Coulomb coupling, which is inherently depen-
dent on the cutoff scale “d .” Moreover, the nonmonotonic
part of the plasmon dispersion (especially the maxon peak)
is always well above the 1D particle-hole continuum and

FIG. 5. Diagram of qualitatively distinct plasmon dispersion
regimes using RPA calculations. The black dots represent the inter-
action threshold αc for realizing nonmonotonic plasmon dispersion
given by Eq. (12). For α > αc (orange shaded regime), the maxon-
roton feature is manifest. The value of αc decreases when kF d
increases. The value of αc using RPA saturates at ∼33 (αc obtained
from the Luttinger liquid dispersion) for kF d � 1.

is undamped by particle-hole pair creations. We therefore
expect to observe a sharp, essentially δ-function-like spectral
peak in the dynamical structure factor corresponding to the
maxon-roton dispersion feature, which should clearly show
up in inelastic scattering experiments such as light scattering
and photoemission spectroscopies.

An important remark is that the scale-dependent Luttinger
parameter K (q) is always monotonically increasing to 1 with
increasing q (see Fig. 1 with no nonmonotonicity whatsoever).
This implies that the nonmonotonic plasmon dispersion does
not change the well-known zero-temperature Wigner-crystal-
like phase of the 1D Coulomb systems [8,19]. Nevertheless,
we might expect the nonmonotonicity of the plasmon disper-
sion to contribute to the finite-temperature properties where
higher-energy excitations may contribute. In the next section,
we turn to the specific heat, which provides a way to identify
the strongly interacting regime (the same regime of α that
realizes the nonmonotonic plasmon dispersion).

B. Specific heat

When the plasmon oscillation develops a nonmonotonic
dispersion, the density of states of the plasmon diverges at
the maxon and roton energies. In addition, the dispersion
ωp(q → 0) ∼ q

√
ln[2/(qd )] implies a vanishing low-energy

density of states. These singular features will be reflected in
the thermodynamic quantities like specific heat, which we
discuss in this section.

The specific heat can be computed straightforwardly based
on the plasmon dispersion in Eq. (9). The expression for the
specific heat is

CV =
( vF

T d

)2 1

πd

∫ ∞

0
dq̃

[ω̃p(q̃)]2e
vF
T d ω̃p(q̃)[

e
vF
T d ω̃p(q̃) − 1

]2 , (13)

where ω̃p(q) is the dimensionless plasmon dispersion in
Eq. (9). The specific heat results given by Eq. (13) are plotted
in Fig. 6. In the high-temperature limit, the specific heat
CV ≈ πT

3vF
, which is consistent with what is expected for the

noninteracting 1D spinless fermions [3]. In the inset of Fig. 6,
the low-temperature specific heat shows a suppression which
depends strongly on α. Although all of the low-temperature
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FIG. 6. Specific heat of the Coulomb Luttinger liquids with
various values of α. The low-temperature suppression in the specific
heat depends on the value of α and therefore can identify the regime
realizing nonmonotonic plasmon dispersion. Black dashed line: α =
0; yellow solid line: α = 10; blue solid line: α = 50; green solid line:
α = 100; brown solid line: α = 250; red solid line: α = 500.

specific heat curves roughly follow a linear temperature de-
pendence, the prefactor gets smaller for larger α. We find
that the low-temperature specific heat is significantly reduced
for α � αc. Such a reduction of the low-temperature specific
heat is caused by the small density of states of the low-
energy plasmon for large α where the maxon-roton dispersion
feature arises. It is important to note that the low-temperature
specific heat cannot be described by an exponential Arrhenius
scaling but appears to be close to linear in temperature. This
is consistent with the gapless nature of the plasmon in one
dimension. However, the precise low-temperature form is not
known analytically except that we find that it is significantly
suppressed for strong interaction. This strong suppression for
large α is directly connected with the nonmonotonic maxon-
roton plasmon dispersion.

The results in this section are only on the charge sector
contribution to the specific heat. There may be contributions
to the specific heat from spinons and other excitations outside
the charge sector. Nevertheless, we expect a large suppression
of the low-temperature specific heat for strongly interacting
Coulomb Luttinger liquids as shown in Fig. 6 since the contri-
bution from plasmons will, indeed, be significantly suppressed
at strong coupling.

