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We theoretically explore the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction mediated by spin-3/2
quasiparticles in half-Heusler topological semimetals in quasi-two-dimensional geometries. We find that while
the Kohn-Luttinger part of the effective Hamiltonian gives rise to generalized Heisenberg coupling of the form
HRKKY ∝ σ1,iIi jσ2, j with a symmetric matrix Ii j , the addition of a small antisymmetric linear spin-orbit coupling
term leads to a Dzyaloshinskii-Moriya type of coupling with an antisymmetric matrix I ′

i j . As a general aspect,
we demonstrate that besides revealing the usual oscillatory dependence on the distance, all coupling strengths
depend strongly on the relative orientation of the two impurities with respect to the lattice. This yields a strongly
anisotropic behavior for Ii j such that by only rotating one impurity around another at a constant distance, we can
see further oscillations of the RKKY couplings. As we will explain, this unprecedented effect is very unique to
electronic systems such as half-Heusler topological semimetals, which combine spin-orbit coupling with strongly
anisotropic Fermi surfaces. We further find that all of the RKKY terms have two common features: (i) a tetragonal
warping in their map of spatial variations in a similar way to the two-dimensional Fermi lines of the system, and
(ii) a complex beating pattern consisting of different periodicities. Intriguingly, all these features survive in all
dopings, and we see them in both electron- and hole-doped cases. In addition, due to the lower dimensionality
combined with the effects of different spin-orbit couplings, we see that only one symmetric off-diagonal term,
Ixy, and two antisymmetric (Dzyaloshinskii-Moriya) components, I ′

xz and I ′
yz, are nonvanishing, while the

remaining three off-diagonal components are identically zero. This manifests in another drastic difference of
RKKY interaction in half-Heusler topological semimetals compared to the electronic systems with a spin-1/2
effective description.
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I. INTRODUCTION

Over the past decades, predictions and subsequent real-
izations of topological phases of matter have revolutionized
our understanding of condensed-matter systems and elec-
tronic structure of materials [1]. Time-reversal invariant (TRI)
topological insulators (TIs) in two and three dimensions (2D
and 3D), topological superconductors exhibiting exotic Majo-
rana zero modes (MZMs) at the boundaries, and Weyl/Dirac
semimetals are among the well-known examples that possess
a nontrivial topology in their low-energy band structures
[2–4]. In many topological phases, spin-orbit coupling (SOC)
is a key player that can give rise to a topological phase
transition by inverting the order of low-lying electronic bands.
The most famous examples of the TRI topological insulators
derived by SOC are HgTe/CdTe quantum wells in 2D and
Bi/Sb binary alloys and compounds in 3D [5–10]. Very
intriguingly, the band inversion driven by strong SOC has
been predicted to take place in various ternary half-Heusler
compounds containing rare-earth elements such as lanthanum
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and yttrium. When the high cubic symmetry is preserved,
these materials are topological semimetals (TSMs) rather than
insulators or semiconductors, but they can be turned into
TIs by distorting the cubic symmetry [11–13]. The low-lying
electronic excitations in these semimetals consist of �8 bands
having a total angular momentum of j = 3/2 [14]. Further-
more, most of the half-Heusler systems exhibit correlated
symmetry-broken ground states including superconducting
and antiferromagnetic phases [15,16]. Of particular interest,
the higher spin of low-energy quasiparticles leads to further
Cooper pairing channels, particularly the so-called j = 3
septet pairing [17–23].

In spite of studies on the magnetic properties of spin-orbit
coupled half-Heusler systems, which suggest some applica-
tions in spintronics as well, the role of their low-energy
spectrum has been overlooked so far [24,25]. So a natural
question that arises here is how the magnetic features in the
half-Heusler TSMs can be influenced by the low-energy exci-
tations possessing an effective total angular momentum of j =
3/2 and various SOC terms. We must remind the reader that in
spite of the fact that the magnetic orderings originate mainly
from the localized electronic states, there is a range of rich
physical phenomena where low-lying electronic states can
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influence the magnetic properties [26]. One of the key phe-
nomena in this context is the well-known Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction or indirect exchange
coupling between localized magnetic moments mediated by
conducting electrons [27–29]. It is known that this interaction
plays an essential role in inducing various types of magnetic
phases in metallic and semiconducting electronic systems in
the presence of magnetic adatoms [30]. Particularly, RKKY
coupling of localized magnetic moments has been widely
assumed to be the key mechanism needed to induce ferro-
magnetism in dilute magnetic semiconductors [31,32]. Very
recently, similar predictions have been made and experiments
have been done for magnetically doped TIs in which more
exotic phases such as a disordered spin-glass emerge besides
an ordered ferromagnetic state [33–37]. Another interesting
feature of the RKKY interaction is its strong dependence
on the dimension of the host electronic system [38–41] and
the dispersion relation of the low-energy excitations [42–47].
In the case of a clean three-dimensional electron gas, the
RKKY interaction has an isotropic Heisenberg-like form with
a coupling strength that shows an oscillatory decaying depen-
dence on the distance of two localized moments. However,
in confined geometries and lower dimensions, as well as in
the presence of SOC, the properties of RKKY coupling can
drastically change. It has been found that Rashba SOC in
electron gas leads to anisotropic indirect exchange coupling
between the magnetic impurities. As a result, extra forms
of RKKY interactions including the Dzyaloshinskii-Moriya
(DM) and Ising terms exist [48–56].

In this work, motivated by the aforementioned question,
we investigate the RKKY interaction between magnetic im-
purities in TSMs with effective spin-3/2 quasiparticles. This
problem has not been explored so far, and it can pave the
way to inducing and tailoring magnetic ordering in TSMs.
Furthermore, since there are various suggestions for inducing
topological superconductivity and MZMs in RKKY systems
coupled to superconductors [57–61], our study can trig-
ger exploration of MZMs in half-Heusler TSMs, especially
those with intrinsic superconductivity. Here, concentrating on
quasi-two-dimensional structures, we find that both the spatial
dependence of the RKKY coupling constants and their spin
structure have strong anisotropies. The anisotropy in the spa-
tial dependence of RKKY couplings originates mainly from
the strongly anisotropic low-energy dispersion of electronic
excitations. However, the anisotropy in the matrix structure
of RKKY coupling can be ascribed to the low dimensionality
of the system and more importantly the presence of different
SOC terms that are closely related to the spin-3/2 nature of the
quasiparticles. Also, the directional dependence of the Fermi
wavelength gives rise to a beating pattern in spatial variations,
which are essentially different from those in electronic sys-
tems with two or more Fermi surfaces. On the other hand,
the presence of antisymmetric SOC (ASOC) with a linear
momentum dependence leads to the existence of a DM-type
RKKY interaction. Since the anisotropy of the dispersion
relation and the tetragonal warping effects do not disappear
even at very low dopings and close to the band touching point,
all main features of the RKKY coupling are qualitatively
maintained irrespective of the Fermi energy of the system.
Concentrating on YPtBi as the prototype j = 3/2 TSM, we

find that in spite of qualitative similarities, some quantitative
differences between hole- and electron-doped cases can be
seen. These findings, besides providing significant differences
with previously studied spin-orbit coupled systems, can have
intriguing consequences for the ordered phases of magneti-
cally doped TSMs and also possible realization of MZMs in
these systems.

