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Excitation of localized graphene plasmons by a metallic slit
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In this paper we show that graphene surface plasmons can be excited when an electromagnetic wave packet
impinges on a single metal slit covered with graphene. The excitation of the plasmons localized over the slit
is revealed by characteristic peaks in the absorption spectrum. It is shown that the position of the peaks can be
tuned either by the graphene doping level or by the dielectric function of the material filling the slit. The whole
system forms the basis for a plasmonic sensor when the slit is filled with an analyte.
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I. INTRODUCTION

The diffraction of electromagnetic (EM) waves on metallic
structures gives rise to a series of interesting phenomena,
such as the Wood and Rayleigh anomalies [1,2] and the
extraordinary optical transmission [3]. Theoretical models for
these phenomena have been elaborated by modeling the metal
as a perfect electric conductor (PEC), as in Refs. [4–6]. One of
the fundamental problems in the nano-optics is the diffraction
of light on a single slit of subwavelength width perforated in
a metal. This kind of diffraction is accompanied by a series of
effects such as funneling of the EM energy into the slit [7,8]
and field enhancement inside it [7], Fabri-Pérot resonances
across the metallic film [9–11], transmittance oscillations
with an incidence angle variation in the geometrical optics
limit [12] and its absence in the subwavelength limit [11], and
the sensitivity of the transmittance resonance frequencies to
the refractive index of the material inside the slit [11].

Consideration of the light diffraction on a single slit in real
metals [13–15], with surface capable of supporting surface
plasmon polaritons (SPPs) enriches considerably the physics
of the diffraction phenomena [16]. Nevertheless, SPPs in
noble metals suffer from relatively high losses in the visible
light wavelength, which considerably shorten their mean free
path. One of the ways to overcome this difficulty is to use
graphene plasmons that can be combined with other materials
in order to modify SPP’s properties [17–22].

As is well known, SPPs in graphene possess both a large
lifetime and a high degree of field confinement [23,24]. This
property implies the advantage of using some kind of hy-
brid metal-graphene structures, where graphene sustains the
propagation of SPPs, while PEC modifies their dispersion
properties. For example, screening of graphene SPPs by a
perfect [25–27] or dispersive (Drude) [28] metal adjacent to it
leads to the formation of acoustic SPPs with linear spectrum.
Moreover, in such kind of structures SPP’s group velocity
is quite low compared to polaritons in graphene on a thick
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dielectric substrate since high wave vectors correspond to
relatively low frequencies in the SPP dispersion relation. The
latter means that graphene’s conductivity exhibits its nonlocal
properties in the THz frequency range and, therefore, gives
rise to the nonlocal SPPs [29–32]. Simultaneously, graphene’s
conductivity (and, consequently, the dispersion properties of
SPPs) can be effectively controlled by changing the applied
gate voltage [33], which allows one to achieve the dynamical
tunability of the resonant frequency in the graphene-based
structures [34–38]. Being combined with a metallic grating,
a variation of gate voltage permits us to control spoof plas-
mons [39].

Since the dispersion properties of SPPs are extremely
sensitive to the dielectric constant of the surrounding medium,
plasmonics structures are widely used for molecular and
biosensing [40]. The use of graphene in plasmonic biosen-
sors [41,42] has an additional advantage, since the above-
mentioned tunability of the plasmonic resonance frequency
allows for us to achieve it in the spectral range where the
strength of the characteristic molecular signal is the high-
est [43].

Monochromatic plane waves are idealizations that, strictly
speaking, never occur in reality. The electromagnetic wave
that impinges on the plasmonic structure and couples to SPPs
(if the necessary conditions are fulfilled [17]), generally is
a wave packet, i.e., a superposition of plane waves with
close but unequal frequencies and wave vectors, which may
represent either a pulse or a focused beam [44]. In the present
paper, we consider the diffraction of a localized wave packet
(focused beam) on a single rectangular slit in a PEC film,
which is covered by a graphene sheet encapsulated (that is,
cladded) by two hBN layers at one side and open on the other
side (see Fig. 1). We demonstrate that an electromagnetic
wave constituting the packet, when diffracted by the slit edges,
excites a standing wave of SPPs in graphene at a series of
resonant frequencies, which are determined by the graphene
doping. At these resonance frequencies, the slit width contains
an integer number of SPP wavelengths. Excitation of the
polaritons yields a series of absorption peaks in the spectrum
and these resonant frequencies turn out to be very sensitive to
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FIG. 1. Single slit (yellow) in the metal film (pink), covered with
hBN-encapsulated graphene layer. Also shown are the coordinate
axes and the proposed scheme for the obtaining of focused beam by
means of diaphragm and cylindric lens.

the dielectric constant of the dielectric material filling the slit,
as will be demonstrated by our calculated results.