V. CONCLUSION

We have theoretically demonstrated that a Coulomb Lut-
tinger liquid can manifest a finite-momentum nonmonotonic
1D plasmon dispersion in the strongly interacting regime, pre-
serving still the low-energy charge collective mode behavior
[i.e., ωp(q → 0) ∼ q

√
ln[2/(qd )]] at long wavelengths. We

emphasize that our results are model independent: both Lut-
tinger liquid theory (for linearized energy dispersion) and the
RPA (for parabolic energy dispersion) give the nonmonotonic
plasmon dispersion at finite wave numbers. We also show
that the specific heat of the Coulomb Luttinger liquids de-
pends strongly on the interaction strength α. In particular, the
magnitude of the low-temperature specific heat suppression

can identify the strongly interacting regime, the same regime
realizing the nonmonotonic plasmon dispersion.

Where to look for the nonmonotonicity in the 1D plasmon
dispersion is an important question, which we can answer
only partially. One needs a large α ∼ 1/(vF κ ) (since α > αc

is necessary) and a large d (since q ∼ 1/d is necessary).
These two conditions are, in principle, independent since the
experimental 1D system has four independent physical param-
eters: n (carrier density) and m (effective mass) determining
the Fermi velocity, κ (the background dielectric constant)
determining the strength of Coulomb coupling, and d (the
transverse width) determining the cutoff for the Coulomb
divergence. We emphasize that, as long as q � kF (which
is allowed since kF and d are independent physical parame-
ters), our theory (both RPA and Luttinger liquid theories) are
essentially exact, and hence, our predictions are independent
of our approximation schemes. The ideal 1D system should
have very low n (and not too small an m) so that vF is small,
along with a rather small κ so that the Coulomb coupling
is strong. In addition, d should not be too small or large,
so that the characteristic wave number, q ∼ 1/d , where the
nonmonotonicity occurs is neither too large nor too small.
We estimate 1D quantum wires made of silicon with a low
carrier density to be the possible system for the observation
of our predicted maxon-roton feature, but other 1D systems
should be tunable to the interesting regime since the number
of independent tunable parameters (n, m, d , κ) is twice the
number of conditions (α > αc and q > 1/d) necessary for the
predicted physics to occur.

One problem to worry about is the constraint kF d > 1,
which also seems to be crucial for the manifestation of the
maxon-roton nonmonotonicity in k2 dispersing fermion bands
[i.e., Eq. (1)]. In Fig. 4, we show the RPA-calculated 1D
plasmon dispersion for α = 50, 100, 200 and kF d = 0.5, 1,
2, 5, 50. As is clear from these plots, the nonmonotonic-
ity is favored when kF d > 1 as well as when α � 1. The
interaction threshold αc (the minimum value of α realizing
nonmonotonicity) versus kF d is plotted in Fig. 5. We show
that αc decreases as a function of kF d and saturates at the
linearized Luttinger liquid value (i.e., αc ≈ 33) for kF d � 1.
Unfortunately, kF d > 1 and α � 1 are somewhat mutually
exclusive in doped parabolic 1D electron systems such as
semiconductor quantum wires since vF = kF /m, and α ∼
1/vF . Thus, a small vF (to make α large) typically implies
a small kF as well, which makes it difficult to satisfy the
condition kF d > 1. In addition, the kF d > 1 condition is in
conflict with the system being in the strictly 1D limit as the
higher quantized levels in the system may become relevant.
Even in such a situation, however, the main charge collective
mode will manifest a charge density oscillation reflecting
the total charge density, and the plasmon would remain 1D
character as long as the interlevel transitions are suppressed.
A complete theory including the multilevel situation is well
outside the scope of the current work and should follow the
formalism of Refs. [16,20,21]. Our current work points out
only that in the strongly interacting (i.e., α � 1) situation,
the charge collective bosonic mode (i.e., 1D plasmon) in a
Coulomb Luttinger liquid develops a nonmonotonic energy-
momentum dispersion. The actual experimental manifestation
of the physics discussed in this work may be more likely
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in a lattice system (rather than in a doped system) where
the Fermi velocity and the Fermi momentum may not be
directly connected with the Fermi velocity arising from band
dispersion (and can be very small in flat bands) and the
Fermi momentum arises from the band filling, thus enabling
both α � 1 and kF d > 1 conditions to be simultaneously
satisfied. The complications stated above explain why the
plasmon nonmonotonicity has not been observed in the lit-
erature. The ideal system manifesting the nonmonotonicity
is a 1D system where the bare band dispersion is linear to
very large momenta (i.e., very small band curvature) so that
the complication arising from kF d > 1 is simply not relevant.
In this sense, graphene-related systems (carbon nanotubes,
graphene nanoribbons, twisted bilayer graphene, etc.) may
turn out to be the ideal place to look for the maxon-roton
physics predicted in our work.