In the remainder of the paper, we first introduce the low-
energy Hamiltonian of the topological semimetals and the for-
malism of calculating indirect exchange coupling for systems
with strongly anisotropic band structures (Sec. II). Then in
Sec. III we present a discussion of the results. The paper ends
with concluding remarks in Sec. IV.

II. MODEL AND BASIC FORMALISM

A. Effective Hamiltonian of TSM

We start with the low-energy effective Hamiltonian

ȞTSM = Ȟ(0) + Ȟ(1) (1)

in the vicinity of the � point for the half-Heusler semimetals,
which consists of two parts,

Ȟ(0) = α1|k|21̌ + α2(k · J̌ )2 + α3

3∑
i=1

k2
i J̌ 2

i , (2)

Ȟ(1) = α4k · Ť , Ťi = {
J̌i, J̌ 2

i+1 − J̌ 2
i+2

}
, (3)

corresponding to the Luttinger-Kohn (LK) Hamiltonian and
ASOC terms, respectively. Here, J̌ = J̌iêi denotes the j =
3/2 angular momentum operators having 4 × 4 matrix repre-
sentation, k is the momentum of the excitations, and {Ǎ, B̌}
indicates the anticommutator of two operators Ǎ and B̌. The
coefficients αi are material-dependent and can be extracted by
fitting the low-energy model with the results of ab initio cal-
culations for a certain topological semimetallic half-Heusler
material such as YPtBi and LuPtBi [17]. The first term of the
LK Hamiltonian corresponds to the spin-independent mass
term, and the other two terms represent the symmetric SOC
(SSOC) which is quadratic both in momentum and in the
spin-3/2 operators J̌i. The difference between the second and
third terms can be elucidated from the point group symmetry
perspective, which states that while the second term has full
spherical symmetry, the third term has a reduced symmetry
corresponding to a cubic lattice. Intriguingly, the existence
of the SSOC terms is deeply connected to the higher spin of
the LK Hamiltonian and the algebraic structure of spin-3/2
operators, while in the case of systems with effective spin-1/2
and represented by Pauli matrices σi, only ASOC terms ap-
pear that are linear in spin operators and contain only odd
powers of momentum. In this respect, the LK Hamiltonian
and spin-3/2 TSMs are fundamentally different from the
whole variety of effective spin-1/2 systems including those
with linear and cubic Rahba SOCs as well as Weyl/Dirac
semimetals. In half-Heusler TSMs, both SSOC terms are very
strong and their corresponding coefficients α2 and α3 are in
the same order as α1. On the other hand, the ASOC term
(3), which is present due to the inversion symmetry broken
tetrahedral crystal field, acts as a small correction to the
LK Hamiltonian [18]. In spite of its very different matrix
structure containing third powers of spin-3/2 operators, the
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ASOC term (3) shares some similarities with the simple
Rashba term HR ∝ ẑ.(k × σ ) particularly because of their
linear momentum dependence. In the next sections, we will
see that these features yield interesting results for the RKKY
physics in half-Heusler TSMs particularly compared to other
electronic systems.

To proceed, we make a couple of assumptions that simplify
mathematical treatment without losing the generality of the
problem or any significant physics at least in a qualitative
manner. First, we treat Ȟ(1) as a perturbation, provided that
it has a weaker effect in comparison with other terms when
we stay far enough from the neutrality or band touching
point. By considering the first term in the LK Hamiltonian
as the dominant term, we can estimate that only for energies
below a certain value (|ε| � α2

4/α1) does the ASOC term
have comparable or stronger effect than the LK Hamiltonian.
Hence, for the prototype half-Heusler material YPtBi with
α1 ∼ 20 (a0/π )2 eV and α4 ∼ 0.1 (a0/π ) eV, for energies
much higher than α2

4/α1 ∼ 0.5 meV, the effect of the ASOC
term in the dispersion becomes small such that it can be
treated perturbatively.

As a second assumption in our study, we concentrate on ef-
fectively 2D structures, which can be realized by considering
thin films of TSMs. Therefore, we can directly compare our
results for the RKKY interaction with those in 2D electron
gas at the presence of SOC or other related systems such as
topological insulators, besides the possibility of implicit com-
parison with 3D Rashba systems, and Dirac/Weyl semimetals.
To deduce an effective 2D Hamiltonian, we use the approx-
imation of setting momentum in the perpendicular direc-
tion to zero (kz → 0) except for the nonvanishing quantum-
mechanical expectation value of the quadratic term 〈k2

z 〉 ∼
π2/d2, where d is the width of thin film. So we arrive at the
2D analogs of Hamiltonians (2) and (3) having only kx and ky

terms, besides an additional term α1〈k2
z 〉1̌ + (α2 + α3)〈k2

z 〉J̌ 2
z

attributed to the quantum confinement. Since the first part of
the extra terms, which is indeed a constant energy shift, can
be simply absorbed in the chemical potential μ, we only need
to consider an explicit term βJ̌ 2

z with β ≡ (α2 + α3)〈k2
z 〉.