The paper is organized as follows. In Sec. II we present the
solution of Maxwell’s equations in the structure and derive the
equations for the amplitudes of the eigenmodes. Section III is
devoted to the diffraction of the wave packet on the graphene
monolayer suspended on top of the slit. In Sec. IV we describe
the features of the wave packet’s diffraction on the slit covered
by an hBN—graphene—an hBN layered structure as well as
its potential application in sensing. Conclusion are presented
in Sec. V.

II. PROBLEM STATEMENT AND MAIN EQUATIONS

A. Structure

We consider a graphene monolayer, located at the plane
z = 0 and deposited on top of a hBN layer of thickness dBN

that occupies the spatial domain 0 < z < dBN. The graphene
sheet is covered by another hBN layer of the same thickness
(−dBN < z < 0). The lower hBN layer is deposited on top of
the PEC film of thickness d (see Fig. 1) with the surfaces
located at z = dBN and z = dBN + d . The PEC film contains
the single rectangular slit of width W (−W/2 < x < W/2),
filled with a dielectric with the permittivity ε. We consider
the incident wave packet propagating in the positive z-axis
direction, localized in the x direction and impinging on the
uppermost hBN layer at normal incidence. Furthermore, it
is essential that the wave packet is described by an even
amplitude function of x with respect to the vertical symmetry
plane x = 0. To simplify the calculations, we shall consider
the wave packet of a constant amplitude within a certain range
of kx, |kx| � kc, where kc � ω/c, ω is the frequency, and c is
the velocity of light in vacuum.

B. Maxwell equations and their solutions

Since the system under consideration is homogeneous in
the direction y (i.e., ∂/∂y ≡ 0), the Maxwell equations can
be decoupled into two subsystems, which govern TM- and
TE-polarized waves. In the following we will consider the
case of TM-polarized waves only, which have the field compo-
nents E = (Ex, 0, Ez ) and H = (0, Hy, 0). Assuming the EM
field time dependence as E, H ∼ exp (−iωt ), we represent the
Maxwell equations for the TM-polarized wave as

∂E (m)
x

∂z
− ∂E (m)

z

∂x
= iω

c
H (m)

y ,

−∂H (m)
y

∂z
= − iω

c
ε(m)

xx E (m)
x ,

∂H (m)
y

∂x
= − iω

c
ε(m)

zz E (m)
z .

(1)

The superscripts m = 1, 2, 3, 4, 5 correspond to the spatial
domains z < −dBN, −dBN < z < 0, 0 < z < dBN, dBN < z <

dBN+d , and z > dBN+d , respectively. The reason for such
separation of the whole space into domains is that inside
each domain the dielectric permittivity is homogeneous and
generally is described by the diagonal tensor, in the coordinate
frame of Fig. 1:

ε̂(m) =
⎛
⎝ε(m)

xx 0 0
0 ε(m)

xx 0
0 0 ε(m)

zz

⎞
⎠.

In fact, in the isotropic media the tensor components are
the same, for m = 1 and m = 5 (vacuum) equal to unity,
ε(1)

xx = ε(1)
zz = ε(5)

xx = ε(5)
zz = 1, and for m = 4 (isotropic dielec-

tric) ε(4)
xx = ε(4)

zz = ε. The hexagonal boron nitride (spatial
domains m = 2, 3) is a uniaxial crystal with unequal tensor
components in plane and out of plane, with the frequency
dependence due to the polar optical phonon response given by

ε(2,3)
xx (ω) = ε⊥

∞

(
1 + ω⊥

LO
2 − ω⊥

TO
2

ω⊥
TO

2 − ω2 − iω�⊥
TO

)
,

ε(2,3)
zz (ω) = ε||

∞

(
1 + ω

||
LO

2 − ω
||
TO

2

ω
||
TO

2 − ω2 − iω�
||
TO

)
,

(2)

where the transverse (TO) and longitudinal (LO)
optical-phonon frequencies for in-plane (out of plane) modes
and the corresponding damping parameters � are designated
by the symbol ⊥ (||) and their numerical values are (in
cm−1) [45] ω⊥

TO = 1370, ω⊥
LO = 1610, �⊥

TO = 5; ω
||
TO =

780, ω
||
LO = 830, �⊥

TO = 4. The high-frequency dielectric
constants are ε⊥

∞ = 4.87, ε
||
∞ = 2.95.

