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Persistent currents in topological and trivial confinement in silicene
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We consider states bound at the flip of the electric field in buckled silicene. Along the electric flip lines a
topological confinement is formed with the orientation of the charge current and the resulting magnetic dipole
moment determined by the valley index. We compare the topological confinement to the trivial one that is due to
a local reduction of the vertical electric field but without energy gap inversion. For the latter the valley does not
protect the orientation of the magnetic dipole moment from inversion by external magnetic field. We demonstrate
that the topologically confined states can couple and form extended bonding or antibonding orbitals with the
energy splitting influenced by the geometry and the external magnetic field.
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I. INTRODUCTION

A clean electrostatic confinement of charge carriers in
quantum dots provides an environment for precise studies
of localized states, energy spectra, coherence times [1], and
electron-electron interactions [2], as well as for manipula-
tion of the charge [3,4], spin [5], and valley [6] degrees
of freedom. In gapless graphene the carrier confinement by
electrostatic potentials is excluded by the Klein tunneling [7].
The electrostatic confinement becomes available when the
energy gap is opened by a vertical electric field—in bilayer
graphene [8–12] and in silicene [13,14]. Silicene is an atomic
monolayer graphene-like material [15–19] with a buckled [15]
crystal lattice. The spatial control of the energy gap by gating
allows for electrostatic confinement of charge carriers and
formation of quantum-dot bound states with discrete energy
spectra; see Refs. [6,20–23] for bilayer graphene and Ref. [24]
for silicene.

In both bilayer graphene and in silicene the energy gap
can be locally inverted by the flip of the electric field vector.
The flip of the vertical electric field forms a topological
confinement of chiral currents along the zero line of the
symmetry-breaking potential [25–28] with bands that appear
within the energy gap. For bilayer graphene this confinement
is also achieved at the stacking domain walls induced by line
defects [29,30] or twist of the layers [31,32]. In silicene [27]
and staggered monolayer graphene [28] the topological band
is single and linear as a function of the wave vector while
two nonlinear bands appear in bilayer graphene [25,26,28,29].
The reflectionless one-dimensional channels that appear with
the flip of the electric field [25–28,33] are similar to the
edge channels in the quantum Hall spin insulators [34–36],
only with the valley degree of freedom replacing the spin
in the protection mechanism against backscattering. Similar
confinement of unidirectional currents in the bulk of the
monolayer graphene is observed at n-p junctions but only at
strong magnetic fields [37–43].

Here, we consider quasi-zero-dimensional states localized
along closed lines of the flip of the vertical electric field in

buckled silicene. The states appear within a locally vanishing
energy gap. We find that the chiral nature of the confined
states is revealed by the direction of current circulation
around the zero lines that is strictly related to the valley
degree of freedom of the confined states. When the external
magnetic field is applied the sign of the energy response
depends only on the valley state. Similarly, the current in
the topological confinement cannot be reoriented for a given
state by the external magnetic field, unlike the persistent
currents [44,45] for metals [46,47], semiconductors [48–50],
or etched graphene [51–53] quantum rings. We compare the
results for the topological confinement with the trivial one
resulting from the spatial variation of the energy gap without
the inversion of the conductance and valence bands. For the
trivial confinement the external magnetic field can reorient
the current. In this respect the loops of current at the trivial
electrostatic confinement are similar to the ones flowing in
etched graphene quantum rings [51–54]. We show that the
topological confinement loops at separate zero lines form
extended orbitals as in double quantum dots [55].

II. THEORY

We consider a buckled silicene monolayer in an inhomo-
geneous electric field. We consider first the system with a
circular symmetry (see Fig. 1) with the potential bias between
the sublattices that changes along the radial direction. We set
the potential at the A sublattice

VA(r) = Vg[1 − 2 exp(−r4/R4)], (1)

and assume that for the silicene placed symmetrically be-
tween the gates the potential on the B sublattice is opposite
VB(r) = −VA(r). For the potential given by Eq. (1) the electric
field changes orientation at a distance r = ln(2)1/4R from
the origin. For the negative potential on the A sublattice in
the potential center the K (K ′) the electron currents flow
clockwise (counterclockwise) along the flip of the electric
field [33].
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FIG. 1. (a) Side view of the considered system. A buckled sil-
icene layer (green and red dots stand for the Si atoms at the B and
A sublattices, respectively) is embedded within a dielectric (gray
area) in a system of metal gates inducing negative (red) and positive
(blue) potential energy for electrons. The sublattice A (B) is closer
to the top gates (bottom gates). “obg” and “ibg” (“otg” and “itg”)
stand for outer and inner bottom (top) gates. Panel (b) shows the
top view of the system from the A-sublattice side. In (c) we plot
the model potential on the A (red) and B (green) sublattices for
the potential of a rotational symmetry [Eq. (1)] with r standing for
the distance from the origin, for Vg = 0.1 eV and R = 24 nm. The
potential on the B sublattice is opposite VB = −VA. The arrows in
(b) show the direction of the valley-polarized electron currents for
states confined at the electric field flip. The K ′ (K) electrons move
with the negative potential on the A sublattice on the left (right) hand
side, i.e., counterclockwise (clockwise).