B. RKKY interaction and Green’s functions

For studying the indirect exchange interaction between
magnetic impurities, we consider them as localized classical
moments (denoted by σ = σiêi), similar to the original RKKY
problem. Then we assume that the localized spins are coupled
to the low-lying spin-3/2 electronic excitations inside TSM
by an s-d type Hamiltonian

Himp = −λ
∑

α

J̌ · σαδ(r − Rα ), (4)

in which λ is the exchange coupling energy between the local-
ized moments and the spin of delocalized charge carriers. In
principle because of the large spin of quasiparticles ( j = 3/2),
one can think about more complex model Hamiltonians for
coupling of a magnetic impurity with electronic excitations
of the host material. For instance, assuming heavy metal im-
purities from 4 f elements, the exchange interaction between
the impurity and the electronic excitations is described by
the s- f exchange interaction. In these models, depending on

the strength of spin-orbit coupling (S · L) of the impurity, the
single electron spin operator σα is replaced by the total spin
Simp or total angular momentum Jimp of the impurity, but the
interaction constant λ is assumed to remain a single constant.
On the other hand, starting from the Anderson Hamiltonian,
interactions beyond conventional s-d and s- f exchange cou-
plings are also possible, in which the change in the magnetic
quantum numbers of the localized moment is not limited to
0,±1, as first shown by Coqblin and Schrieffer [62]. They
have also found that RKKY coupling between localized mo-
ments with large Jimp radically changes in their model, while
in the framework of the conventional s- f model the form of
RKKY interactions remains unchanged. Therefore, because
the magnetic impurities in the RKKY problem are essentially
classical spins rather than quantum-mechanical quantities, we
stick to the simple extension of conventional s-d coupling
as introduced above. Remarkably, and in accordance with
Ref. [62], this treatment unifies s-d and s- f exchange models,
and we only need to replace the impurity spin operators σ with
Simp or Jimp in the RKKY interaction formula presented below.
Nevertheless, generalization to cases such as the Coqblin-
Schrieffer model, which are more relevant in studying strong
correlation physics of impurities such as the Kondo problem,
falls beyond the scope of the present work and is left for future
studies.

Now, applying the standard second-order perturbation the-
ory with respect to the impurity Hamiltonian (4), we arrive at
the RKKY interaction between two localized spins positioned
at R1 and R2 as

HRKKY = λ2σ1 · χ(R1 − R2) · σ2, (5)

in which χ(R) is a 3 × 3 matrix representing the spin suscep-
tibility of the spin-3/2 TSM. The components of χ are given
by

χi j (R) = Im
∫ εF

−∞

dω

π
Tr[J̌iǦω(R)J̌ j Ǧω(−R)], (6)

Ǧω(R) =
∫

dd k
(2π )d

eik·RǦω(k), (7)

in which Ǧω(k) denotes the momentum-space representation
of the Green’s function corresponding to the Hamiltonian (1)
governing the low-energy excitations of the TSM. Here, εF is
the Fermi energy measured with respect to the band touching
point, and Im gives the imaginary part.

Treating the ASOC term as a small perturbation, the
Green’s function for the 2D version of Hamiltonian (1) reads

Ǧω(k) ≈ Ǧ(0)
ω (k) + Ǧ(0)

ω (k)Ȟ(1)Ǧ(0)
ω (k). (8)

The zeroth-order Green’s function Ǧ(0)
ω (k) = (ω − Ȟ(0) )−1 of

the 2D LK Hamiltonian (without the ASOC term) is given by

Ǧ(0)
ω (k) = 1

D

{[
ω −

(
α1 + 5

2
α2 + 5

2
α3

)
k2

]
1̌

+ α2(k · J̌ )2 + α3

2∑
i=1

k2
i J̌ 2

i +
(
J̌ 2

z − 5

2

)
β

}
,

(9)
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with

D = k4

[
α2

1 + 5

2
α1(α2 + α3) + 9

16
(α2 + α3)2

]

+ k2

8
[(α2 + α3)(33β − 20ω) + 4α1(5β − 4ω)]

+ 9β2

16
− 5βω

2
+ ω2 + 3α3(2α2 + α3)k2

x k2
y . (10)

Accordingly, the eigenvalues of the 2D correspondence of
Hamiltonian (2) when β = 0 are also obtained as

ε
(0)
± (k, θk ) = k2

[
α1 + 5

4
(α2 + α3)

]

± k2

√
α2

2 + (
α2

3 + 2α2α3
)5 + 3 cos(4θk )

8
, (11)

with θk = arctan(ky/kx ). Both energy bands ε
(0)
± (k, θk ) are

twofold-degenerate, but the degeneracy is slightly lifted when
the ASOC is taken into account. The energy dispersion (11)
clearly shows that the anisotropy of the band structure, which
originates from the α3-term, persists in all energies and gives
rise to a tetragonal warping of Fermi surfaces. Furthermore,
one can see that the two branches ε

(0)
± have opposite signs

for their effective masses (corresponding to electron and hole
bands) when α1 lies in the range between −(1/4)(α2 + α3)
and −(9/4)(α2 + α3). These are the situations in which the
effective Hamiltonian corresponds to TSM. Otherwise, when
α1 is out of this range, both branches will be electronlike or
holelike, where in the second case, ε

(0)
± correspond to heavy-

hole and light-hole bands of the typical semiconductors. To
better illustrate the aforementioned aspects of the TSM band
structure, Fig. 1 shows the low-energy dispersion of YPtBi
confined in a quasi-2D geometry and given by the LK Hamil-
tonian.

C. Angular harmonics expansion

In this subsection, we present a framework of expansion
over the angular harmonics ψm(φ) = eimφ for the spatial
dependence of the spin susceptibility and RKKY coupling
constants. The framework is especially useful for the systems
with anisotropic dispersion relations such as ȞTSM. In 3D
cases, a similar formulation can be developed by replacing
ψm(φ) with the spherical harmonics Ylm(θ, φ).

We start by writing the Fourier relation (7) for the Green’s
function in two dimensions. By choosing polar coordinates
k = k(cos θk, sin θk ), this leads to

Ǧω(R) =
∫

d2k
(2π )2

eikR cos (θk−φ)Ǧω(k), (12)

in which d2k ≡ k dk dθk . The polar representation of the
vector R = R(cos φ, sin φ) that connects the two impurities
is determined by its length R and angle φ with respect to
the x-axis. Then, by Fourier expansion of the k-dependent
Green’s function in terms of its angular harmonics as

Ǧω(k) =
∑

m

ǧm(k, ω)eimθk , (13)

0

0

0

kya0/π

kxa0/π 0.1

−0.1

−0.1

0.1

−0.1
0.1

ε
(e

V
)

FIG. 1. Low-energy dispersion of a half-Heusler TSM near the
� point, described by LK effective Hamiltonian. Considering YPtBi
as an example, the Hamiltonian parameters used for this plot are
α1 = 20(a0/π )2 eV, α2 = −15(a0/π )2 eV, α3 = −5(a0/π )2 eV.
The differences in the effective masses of conduction and valence
(electron and hole) bands and tetragonal warping of isoenergy lines
in all energies are two important features of the band structure that
can be easily seen in this plot.

and invoking the mathematical relation

∫ 2π

0

dθk

2π
eikR cos(θk−φ)+imθk = imJm(kR)einφ, (14)

in which Jm(x) denotes the Bessel functions of the first kind,
we arrive at

Ǧω(R) =
∑

m

Ǧm(R, ω)eimφ, (15)

Ǧm(R, ω) =
∫

d2k
(2π )2

imJm(kR)e−imθk Ǧω(k). (16)

The above equations show that the real-space Green’s function
Ǧω(R) can be expanded in terms of angular harmonics eimφ

with coefficients Ǧm(R, ω), which are, respectively, related to
the coefficients ǧm(k, ω) in the expansion (13).