Since both the geometry of the structure and the considered
wave packet are symmetric with respect to the plane x = 0, we
can seek the solution of the Maxwell equations (1) in the form
of Fourier integrals over kx > 0,

H (m)
y (x, z) =

∫ ∞

0
dkx h(m)

y (kx, z) cos (kxx),

E (m)
x (x, z) =

∫ ∞

0
dkx e(m)

x (kx, z) cos (kxx),

(3)
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where h(m)
y (kx, z) and e(m)

x (kx, z) are the amplitudes of the kxth
harmonics of the tangential components of the magnetic and
electric fields, respectively.

In the semi-infinite medium m = 1, the solution of the
Maxwell equations can be represented in the matrix form as(

h(1)
y (kx, z)

e(1)
x (kx, z)

)

= F̂ (1)
kx

·
(H(i)

y �(kc − kx ) exp[ip(1)(kx )(z + dBN)]

hr (kx ) exp[−ip(1)(kx )(z + dBN)]

)
. (4)

Here

F̂ (1)
kx

=
(

1 1
c
ω

p(1)(kx ) − c
ω

p(1)(kx )

)

is the field matrix, p(1)(kx ) =
√

(ω/c)2 − k2
x is the wave vec-

tor’s z component, and �(kc − kx ) is the Heaviside function.
For each line in Eq. (4), if written explicitly, the first term
stands for the incident wave packet with the amplitude H(i)

y
and the cutoff in-plane wave vector kc < ω/c, which prop-
agates in the positive direction of the z axis. Owing to this

restriction, all waves constituting the incident wave packet
have real z components of the wave vector. The second term
for each line in Eq. (4) is the reflected wave, whose harmonics
[with amplitudes hr (kx )] can be either propagating in the
negative direction of the z axis (when kx < ω/c) or evanescent
(when kx > ω/c) waves. Notice that the sign in the exponent
for the evanescent waves is chosen to exclude the harmonics
which grows at z → −∞. At the same time, in the other semi-
infinite spatial domain, z > d + dBN (m = 5), the spectrum
consists of transmitted waves only, with p(5)(kx ) ≡ p(1)(kx )],(

h(5)
y (kx, z)

e(5)
x (kx, z)

)
=

(
1

c
ω

p(5)(kx )

)
ht (kx )

× exp[ip(5)(kx )(z − dBN − d )]. (5)

Again, these transmitted harmonics with amplitudes ht (kx )
can be either propagating in the positive direction of the z axis
or evanescent, decaying for z → +∞.

In the finite spatial domain −dBN < z < 0 (medium m =
2) the electromagnetic fields will be represented by means of
the transfer matrix [46],

Q̂(2)
kx,z

=
⎛
⎝cos[p(2)(kx )(z + dBN)] iω

c
ε(2)

xx
p(2) (kx ) sin[p(2)(kx )(z + dBN)]

ic
ω

p(2) (kx )
ε

(2)
xx

sin[p(2)(kx )(z + dBN)] cos[p(2)(kx )(z + dBN)]

⎞
⎠,

as (
h(2)

y (kx, z)

e(2)
x (kx, z)

)
= Q̂(2)

kx,z

(
h(2)

y (kx,−dBN)

e(2)
x (kx,−dBN)

)
. (6)

Here p(2)(kx ) =
√

(ω/c)2ε(2)
xx − k2

x (ε(2)
xx /ε(2)

zz ), which is the
effective z component of the wave vector in a uniaxial
medium [47]. In Eq. (6), we represented the fields in the
hBN substrate using values h(2)

y (kx,−dBN) and e(2)
x (kx,−dBN)

(the EM field tangential components at z = −dBN) as free
parameters. This situation is distinct from the case of semi-
infinite vacuum [see Eq. (4)], where the amplitudes of
the reflected waves were used as free parameters. These free
parameters will be eliminated by matching the fields at the
interfaces.

In the medium m = 3 (spatial domain 0 < z < dBN) the
field structure is similar to that of Eq. (6) with the following
replacement: p(2) → p(3) (as a matter of fact, they are the
same, i.e., p(3) = p(2)), ε(2)

xx → ε(3)
xx , ε(2)

zz → ε(3)
zz , and(

h(2)
y (kx,−dBN)

e(2)
x (kx,−dBN)

)
→

(
h(3)

y (kx, 0)
e(3)

x (kx, 0)

)
.