Interestingly, the recent experiments in the twisted bilayer
graphene [22–26] may provide a new platform for investi-
gating the plasmon nonmonotonicity. When the twist angle
is smaller than 1◦, the 1D domain-wall structure (which
separates the effectively AB and BA stacking regions) is
manifest [24–27]. It is important to emphasize that the 1D
domain-wall states, which can be well described by the 1D
Dirac fermion with linearized dispersion [i.e., Eq. (3)], are
qualitatively different from the conventional k2 dispersing
band. Thus, the plasmon dispersion from bosonization [i.e.,
Eq. (8), which is ignorant of kF ] captures the plasmon in such
1D domain-wall states. The domain-wall states contain four
counter-propagating helical pairs, arising as the boundary-
separating quantum valley Hall state in the AB (winding
number ν = 1) and BA (ν = −1) staking registries [27,28].
The width of the domain-wall states (i.e., d) is estimated to
2–3 nm (based on lattice relaxed calculations in [29]). The
nonmonotonic plasmon dispersion may be observed in the
twisted bilayer graphene close to the second or third magic an-
gle [30,31] because the domain-wall state velocity in the mini-
band is significantly quenched (i.e., large enhancement in α).
Although the characteristic wave number for nonmonotonicity
is considerably large (∼1/d), the long-wavelength part (i.e.,
smaller than 1/d) of plasmon dispersion is boosted up by a
factor

√
α (with α � 1), enabling a large energy separation

between plasmon dispersion and the particle-hole continuum.
Such a system with a large energy mismatch, resulting in an
undamped plasmon dispersion, is very similar to the recent
study on the surface plasmon in twisted bilayer graphene at
a magic angle [32], although it approaches the problem from
the two-dimensional limit rather than from the 1D limit (this
work). We further predict that the specific heat has a strong
low-temperature suppression in the same regime manifesting
the plasmon dispersion nonmonotonicity. The precise values
of magic angles lower than 1◦ (the first magic angle) are still
openly debated [30,31,33]. Nevertheless, the nonmonotonic
plasmon dispersion predicted in this work does not rely on
the magic angle fundamentally as long as the domain-wall
velocity is small enough and the 1D approximation applies.

Theoretically, we can ask if a different interaction potential
(but still long range) also realizes the nonmonotonic disper-
sion. The answer is in the affirmative. The same analysis as
in the current work for other long-range potentials manifests
similar nonmonotonicity in the collective mode dispersion

FIG. 7. Plasmon dispersion of 1D fermions with different long-
range potentials. (a) Inverse square potential V (x) = C2/(x2 + d2).
The dispersion is given by ωpd/vF = q̃

√
1 + C̃2q̃1/2K1/2(q̃), where

the dimensionless strength C̃2 = C2
√

2π

πvF d , K1/2 is the modified Bessel
function of the second kind, and q̃ = |q|d . The plasmon dispersion
develops a maxon-roton feature when C̃2 > 33 (estimated numeri-
cally). (b) V (x) = B2/[d2 sinh(x/d ) + d2]. The dispersion is given
by ωpd/vF = q̃

√
1 + B̃2q̃1/2csch(q̃π/2), where the dimensionless

strength B̃2 = B2π

πvF d . The plasmon dispersion develops a maxon-roton

feature when B̃2 > 21 (estimated numerically). Black dashed line:
C2 = 0 (B2 = 0); yellow line: C2 = 10 (B2 = 10); blue line: C2 =
50 (B2 = 50); green line: C2 = 100 (B2 = 100); brown line: C2 =
250 (B2 = 250); red line: C2 = 500 (B2 = 500). All the curves are
calculated via the Luttinger liquid approximation.

in the strong-coupling regime, showing our finding of the
maxon-roton feature to be universal for 1D long-range inter-
acting systems. For example, we check a power-law potential
V (x) = Cn/(

√
x2 + d2)n for n > 0 and find nonmonotonic

collective mode dispersion for a sufficiently large Cn. We plot
the plasmon dispersion for n = 2 in Fig. 7(a). For n = 2, the
model can be viewed as the continuum version of the Haldane-
Shastry model [34,35], which can be solved by the Bethe
ansatz. In addition, we find that a 1/[d2 sinh2(x/d ) + d2]
potential, a non-power-law potential related to the Calogero-
Sutherland model [36,37], also can develop a nonmonotonic
dispersion, as plotted in Fig. 7(b). The existence of the
nonmonotonic dispersion is, indeed, not particular to the
1/r Coulomb interaction and should exist in other systems
with long-range interactions (e.g., trapped ions [38]). It is
possible that the nonmonotonic maxon-roton charge collective
mode dispersion is, indeed, a universal feature of all strongly
interacting 1D models with long-range potentials of any type,
although it is desirable to establish this speculation using exact
techniques such as the Bethe ansatz.
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