Considering the perturbative form of the Green’s function
given by Eq. (8), corresponding relations can be deduced for
the expansion coefficients in Eqs. (13) and (15) as

ǧm(k, ω) ≈ ǧ(0)
m (k, ω) + ǧ(1)

m (k, ω), (17)

Ǧm(R, ω) ≈ Ǧ (0)
m (R, ω) + Ǧ (1)

m (R, ω), (18)

respectively. Using the general relation (16) for the angular
harmonic coefficients Ǧm in real space, we can immediately
deduce

Ǧ (i)
m (R, ω) =

∫ ∞

0

kdk

2π
imJm(kR) ǧ(i)

m (k, ω) (19)
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for each perturbative term. It can be readily checked that the
zeroth- and first-order terms of ǧm are given by

ǧ(0)
m (k, ω) =

∫ 2π

0

dθk

2π
e−imθk Ǧ(0)

ω (k), (20)

ǧ(1)
m (k, ω) =

∫ 2π

0

dθk

2π
e−imθk Ǧ(0)

ω (k)Ȟ(1)Ǧ(0)
ω (k)

= α4k
∑

n

ǧ(0)
m−n

(
Ť+ ǧ(0)

n+1 + Ť− ǧ(0)
n−1

)
, (21)

where, to obtain the last line, the Fourier decomposition of
Hamiltonian (3) has been used:

Ȟ(1) = α4k(eiθk Ť− + e−iθk Ť+), Ť± = Ťx ± iŤy

2
. (22)

It should be noted that the arguments of functions ǧm(k, ω)
inside the summation in Eq. (21) have been dropped for the
sake of compactness. As is explained in the Appendix, and as
can be understood from the explicit relation (9) for the zeroth-
order Green’s function, its nominator consists of only m =
0,±2 angular harmonics. Nevertheless, due to the presence of
the denominator term D given by (10), which can be decom-
posed as D = D0 − D1 cos(4θk ) with D1 ∝ α3(2α2 + α3), all
even angular harmonics of Ǧ(0)

ω (k) or equivalently Ǧ(0)
ω (R) are

nonvanishing (more details can be found in the Appendix).
Therefore, we can conclude that the angular-harmonics expan-
sion coefficients ǧ(0)

m (k, ω) are nonzero only for even m’s. This
is indeed an essential feature of half-Heusler TSM where the
anisotropic α3 term in the Hamiltonian (2) is not negligible.
Then, Eq. (21) implies that only ǧ(1)

m (k, ω) corresponding to
odd m’s are not vanishing, a property that in fact originates
from the θk-dependence of Ȟ (1) with only m = ±1 harmon-
ics. One can easily see that due to the relation (19), these
properties of ǧ(i)

m (k, ω) (i = 0, 1) are inherited for real-space
coefficients Ǧ (0)

m (R, ω) and Ǧ (1)
m (R, ω), which means they are

nonvanishing for even and odd m’s, respectively.
In our perturbative scheme, the susceptibility up to the first

order in the ASOC term can be written as

χi j (R) ≈ χ
(0)
i j (R) + χ

(1)
i j (R), (23)

in which the explicit form of the zeroth-order term reads

χ
(0)
i j (R) = Im

∫ εF

−∞

dω

π
Tr

[
J̌iǦ

(0)
ω (R)J̌ j Ǧ

(0)
ω (−R)

]

= Im
∑
m,n

(−1)neimφ

∫ εF

−∞

dω

π
Tr

[
J̌iǦ (0)

m−nJ̌ jǦ (0)
n

]
,

(24)

where in the second line the angular harmonics expansion (15)
has been used. In a similar way, the explicit relations of the
first-order term χ

(1)
i j (R) become

χ
(1)
i j (R) = Im

∑
m,n

(−1)neimφ

∫ εF

−∞

dω

π

× Tr
[
J̌iǦ (1)

m−nJ̌ jǦ (0)
n + J̌iǦ (0)

m−nJ̌ jǦ (1)
n

]
, (25)

consisting of two terms in which either the first or the second
Green’s functions appearing in the susceptibility relation is
first order while another one is zeroth order. Invoking Eq. (19),

we obtain the following expressions for the zeroth- and first-
order susceptibilities:

χ
(0)
i j (R) = Im

∑
m,n

(−1)nimeimφ

∫ εF

−∞

dω

π

∫
kdk

2π

×
∫

k′dk′

2π
Jm−n(kR)Jn(k′R)

× Tr
[
J̌iǧ

(0)
m−n(k, ω)J̌ j ǧ

(0)
n (k′, ω)

]
, (26)

χ
(1)
i j (R) = Im

∑
m,n

(−1)nimeimφ

∫ εF

−∞

dω

π

×
∫

kdk

2π

∫
k′dk′

2π
Jm−n(kR)Jn(k′R)

× Tr
[
J̌iǧ

(1)
m−n(k, ω)J̌ j ǧ

(0)
n (k′, ω)

+ J̌iǧ
(0)
m−n(k, ω)J̌ j ǧ

(1)
n (k′, ω)

]
. (27)

We should remind the reader that the explicit form of
ǧ(0)

m (k, ω) is given by Eq. (A12) in the Appendix, and by in-
serting it in Eq. (21), the first-order terms ǧ(1)

m (k, ω) can also be
explicitly obtained. Before going forward, it is worth noting
that the presence of the factors (−1)n in the above relations
originates from the fact that the second Green’s function in
the susceptibility relation must be calculated at −R or equiv-
alently (R, φ + π ) in polar coordinates, which immediately
leads to an extra factor einπ = (−1)n in the expansion (15) for
Ǧ(0)