In other words,(
h(3)

y (kx, z)
e(3)

x (kx, z)

)
= Q̂(3)

kx,z

(
h(3)

y (kx, 0)
e(3)

x (kx, 0)

)
, (7)

where the transfer matrix is given by

Q̂(3)
kx,z

=
⎛
⎝cos[p(3)(kx )z] iω

c
ε(3)

xx
p(3) (kx ) sin[p(3)(kx )z]

ic
ω

p(3) (kx )
ε

(3)
xx

sin[p(3)(kx )z] cos[p(3)(kx )z]

⎞
⎠.

In the medium m = 4 the situation is quite different be-
cause the finite width of this domain in the x direction
imposes an additional boundary condition on the slit borders
x = ±W/2, namely the vanishing tangential component of the
electric field E (4)

z (±W/2, z) = 0. The solution of the Maxwell
equations satisfying these conditions can be expressed as
follows:

E (4)
x (x, z) = iW

∞∑
n=0

νn cos

[
nπ

W

(
x + W

2

)]

×{A(+)
n exp[iνn(z − dBN)]

− A(−)
n exp[−iνn(z − dBN)]}, (8)

H (4)
y (x, z) = iωε

c
W

∞∑
n=0

cos

[
nπ

W

(
x + W

2

)]

×{A(+)
n exp[iνn(z − dBN)]

+ A(−)
n exp[−iνn(z − dBN)]}, (9)

E (4)
z (x, z) =

∞∑
n=0

nπ sin

[
nπ

W

(
x + W

2

)]

×{A(+)
n exp[iνn(z − dBN)]

+ A(−)
n exp[−iνn(z − dBN)]}, (10)

where νn =
√

( ω
c )2ε − ( nπ

W )2.
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C. Boundary conditions

The problem in course includes four boundaries between
aforementioned spatial domains, at which the fields in the
neighboring domains are coupled by matching the boundary
conditions. At the surface of the upper hBN layer (z = −dBN,
boundary between spatial domains m = 1 and m = 2) the
tangential components of the electric and magnetic fields must
be continuous across the interface, i.e.,

e(2)
x (kx,−dBN) = e(1)

x (kx,−dBN),

h(2)
y (kx,−dBN) = h(1)

y (kx,−dBN).
(11)

At the interface between two hBN layers, where graphene
layer is arranged (z = 0, boundary between media m = 2
and m = 3) the electric-field tangential component is continu-
ous across the interface, while the magnetic field tangential
component is discontinuous due to the presence of two-
dimensional currents jx(kx, ω) in graphene,

e(2)
x (kx, 0) = e(3)

x (kx, 0),

h(3)
y (kx, 0) − h(2)

y (kx, 0) = −4π

c
jx(kx, ω).

Taking into account the Ohm law, jx(kx, ω) =
σ (kx, ω)e(2)

x (kx, 0) [where σ (kx, ω) is the conductivity of
the graphene, which in the general case will be considered
nonlocal [31], i.e., dependent upon the in-plane wave vector
kx ], the boundary conditions can be expressed in the matrix
form, (

h(3)
y (kx, 0)

e(3)
x (kx, 0)

)
= Q̂g

(
h(2)

y (kx, 0)

e(2)
x (kx, 0)

)
(12)

with the matrix

Q̂(g)
kx

=
(

1 − 4π
c σ (kx, ω)

0 1

)
.

At the surfaces of the PEC film z = dBN and z = dBN + d
(boundaries between the media m = 3, 4 and m = 4, 5, re-
spectively) the situation is more complicated. The tangential
component of the magnetic field is continuous across the
interfaces over the slit area,

H (3)
y (x, dBN) = H (4)

y (x, dBN), −W

2
� x � W

2
,

H (5)
y (x, dBN + d ) = H (4)

y (x, dBN + d ), −W

2
� x � W

2
.

(13)

The tangential component of the electric field also has to be
continuous across the interfaces at the slit area and should
vanish beyond the slit because the metal is assumed perfect.
Therefore, boundary conditions can be expressed by the for-
mulas

E (3)
x (x, dBN) =

{
E (4)

x (x, dBN), −W
2 � x � W

2
0, otherwise

,

E (5)
x (x, dBN + d ) =

{
E (4)

x (x, dBN + d ), −W
2 � x � W

2
0, otherwise

.

(14)

It should be pointed out that, due to the fact that we use
different bases of eigenfunctions in medium m = 4 and in me-
dia m = 3 and m = 5, the boundary conditions (13) and (14)
cannot be written in the same way as at boundaries z = 0 and
z = −dBN where they could be expressed separately for each
spatial harmonic, e(m)

x (kx, z) and h(m)
y (kx, z). Equations (13)

and (14) involve the total fields in each point x, E (m)
x (x, z),

H (m)
y (x, z), and involve all kx harmonics. In other words,

these relations are integral equations. However, they can be
discretized using the specific form of the fields inside the slit,
Eqs. (8) and (9).

D. Amplitudes of the eigenmodes inside the slit

Applying consequently boundary conditions (11) and (12)
[jointly with expressions (4)–(7) for the fields in media m =
1, 2, 3] one can obtain expressions for the electromagnetic
field tangential components of each harmonic as(

h(3)
y (kx, dBN)

e(3)
x (kx, dBN)

)
= F̂ (tot)

kx

(
H(i)

y �(kc − kx )
hr (kx )

)
, (15)

where the total field matrix F̂ (tot)
kx

composed from the transfer
matrices of media m = 2, 3, boundary condition matrix across
the graphene, and the field matrix in medium m = 1 is

F̂ (tot)
kx

= Q̂(3)
kx,dBN

Q̂gQ̂(2)
kx,0

F̂ (1)
kx

. (16)

Substituting Eqs. (5), (8), (9), and (15) into boundary
conditions (13) and (14) and using orthogonality relations
between the x dependence of the fields in the slit, Eqs. (8)
and (9), and the kx harmonics [48], it is possible to ob-
tain equations for the amplitudes of forward- and backward-
propagating modes inside the slit, A(+)

2n and A(−)
2n :

W

2

iωε

c
(1 + δn′,0)[A(+)

2n′ + A(−)
2n′ ]

− i
W 2

2π

∞∑
n=0

ν2n[A(+)
2n − A(−)

2n ]Ĩ2n′,2n(ω)

= −2
c

ω
H(i)

y

∫ ∞

0
dkx P2n′ ||kx �(kc − kx )

p(1)(kx )

[F̂ (tot)
kx

]22

; (17)

ε

2
(1 + δn′,0) × [A(+)

2n′ exp(iν2n′d ) + A(−)
2n′ exp(−iν2n′d )]

− W

2π

∞∑
n=0

ν2nI2n′,2n(ω)

× [A(+)
2n exp (iν2nd ) − A(−)

2n exp (−iν2nd )] = 0 , (18)

where

P2n′ ||kx = 2

W

∫ W/2

0
dx cos

[
2n′π
W

(
x + W

2

)]
cos [kxx]

= 2

W

kx sin
[
kx

W
2

]
k2

x − (
2n′π
W

)2 , (19)

Ĩ2n′,2n(ω) = 2
∫ ∞

0
dkxP2n′ ||kxP2n||kx

[
F̂ (tot)

kx

]
12[

F̂ (tot)
kx

]
22
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and

I2n′,2n(ω) = 2
∫ ∞

0
dkx

P2n′||kxP2n||kx

p(5)(kx )
.

The system of equations (17) and (18) was solved by
truncating it to a sufficiently large order, n and checking the
convergence. Once the amplitudes A(±)

2n have been found, the
observable properties such as reflectance and transmittance
are calculated in a straightforward way [48].

III. SUSPENDED GRAPHENE

In order to clarify the influence of the graphene sheet on
the transmittance and reflectance of the structure of Fig. 1 we
consider first the situation where the slit is not filled (ε = 1)
and both hBN layers are absent. In other words, the graphene
layer is deposited directly on the metal film and is suspended
at the area of the slit. Equations describing this case can be
obtained from general ones, Eqs. (17) and (18), by setting
equal to zero the thickness of both hBN layers, dBN = 0. Then
total field matrix (16) is written in a simpler form, namely,

F̂ (tot)
kx

= Q̂gF̂ (1)
kx

=
(

1 − 4π
ω

σ (kx, ω)p(1)(kx ) 1 + 4π
ω

σ (kx, ω)p(1)(kx )
c
ω

p(1)(kx ) − c
ω

p(1)(kx )

)
.