ω (−R). If we look back at the discussion after Eq. (21),
because of the fact that only even angular harmonics of Ǧ(0)

ω

are nonvanishing, then the (−1)n factor becomes irrelevant,
yielding Ǧ(0)

ω (−R) = Ǧ(0)
ω (R). However, following the same

argument for Ǧ(1)
ω (−R), which consists of only odd angular

harmonics, we can easily check that Ǧ(1)
ω (−R) = −Ǧ(1)

ω (R).
Subsequently, we can deduce different symmetry properties
for the zeroth- and first-order susceptibilities as

χ
(0)
i j (R) = χ

(0)
i j (−R) = χ

(0)
ji (R), (28)

χ
(1)
i j (R) = −χ

(1)
i j (−R) = −χ

(1)
ji (R). (29)

Based on the above symmetries, we can easily understand how
the bare LK Hamiltonian represented in χ

(0)
i j gives rise to a

general Heisenberg-type RKKY interaction with a symmetric
coupling matrix, while the first-order corrections χ

(1)
i j (R) due

to the linear ASOC lead to DM-type terms that are antisym-
metric under the exchange of the two impurities [63–65].

The different components of the spin susceptibility and
RKKY interaction strengths originating from the LK Hamil-
tonian can be obtained by evaluating the integrals over the
energy and momenta in Eq. (26) numerically. In the same
way and using Eq. (27), the first-order correction χ

(1)
i j (R)

due to the ASOC term is calculated. For both cases, instead
of performing the integration from −∞, we use an energy
cutoff � = −2 eV in agreement with the typical bandwidth
of the realistic system based on the ab initio results [11–13].
In the next section, the numerical results for all components
of the RKKY coupling matrix obtained by the aforementioned
procedure are presented.
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III. NUMERICAL RESULTS AND DISCUSSION

We saw in the previous section that because of the rela-
tively small effect of ASOC, it can be treated perturbatively,
which enables us to separate the spin susceptibility of the
system to zeroth- and first-order parts with respect to the
ASOC term. So, we start by presenting the results for the
RKKY interaction mediated by the LK part of the low-energy
Hamiltonian as represented by the zeroth-order susceptibility
χ

(0)
i j . Then, we go through the first-order contribution χ

(1)
i j ,

which yields the DM-type RKKY coupling.

A. Generalized Heisenberg-type couplings

As explained before, the symmetries of the LK Hamil-
tonian and the corresponding Green’s function with only
even angular harmonics lead to a symmetric zeroth-order
susceptibility χ

(0)
i j (R). Accordingly, the RKKY interaction

given by Eq. (5) takes the form of a generalized Heisenberg
Hamiltonian,

H(0)
RKKY ∝

∑
i, j

σ1,iIi j (R)σ2, j, (30)

in which the matrix elements Ii j ∝ χ
(0)
i j represent the di-

mensionless strengths of different components of the RKKY
interaction. To see why this Hamiltonian is of a generalized
Heisenberg type, we note that the symmetry relation (28)
implies that Ii j is also a symmetric matrix and therefore
can be diagonalized. Subsequently, in the absence of the
ASOC term, the energetically favored spin orientation of the
two impurities will be collinear with an easy axis strongly
depending on the relative position of the impurities. By direct
inspection, we further realize that the off-diagonal terms of
Ii j (R) in the unrotated (natural) frame before diagonalization
originate from the terms proportional to {Ji,J j} (i �= j) with
coefficient α2 in the LK Hamiltonian. So if we consider a
bulk 3D TSM, we expect that all three symmetric off-diagonal
terms in the RKKY Hamiltonian (30) are present. But as a
consequence of 2D geometry, only the in-plane off-diagonal
component, which is Ixy in our case, does not vanish due
to the presence of the {Jx,Jy} term in the corresponding
2D form of the LK Hamiltonian. Hence, in the quasi-2D
structure considered here, a built-in anisotropy in the matrix
structure of RKKY couplings exists, yielding Ixz = Iyz = 0.
Furthermore, along the same lines, and because of the reduced
dimensionality again, the diagonal terms corresponding to the
in-plane spin components Ixx and Iyy behave quite differently
from the out-of-plane component Izz. This means that even the
diagonal terms of the RKKY coupling matrix alone give rise
to an anisotropic Heisenberg model that can be decomposed
to an Ising-type term along the z direction and an isotropic
Heisenberg Hamiltonian.

Now after overviewing some general features of the RKKY
Hamiltonian (30), we present the spatial variation of its differ-
ent components obtained by the method developed in Sec. II.
By direct evaluation, we find the following Fourier expansion
for the nonvanishing components in the 2D case:

Ixx(R) = Ixx,0(R) + Ixx,2(R) cos(2φ) + · · · , (31)

Iyy(R) = Ixx,0(R) − Ixx,2(R) cos(2φ) + · · · , (32)

Ixy(R) = Ixy,2(R) sin(2φ) + · · · , (33)

Izz(R) = Izz,0(R) + Izz,4(R) cos(4φ) + · · · . (34)

For the sake of compactness of the relations, only the low-
est nonvanishing angular-harmonic terms are explicitly writ-
ten without presenting too lengthy forms of the distance-
dependent coefficients Ii j,m(R). Instead, the full numerical
results for the spatial dependence of the RKKY couplings
are shown in Fig. 2, which reveal their interesting proper-
ties. We should mention that higher harmonics [cos(2mφ) or
sin(2mφ)] are also present, and as is clear from the contour
plots, their contributions are not negligible. In fact, all four
nonvanishing components are strongly anisotropic and vary
significantly with the angle φ of the relative locations of
the impurities. In other words, while keeping the distance R
between the impurities fixed and rotating the second impurity
around the first one, the RKKY couplings drastically change
and even undergo sign changes. The anisotropic features in
the spatial variation of the RKKY interaction indeed originate
from the strong anisotropy of the band structure and the
θk-dependence of the Green’s function (9). Furthermore, all
components clearly demonstrate a tetragonally warped spatial
dependence dictated by a similar property of the Fermi lines,
as seen in Fig. 1.