As a consequence, Eq. (17) can be rewritten as

W

2

iωε

c
(1 + δn′,0)[A(+)

2n′ + A(−)
2n′ ]

+ i
W 2

2π

ω

c

∞∑
n=0

ν2n[A(+)
2n − A(−)

2n ]J2n′,2n(ω)

= (−1)n
2H(i)

y

W

[
Si

(
kcW

2
+ n′π

)
+ Si

(
kcW

2
− n′π

)]
,

(20)

where

J2n′,2n(ω) = 2
∫ ∞

0
dkx

P2n′ ||kxP2n||kx

p(1)(kx )

×
[

1 + 4π

ω
σ (kx, ω)p(1)(kx )

]
,

and Si(x) is the integral sine function. As a result, the system
with suspended graphene is described by Eqs. (18) and (20)
with ε = 1. Notice that when the graphene is considered
within the local approximation (neglecting spatial dispersion
of the conductivity), integrals I2n′,2n(ω) and J2n′,2n(ω) can be
calculated semianalytically [48], which considerably reduces
the time of numerical calculation.

The spatial shape of the incoming wave packet can be
obtained from Eqs. (3) and (4) and expressed in the form

H (i)
y (x, 0) = H(i)

y

sin (kcx)

x
. (21)

This dependence is depicted in Fig. 2(a). It can be seen that
a larger spectral width kc (solid line) corresponds to a more
focused beam in real space. The respective width of the wave
packet in real space � = 2π/kc can be obtained from Eq. (21)

FIG. 2. (a) Examples of spatial shape of the incident wave
packet H (i)

y (x, 0) for λ = 5 μm and two values of the spectral width,
ckc/ω = 1 (solid line) and ckc/ω = 0.1 (dashed line); (b),(c) re-
flectance R (b) and transmittance T (c) of graphene monolayer
suspended over the slit for two values of the wave-packet spectral
width: ckc/ω = 1 (solid lines) and ckc/ω = 0.1 (dashed lines). Other
parameters of the structure are d = 100 nm, W = 1.5 μm, γ =
7.5 meV, EF = 0 eV (blue lines), EF = 0.3 eV (green lines).

by using the condition H (i)
y (±�/2, 0) = 0. As a consequence,

the narrower beam (with larger kc) exhibits a lower reflectance
R and a higher transmittance T [compare dashed and solid
lines in Figs. 2(b) and 2(c)], because a larger fraction of the in-
cident wave’s energy flux penetrates the slit, thus avoiding the
diffraction on its edges. In Fig. 2 and throughout the reminder
of the paper we represent wave packet’s frequency ω in terms
of the corresponding wavelength in the vacuum, λ = 2πc/ω.
Also, in all figures we will assume that the relation between
kc and the wave vector ω/c is fixed for each frequency, i.e.,
the value ξ = λkc/(2π ) is kept constant. Therefore, the wave
packet’s width in real space depends upon the wavelength as
� = λ/ξ . In the situation of the bare slit [EF = 0, blue lines
in Figs. 2(b) and 2(c)] an increase of the wavelength λ leads
to a growth of the reflectance R [see Fig. 2(b)] and a decrease
of the transmittance T [see Fig. 2(c)]. This phenomenon can
be accounted for by the essentially subwavelength character
of the wave-packet diffraction. In fact, in the frequency range
of Fig. 2 all the wavelengths of the wave packet are larger
than the slit width. At the same time, for a larger ratio
between the wavelength and the slit width, the presence of the
slit exerts less influence on the diffraction process, thus the
reflectance becomes more like that from a homogeneous PEC
film, i.e., it increases to unity with the simultaneous decrease
of the transmittance. When the slit is covered by doped
graphene [EF = 0.3 eV, green lines in Figs. 2(b) and 2(c)],
the aforementioned growth of the reflectance and decrease of
the transmittance is nonmonotonic, demonstrating a series of
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FIG. 3. Absorbance A vs wavelength λ, and spectral width of
the wave packet kc (left bottom panel) for doped graphene with
EF = 0.3 eV suspended on top of the slit. The top panel shows the
absorbance for two fixed values of the spectral width, ckc/ω = 0.1
(dashed line, the dependence is taken along the corresponding dashed
horizontal line in the left bottom panel) and ckc/ω = 1 (solid line,
the dependence is taken along the upper edge of the left bottom
panel). Right bottom panel shows the absorbance (horizontal axis)
vs spectral width (vertical axis) for two fixed values of wavelength
λ = 20 μm (dashed-and-dotted line) and λ = 25 μm (dashed-and-
double-dotted line). These dependencies are taken along the corre-
spondent vertical dashed-and-dotted and dashed-and-double-dotted
lines in the left bottom panel. The other parameters are the same as
in Fig. 2.

local minima. One of these minima of the reflectance near
λ ≈ 55 μm (and the corresponding maximum of the transmit-
tance) takes place owing to the Drude absorbance in graphene.
At the same time, other reflectance minima below λ � 20 μm
are due to excitation of SPPs in graphene, as it will be
shown below.

Quite interesting are the absorption spectra of the consid-
ered structure. As can be seen from the top panel of Fig. 3,
the absorbance, A = 1 − R − T , is high at the wavelengths
corresponding to the reflectance and transmittance minima.
Furthermore, a larger spectral width of the incident wave
packet (kc) increases absorbance [see right bottom panel in
Fig. 3], because the wave packet becomes narrower in real
space, and the larger part of the incoming power interacts with
the suspended graphene. Also, the larger spectral width of
the incident wave packet makes these absorbance peaks more
pronounced [see left bottom panels of Fig. 3], while their po-
sitions (wavelengths λ) are not affected. At the same time, the
positions of the absorption peaks are strongly influenced by
the graphene’s Fermi energy [see Fig. 4(a)]. This fact resem-
bles the crucial property of graphene SPPs whose dispersion
curve ω(kx ) scales with the Fermi energy approximately as
ω ∝ √

kxEF for small kx. A more detailed analysis leads to
the following expression for the characteristic frequencies of

FIG. 4. (a) Absorbance A (depicted by color map) vs wavelength
λ and graphene’s Fermi energy EF ; (b) amplitude of the electric
field of the reflected wave harmonics |cp(1)(kx )hr (kx )/ω| vs the
wavelength and the wave vector kx for the fixed Fermi energy EF =
0.3 eV. In all panels ckc/ω = 0.5, while other parameters are the
same as in Fig. 2. Solid white lines [superimposed on the color
map in (a)] demonstrate the SPP eigenmodes with the wave vectors
k(n)

x = 2nπ/W (n = 1, 2, 3, from right to left); the same wave vectors
are depicted in (b) by white dashed horizontal lines.

the SPP eigenmodes:

ωn =
√

2αEF

h̄

×
⎛
⎝

√
1 +

(
2nπ h̄c

αEFW

)2

− 1

⎞
⎠

1/2

,

(22)

where n = 1, 2, 3 . . . and α stands for the fine-structure con-
stant. Note that Eq. (22) yields the above-mentioned square-
root dependence upon the SPP eigenmode wave vector, k(n)

x =
2πn/W , if k(n)

x c � αEF . These modes (represented in terms
of λn = 2πc/ωn) are depicted as the white solid lines in
Fig. 4(a). The polaritonic character of the absorption peaks
is confirmed by the fact that the spectral positions of the
absorbance maxima coincide with the graphene SPP eigen-
modes. [49] Moreover, the modulus of the electric field of
the reflected wave harmonics [depicted in Fig. 4(b)] has
its maxima near the resonance frequencies ωn [Eq. (22)].
The associated wave vectors k(n)

x [horizonal dashed lines in
Fig. 4(b)] correspond to the symmetric spatial profiles of the
tangential components of the eigenmode’s electromagnetic
field inside the slit [see Eqs. (8) and (9)]. In other words, when
the incident wave packet’s frequency coincides with that of an
SPP eigenmode with the wave vector k(n)

x = 2πn/W , the wave
packet, being diffracted on the slit, resonantly excites SPPs in
graphene. The magnitude of these resonant features decreases
with n as it can be seen from Eq. (20) where the right-hand
side tends to zero for large n′. Such a polariton, owing to
multiple reflections from the slit edges, forms a standing wave
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FIG. 5. Reflectance (a), transmittance (b), and absorbance (c) of
(i) suspended graphene layer (dashed green lines) and (ii) graphene
layer cladded by two hBN layers with thicknesses dBN = 1 nm (solid
red lines). In both cases EF = 0.3 eV and the incident wave packet
is characterized by the spectral width ckc/ω = 0.5. Other parameters
are the same as in Fig. 2.

in the suspended graphene with the nodes of its electric field
(x component) at the edges of the slit. This resonant excitation
leads to the transformation of incident wave packet’s energy
into the energy of the SPP standing wave; this phenomenon
gives rise to the resonant absorption. Qualitatively, the
situation here is similar to the light absorption in a structure
composed of nonabsorbing nanoparticles (NPs) deposited on
a homogeneous graphene sheet, where the symmetry break-
ing caused by the NPs induces surface plasmon polaritons
and originates absorption of propagating EM waves due to
energy dissipation by the graphene plasmons [50]. Indeed, the
absorbance spectra of Fig. 2 show a similarity to that of the
“graphene + NPs” system [50], although here we observe not
just the lowest energy (longest wavelength) absorption peak
but also its overtones according to Eq. (22).