Another general feature of all the components of the
RKKY coupling matrix is recognizable, namely a beating
pattern with distinct periodicities. The appearance of such a
beating pattern relies on the tetragonally warped Fermi lines,
which give rise to a range of Fermi wavelengths, a prop-
erty far different from conventional electronic systems with
almost circular Fermi lines and a single Fermi wavelength.
Typically, the beating pattern in RKKY oscillations can be
found in electronic systems with two or more Fermi surfaces,
including the well-known example of 2D Rashba gases and
recently found 3D Rashba systems [53,54]. In contrast, we
have essentially a single Fermi line (more precisely there are
two degenerate ones) before the inclusion of ASOC effects.
Hence, because of the strong warping of the Fermi line, the
magnitude of the Fermi wave vector depends on the direction
of momentum, which eventually leads to a complex beating
pattern in the 2D map of RKKY oscillations. Interestingly, the
periodicity of oscillations with distance R varies by changing
the angle φ due to the strong warping feature. All these
features are almost unique to the TSMs and are not seen in
other electronic systems, especially those with SOCs [48–56].
To illustrate the role of chemical doping, Figs. 2(a)–2(d) and
2(e)–2(h) show the results for electron- and hole-doped cases
with εF = ±0.1 eV, respectively. By a pairwise comparison
of the plots, we see that each Ii j possesses almost the same
qualitative spatial variations for the electron- and hole-doped
cases. This observation is consistent with the same property
in the band structure of the system in which electron and
hole dispersions only differ in their effective masses. Then,
the only effect of different effective masses is reflected in the
different periodicities of RKKY oscillations.

Now, let us separately elucidate the properties of each com-
ponent Ii j based on the results shown in Fig. 2. First, we see
that the diagonal elements, corresponding to the interaction
of the in-plane components of the two spins, have exactly the

075421-6



ANISOTROPIC RKKY INTERACTIONS MEDIATED BY … PHYSICAL REVIEW B 101, 075421 (2020)

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0 (a)

Ixx IzzIyy

(b)

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

(c) (d)

(e) (f) (g) (h)

Ixy

1 

0 

-1

x (100 a0)

y
(1

00
a
0
)

x (100 a0) x (100 a0) x (100 a0)

y
(1

00
a
0
)

FIG. 2. Spatial variation of symmetric components of the scaled RKKY interaction matrix Ii j . As has been discussed in the main text,
among six possible symmetric components, Ixz and Iyz vanish and only the diagonal terms as well as the off-diagonal term corresponding
to in-plane spin orientation Ixy are finite. While the upper row (a)–(d) of subplots corresponds to an electron-doped case (εF = 0.1 eV), the
lower row (e)–(h) shows the corresponding results for hole doping with εF = −0.1 eV. All RKKY components reveal three main features:
strong anisotropy, tetragonal warping, and complex beating behavior in their oscillations. The qualitative difference between the electron- and
hole-doped cases can be attributed to the electron-hole asymmetry already present in the band structure. Other parameters used for these plots
are the same as those used to obtain Fig. 1.

same variation with R except for a π/2 rotation, a property
that has its root in the symmetries of the band structure and the
unperturbed Green’s function (9). Intriguingly, the dimension-
less couplings Ixx and Iyy are stronger around the vertical and
horizontal directions, which correspond to the positioning of
two impurities along the y and x directions, respectively. This,
in fact, manifests in the dominance of the first nonvanishing
harmonic cos(2φ), although the higher harmonics are also not
negligible at all. So comparing Figs. 2(a) and 2(b) or Figs. 2(e)
and 2(f), we see a strong anisotropy between two in-plane
components Ixx and Iyy, but in a way their dependence on φ is
actually related to each other by a π/2 rotation. The in-plane
anisotropy, which can be regarded as an Ising-type term along
the x or y direction, is very special to our system and SSOC
terms of the LK Hamiltonian. In the 3D limit of our system,
one can expect similar anisotropy between all three diagonal
couplings Iii. This is in contrast to other spin-orbit coupled
systems including 2D and 3D Rashba materials in which only
a perpendicular Ising-type term along the z direction has been
found [48,54,55]. Now we arrive at the off-diagonal coupling
Ixy, which exposes a fanlike shape in its spatial oscillations
originating from the sin(2φ) and higher terms in Eq. (33). As
mentioned before, the nonvanishing off-diagonal RKKY com-
ponent comes from the SSOC term proportional to {Jx,Jy}
in the LK Hamiltonian, and hence the special φ-dependence
of Ixy can be attributed to the momentum dependence of
the corresponding term in the Green’s function (9) with the
explicit form kxky ≡ k2 sin(2θk )/2. Finally, as we see from

Figs. 2(d) and 2(h), the perpendicular component Izz is far
different from the other two diagonal terms, in accordance
with the 2D nature of the system, as we discussed before.
Looking to the Fourier expansion (34) for Izz, we see that
it includes only the harmonics of the form cos(4nφ), which
yield a π/2-periodic dependence on the angle rather than
π -periodicity observed for the in-plane components of the
RKKY interaction matrix.

B. Dzyaloshinskii-Moriya-type couplings

As we have already pointed out in Sec. II, by taking the
ASOC term into account and considering only first-order cor-
rections χ

(1)
i j to the spin susceptibility, antisymmetric matrix

elements in the RKKY coupling matrix show up. These new
terms are represented by dimensionless quantities I ′

i j ∝ χ
(1)
i j

with the same prefactor used in relating symmetric com-
ponents Ii j to the zeroth-order susceptibilities χ

(0)
i j . So, we

can write down the corresponding contribution to the RKKY
Hamiltonian in terms of a so-called DM vector IDM with
components IDM,i = εi jkI ′

jk/2, as

H(1)
RKKY ∝

∑
i, j

IDM · (σ1 × σ2). (35)

By direct evaluation of the first-order correction to the Green’s
function and the susceptibility given by Eqs. (21) and (27),
respectively, we find that only I ′

xz and I ′
yz are not vanishing.
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FIG. 3. Spatial variation of the first harming coefficient of DM-
type couplings, IDM,1, for electron- (solid blue line) and hole-doped
(dashed red line) cases. The qualitative behavior in electron and hole
dopings is similar, and we only see slight differences due to the
electron-hole asymmetry in the same way as Heisenberg-type terms.
Here we consider α4 ∼ 0.1 (a0/π ) eV, and other parameters are the
same as those used to obtain Fig. 1.

Subsequently, we obtain the following two components of the
DM vector:

IDM,x(R) = IDM,1(R) cos φ + · · · , (36)

IDM,y(R) = IDM,1(R) sin φ + · · · , (37)

originating, respectively, from the ASOC terms kxTx and kyTy.
As discussed before, the first-order corrections to the spin
susceptibility and the resulting DM-type RKKY terms include
all odd harmonics in their expansion in terms of angular
harmonics. Therefore, similar to the Heisenberg-type terms,
the DM terms possess features such as strong anisotropy,
tetragonal warping, and a beating pattern. In particular, the
absence of a third component of DM-type couplings is a
consequence of the 2D geometry of the system. But if we
consider a bulk 3D system, all three DM components should
exist.