IV. EFFECT OF THE SUBSTRATE

The essential physics behind the optical properties of the
graphene-covered slit has been established in the previous
section and now we may address a further question: How will
the results change if the graphene is not deposited directly
on the metal film but rather cladded by two hBN layers
as depicted in Fig. 1? To answer this question, in Fig. 5
we present a comparison of the reflectance, transmittance,
and absorbance of the suspended (dashed green lines) and
hBN-encapsulated graphene (solid red lines) [51] Results for
the hBN-encapsulated graphene were obtained by solving
the system of equations (17) and (18) employing numerical
integration of Ĩ2n′,2n(ω). As can be seen from the comparison
of the dashed and solid lines in Fig. 5, the presence of
hBN leads to the small shift of the positions of the SPP
absorbance maxima, and the appearance of two additional

FIG. 6. (a) Absorbance A vs wavelength λ and Fermi energy EF

for the slit filled by a dielectric with ε = 3.9; (b) absorbance vs
wavelength and refractive index ε1/2 for the graphene Fermi energy
EF = 0.3 eV. In both panels ckc/ω = 0.5 and all other parameters
are the same as in Fig. 2.

maxima (nearby λ ≈ 7.3 μm and λ ≈ 12 μm) due to the
excitation of optical phonons in the hBN cladding layers.

One of the crucial properties of SPPs is the strong sen-
sitivity of their dispersion to the dielectric constants of the
surrounding media, which should also apply to the dielectric
filling the slit in the present case. Therefore, Fig. 6(a) presents
the absorbance of the graphene layer deposited over the slit
filled by a material with the dielectric constant ε = 3.9. As
it follows from the comparison of Figs. 6(a) and 4(a), the
presence of the dielectric inside the slit results in a redshift
of the plasmonic absorption peaks. In more detail this phe-
nomenon is demonstrated in Fig. 6(b). As it can be seen
from this plot, there is an almost linear dependence of the
plasmonic absorption peak positions upon the refractive index
ε1/2. Even more, when the refractive index is changed in
the limits between 1 and 2, the plasmonic absorption peak
wavelength is shifted by ∼ 5 μm.

This phenomenon can be used in plasmonic sensors. The
advantage of the graphene-based plasmonic sensor is an ad-
ditional degree of its dynamical tunability. Thus, if a source
of electromagnetic radiation with a fixed wavelength is used,
then the position of the plasmonic absorption peak can be
tuned to the desired wavelength by adjusting the graphene’s
Fermi energy and its value can provide information about the
dielectric constant of the medium that fills the slit.

V. CONCLUSION

To conclude, we considered the diffraction of the spatially
localized wave packet on the single slit in a perfect metallic
film covered by monolayer graphene. We have shown that
this geometry is suitable for the excitation of surface plasmon
polaritons in graphene. The diffraction of the wave packet
on the slit is accompanied by the excitation of the polariton
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standing wave, for which the vertical edges of the slit in
the PEC serve as a cavity. The resonance condition for the
excitation of such standing waves can be expressed in the
following manner: the excitation of SPPs takes place for a
given frequency of the incident wave packet ω, if the slit width
contains an integer number of the polariton wavelengths, λ =
2π/kx, where kx is the SPP wave vector for the frequency ω.

The excitation of SPPs is manifested by the appearance of
the peaks in the absorbance spectrum. These features become
detectable if the wave packet is sufficiently narrow in real
space (that is, for ckc/ω ∼ 1) as shown in Fig. 2. We believe
that such a wave packet can be obtained from a Gaussian
beam by using a cylindrical lens located in the far field for
focusing the beam precisely onto the system’s surface and
a slit diaphragm eventually can be used to remove Gaussian
beam tails beyond the cut wave vector kc, which was not
considered here. We notice that in the case of other shapes of
the wave packet (as well as the monochromatic plane wave)
the results will be qualitatively the same. The positions of
the resonant absorption peaks can be effectively tuned by

the electrostatic gating of graphene. The resonant frequencies
are shown to be very sensitive to the refractive index of the
medium, which fills the slit. This phenomenon can be used for
environment sensing. The advantage of such a graphene-based
sensor is the possibility to tune (by the graphene gating) the
position of the absorption peaks to the spectral range where
the fingerprints of the molecules are the most intense, e.g.,
due to the presence of dipolar vibration modes.
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