Figure 3 shows the variation of IDM,1 with the distance
R of the two impurities for two values of chemical potential
εF = ±0.1 eV. As expected, we see that the relative strength
of DM terms is much smaller than that of the Heisenberg
ones (about two orders of magnitude at the chemical potential
of |εF | = 0.1 eV). Besides, similar to the other components
and as a common key feature of the RKKY coupling, the
DM terms also have an oscillatory decaying dependence
on the distance with almost the same qualitative behavior
for both electron- and hole-doped cases. However, due to
the anisotropic and tetragonally warped isoenergy lines, the
oscillation pattern is not as regular as the standard RKKY
interaction in conventional electron gases with a unique Fermi
wave vector kF .

It must be mentioned that in spite of their relatively smaller
strengths, the two nonvanishing DM terms or equivalently
I ′

xz and I ′
yz should not be ignored. This is essentially due

to the fact that their corresponding terms in the symmetric
(Heisenberg-type) part of the RKKY Hamiltonian are identi-
cally zero. Considering the full matrix of RKKY couplings by
summing the zeroth- and first-order contributions as I full

i j =
Ii j + I ′

i j , we immediately see that among the off-diagonal

terms, only I full
xy is symmetric and the other two terms are fully

antisymmetric and represent DM-type interaction. This prop-
erty of the RKKY matrix originates from the 2D geometry
of the system considered here, while in 3D, all off-diagonal
elements have nonvanishing symmetric and antisymmetric
contributions with the dominance of symmetric parts. It is
worth remembering that the key property of DM-type inter-
actions is that they lead to twisted spin-spin interaction, and
they yield a noncollinear spin configuration [48]. Hence, we
should expect that in the vicinity of certain relative positions
of the impurities where all Heisenberg terms become small,
the DM terms come into play and induce a significant twist in
the spin orientation of the two impurities.

C. Dependence on the Fermi energy

So far, we have concentrated on two specific values of
the chemical potential εF = ±0.1 eV, and it has already been
shown that the spatial variations of all the different terms of
RKKY couplings are qualitatively the same for electron and
hole dopings. To better elucidate the dependence of different
RKKY terms on the Fermi energy, we show the evolution of
Ixx, Izz, and IDM,x with εF in Fig. 4, at two different distances
R and for various angles φ. The results reveal a complex
and irregular energy dependence for the range of energies
considered and especially around the band touching point
(εF = 0). Particularly, at the larger distance R = 50a0, an
oscillatory decaying dependence on the Fermi energy can be
recognized when we go away from εF = 0 to either electron
or hole dopings. This property, in addition to the variation
with the angle φ, complements the similar qualitative picture
for the spatial variations at constant energies shown in Fig. 2.
Similarities in variations with either distance R or energy εF

are among the well-known aspects of the RKKY coupling and
related phenomena such as Friedel oscillations, which rely on
the singular behavior of response functions for momentum
transfers of two times the Fermi momentum (�k = 2kF )
[66]. Nevertheless, unlike the simple electronic systems with
isotropic dispersion relations where the RKKY interaction is
a function of εF R/h̄vF , a unique Fermi momentum does not
exist here. Therefore, the position and energy dependences
cannot be expressed on the same footing and in terms of a
single dimensionless parameter.

D. Comparison to other systems

We have mentioned before that the RKKY coupling be-
tween magnetic impurities in half-Heusler TSMs, which host
effective spin-3/2 quasiparticles, has special signatures be-
yond the typical properties of the RKKY coupling in other
electronic systems. Now, we try to elucidate these differences,
particularly compared to the systems with effective spin-1/2
descriptions and in the presence of SOC terms. In the most
well-known example of 2D Rashba gas, the presence of SOC
leads to DM-type couplings, while here the ASOC term is
responsible for these terms in the RKKY coupling. Neverthe-
less, the half-Heusler TSMs as described by the LK Hamil-
tonian possess much stronger SSOC terms that are quadratic
in both momentum and spin-3/2 operators. This symmet-
ric SOC term (k · J̌ )2 leads to the symmetric off-diagonal
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FIG. 4. The variation of RKKY couplings with the Fermi energy
at a constant distance R and for different angles φ representing the
relative position of the impurities. Plots in the left and right sides
correspond to the distances R = 20a0 and 50a0. We see that at the
larger distance, while the strength of different components decreases,
the rate of variations with the Fermi energy increases such that the os-
cillatory dependence on εF is clearly seen in the results for R = 50a0

(for the smaller distance, the oscillations are apparent for a wider
energy range). The in-plane diagonal coupling strength Ixx [shown
in (a) and (b)] shows a more significant dependence on the angle φ

rather than the perpendicular component Izz [shown in (c) and (d)]
and the DM term IDM,x [shown in (e) and (f)]. Finally, as a general
feature in all the results, almost abrupt changes are observed around
the band touching point where the Fermi momentum vanishes. All
parameters used here are the same as those used to obtain Figs. 1
and 3.

components, namely Ixy in our 2D case. We remind the reader
that while DM terms favor noncollinear spin alignments, the
presence of symmetric off-diagonal Heisenberg terms gives
rise to an inclination of both spins with respect to the lattice
of TSM or equivalently the natural x-y coordinates. Therefore,
due to the presence of the off-diagonal RKKY component,
which is also strongly angle-dependent, the energetically fa-
vored spin direction of two impurities varies a lot with the
angle φ. This means that not only the strength of the couplings
between the spins but also their preferred direction changes by
rotating the impurities around each other. These remarkable
features, which are related to the Ixy RKKY term, are totally
absent in spin-1/2 systems, since they originate from the
SSOC, which can exist only when the quasiparticles have
higher spin, as discussed in Sec. II.

Regarding the LK Hamiltonian, a few studies have al-
ready been performed on RKKY coupling but within the
isotropic model with α3 = α4 = 0, which is typically valid
for p-doped zinc blende semiconductors [67,68]. Therefore,
they lack many of the anisotropic features found here for

the RKKY coupling of magnetic impurities in half-Heusler
TSMs. It should be mentioned that the key property of RKKY
coupling in TSMs is that the anisotropic attributes are twofold
in nature. In fact, not only does each RKKY component have
a strong dependence on the relative angle φ of the positions
of the impurities, but the matrix structure of the interaction
also reveals anisotropies due to either the differences between
the diagonal elements Iii �= I j j (i �= j) or the presence of
off-diagonal terms. We know that mere anisotropy in the
spatial dependence of each RKKY component is not very
specific to our system, and it can be essentially found in other
systems with anisotropic band structure [69,70]. Nevertheless,
the combination of a peculiar spatial dependence with the
anisotropies in the matrix structure makes the RKKY coupling
in TSMs far different from previously explored systems. For
the 2D structures of TSM considered here, the presence of
symmetric and antisymmetric SOCs, which yield Ixy and
IDM, respectively, is indispensable to see the aforementioned
characteristics of the RKKY interaction.

IV. CONCLUSIONS

We have investigated the indirect exchange coupling
coined the RKKY interaction between magnetic impurities
mediated by j = 3/2 quasiparticles in half-Heusler topolog-
ical semimetals confined in a two-dimensional geometry. To
tackle this problem in which the dispersion relation and the
bare Green’s function are very anisotropic, we have developed
a method to obtain RKKY couplings strengths in a series
over angular harmonics eimφ (φ is the polar angle of the
2D vector R connecting the two impurities). Then, as a
general feature, it has been found that all RKKY couplings
are strongly anisotropic and drastically change by rotating one
impurity around another. Also, corresponding to the tetrago-
nal warping of the isoenergy lines in the band structure, the
dependence of RKKY couplings on R has the same behavior
on top of the oscillatory decaying variations. Such features
are very particular to the half-Heusler semimetals and do
not appear in conventional electronic systems with almost
isotropic band dispersion. Moreover, the matrix structure of
the RKKY coupling is also quite rich, possessing unequal
diagonal components as well as various symmetric and an-
tisymmetric off-diagonal terms. In particular, we have shown
that the Kohn-Luttinger part of the effective Hamiltonian gives
rise to a generalized Heisenberg coupling with anisotropic
matrix structure due to the reduced dimensionality of the
system and the existence of symmetric spin-orbit coupling
terms in close connection with the spin-3/2 nature of the
quasiparticles. Then by considering the effect of an antisym-
metric linear spin-orbit coupling term, which is also present in
half-Heusler semimetals, Dzyaloshinskii-Moriya-type RKKY
couplings have been obtained.

Our findings, which can be tested using spin-polarized
scanning tunneling spectroscopy techniques, also imply inter-
esting features for the magnetic ordering of dilute local mo-
ments in topological semimetals. Particularly, the anisotropy
of the RKKY coupling and the presence of spin-twisting
terms suggest noncollinear spin ordering between the mag-
netic impurities. Consequently, provided by the existence of a
few superconducting half-Heusler materials, the twisted spin
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alignment mediated by RKKY coupling may be promising
to realize Majorana fermions in half-Heusler superconductors
possessing spin-3/2 low-energy excitations. In this regard,
further investigations are needed to better understand the
impurity-related properties of the half-Heusler topological
semimetals, particularly in connection with their magnetic and
superconducting characters.
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APPENDIX: ANGULAR HARMONICS
EXPANSION OF G(0)

ω (k)

In this Appendix, we derive the explicit form of the k-space
Green’s function G(0)

ω (k) in terms of its angular harmonics
eimθk . We first note that only two terms, α2(k · J̌ )2 and
α3

∑2
i=1 k2

i J̌ 2
i , in the numerator of the Green’s function given

by Eq. (9) depend on the angle of momentum θk . So by
substituting kx = k cos θk and ky = k sin θk inside these terms,
they can be written as

α2k2(eiθk J̌− + e−iθk J̌+)2, (A1)

α3k2
(
J2

x cos2 θk + J2
y sin2 θk

)
, (A2)

respectively, where J̌± = (J̌x ± iJ̌y)/2. Both of these ex-
pressions can be rewritten in terms of only three angular
harmonics eimθk with m = 0,±2, which implies the same
property for the whole numerator of the expression (9) for
G(0)

ω (k). Therefore, after some algebra we find

Ǧ(0)
ω (k) = Č0(k, ω) + e2iθk Č+(k) + e−2iθk Č−(k)

D , (A3)

in which

Č0(k, ω) =
[
ω − 5

2
β −

(
α1 + 5

8
α2 + 5

8
α3

)
k2

]
1̌

+
[
β −

(
α2 + α3

2

)
k2

]
J̌ 2

z , (A4)

Č+(k, ω) = (α2 + α3)J̌ 2
− + i

α3

4
{J̌x, J̌y}, (A5)

Č−(k, ω) = (α2 + α3)J̌ 2
+ − i

α3

4
{J̌x, J̌y}. (A6)

Accordingly, we can express the denominator, which has been
given by (10) in terms of three angular harmonics correspond-
ing to m = 0,±4, as D = D0(k, ω) − D1(k) cos(4θk ) with

D0(k, ω) = [ω − εk,+][ω − εk,−], (A7)

εk,± = 5β

4
+ k2

[
α1 + 5

4
(α2 + α3)

]
±

√
�k, (A8)

�k =
[
β − k2

2
(α2 + α3)

]2

+ 3

4
k4

(
α2

2 + α2
3

2
+ α2α3

)
, (A9)

D1(k) = 3

8
α3(2α2 + α3)k4. (A10)

To find the corresponding expansion coefficients ǧ(0)
m (k, ω),

we first expand the prefactor 1/D in terms of eimθk as the
following:

1

D = 1

D0

∞∑
n=0

n∑
m=−n

(
n

n+m
2

)(D1

D0

)n

e4imθk

=
∞∑

m=−∞
e4imθk

∞∑
n=|m|

(
n

n+m
2

) Dn
1

Dn+1
0

. (A11)

The second line of the above equation has been obtained by in-
terchanging the order of two summation variables. Using this
expression, we find the nonvanishing expansion coefficients
of the Green’s function for any integer m as

ǧ(0)
4m(k, ω) =

∞∑
n=|m|

(
n

n+m
2

) Dn
1

Dn+1
0

Č0(k, ω),

ǧ(0)
4m+2(k, ω) =

∞∑
n=|m|

(
n

n+m
2

) Dn
1

Dn+1
0

Č+(k, ω)

+
∞∑

n=|m+1|

(
n

n+m+1
2

) Dn
1

Dn+1
0

Č−(k, ω), (A12)

in which (
n

m

)
= n!

(n − m)!m!
(A13)

denotes the binomial coefficient.
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