A. Atomistic tight-binding Hamiltonian

The states in both circular and lower symmetry potentials
are also analyzed with the atomistic tight-binding Hamilto-
nian [17–19],

HTB = −t
∑
〈k,l〉

pkl c
†
kcl + itSOσz

∑
〈〈k,l〉〉

pklνkl c
†
kcl

+
∑

k

Vkc†
kck + gμBB

2
σz. (2)

The first sum describes the nearest-neighbor hopping. The
second sum is the atomistic form of the intrinsic spin-orbit
interaction [56] with νkl = ±1. The sign of νkl is positive
(negative) for the next-nearest-neighbor hopping via the com-
mon neighbor ion that turns counterclockwise (clockwise)
and pkl is the Peierls phase that introduces the magnetic

field pkl = ei e
h̄

∫ �rl
�rk

�A· �dl , where A is the vector potential. We
use the symmetric gauge A = (−By/2, Bx/2, 0) for the mag-
netic field perpendicular to the silicene lattice (0, 0, B). The
tight-binding nearest-neighbor hopping Hamiltonian is t =
1.6 eV [18,19], and tSO = 3.9 meV is the intrinsic spin-orbit
coupling constant [18,19]. The positions of the ions of the A
sublattice rA

k = k1a1 + k2a2 are generated with the crystal lat-

tice vectors a1 = a( 1
2 ,

√
3

2 , 0) and a2 = a(1, 0, 0), where a =
3.89 Å is the silicene lattice constant, and k1, k2 are integers.
The B sublattice ions are generated by rB

k = rA
k + (0, d, δ),

with the in-plane nearest-neighbor distance d = 2.25 Å, and

the vertical shift of the sublattices δ = 0.46 Å. In Eq. (2) Vk

is the electrostatic potential on ion k. The intrinsic spin-orbit
coupling is diagonal in the basis of σz eigenstates; therefore
the z component of the spin is used as a quantum number
below.

The Hamiltonian (2) can be rewritten in a compact form

HTB =
∑
k,l

hkl c
†
kcl , (3)

where the elements hkl are defined by Eq. (2). For the eigen-
function � of the atomistic Hamiltonian, with the value of �l

on ion l , the electron current flowing from ion l to ion k, as
derived [57] from the Schrödinger equation is

Jl j = i

h̄
(hl j�

∗
l � j − h jl�l�

∗
j ). (4)

For Hamiltonian eigenstates Eq. (4) provides the probability
current flow which is persistent as a characteristic property
of a stationary state. The persistent charge current for a given
stationary state has the opposite orientation to the probability
current. Since the intrinsic spin-orbit coupling is diagonal
in the σz spin component, the considered currents are spin
polarized in the perpendicular magnetic field. The considered
system does not contain short-range scatterers, so the currents
are also valley polarized, at least for magnetic fields for which
the valley degeneracy is lifted.

B. Continuum Hamiltonian

The continuum Hamiltonian is used to determine the val-
ley and angular momentum (when available) of the eigen-
states calculated in the atomistic approach. The continuum
Hamiltonian is a low-energy approximation to the atomistic
Hamiltonian. In the low-energy approximation the carriers are
described by a spinor wave function with components defined
on the A and B sublattices of the silicene crystal lattice ψ =
(ψA ψB)T . The low-energy approximation to the atomistic
tight-binding Hamiltonian [19] reads

Hη = h̄vF

(
0 kx + ηiky

kx − ηiky 0

)

+
(

VA(x, y) + ησztSO 0
0 VB(x, y) − ησztSO

)

+ gμBB

2
σzI, (5)

where η stands for the valley index (η = 1 for the K valley and
η = −1 for the K ′ valley), I is the identity matrix, and k =
−i∇ + e

h̄ A. In Eq. (5), vF = 3dt/2h̄ is the Fermi velocity.

C. Circular potentials

For circular potentials VA(x, y) = VA(r) the Hamiltonian
eigenfunctions can be labeled by an integer magnetic quantum
number m,

�m,η =
(

fA(r) exp(imφ)
fB(r) exp{exp[i(m − η)φ]}

)
, (6)

where fA(r) and fB(r) are the radial functions on the sub-
lattices. We take a circular flake of radius R = 60 nm. At
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FIG. 2. The electrostatic potential on the A sublattice and a mesh
of the triangular elements for the finite-element method (right square
equilateral triangles of leg length 5 nm) with potential given by
Eq. (1) with l = R = 24 nm. The vertical electric field vanishes
within the red area. A fragment of the computational box is dis-
played. In our implementation of the finite-element method the
solution in each triangle is spanned in the basis of 6 Lagrange shape
functions with the nodes on the corners of the triangle and in the
center of each side.

the edge of the flake we apply the zigzag boundary condi-
tions [58]. In order to avoid the fermion-doubling problem
we use an asymmetric finite-difference quotient for the first
derivative f ′ = f (r)− f (r−dr)

dr instead the symmetric one [58].
The Hamiltonian eigenequation with this quotient can be
transformed into a scheme that derives fA(r − dr) and fB(r −
dr) from fA(r) and fB(r),

fA(r − dr) = dr

ih̄vF

[
E − VB(r) + ηtSOσz − gμBB

2
σz

]
fB(r)

+
(

1 + drηm

r
+ eBrηdr

2h̄

)
fA(r), (7)

fB(r − dr) = dr

ih̄vF

[
E − VA(r) − ηtSOσz − gμBB

2
σz

]
fA(r)

+
(

1 − drη(m − η)

r
− eBrηdr

2h̄

)
fB(r). (8)

The energies of the bound states are determined by the
asymptotic condition to be fulfilled at the origin r = 0, which
requires that [58] fA and/or fB function vanish at the origin
when m �= 0 and/or m − η �= 0, respectively.

D. Noncircular potentials and a finite-element method

For coupled systems we perform calculations also for
lower symmetry potentials. We take the potential on the A
sublattice in the form

V (2)
A (r) = Vg

[
1 − 2e− [r−(l,0,0)]4

R4 − 2e− [r+(l,0,0)]4

R4
]
, (9)

where 2l is the distance between the centers of electric field
inversion loops. As above, the potential on the B sublat-
tice is taken opposite to the one at the A sublattice. The
potential profile on the A sublattice is displayed in Fig. 2.
In order to evaluate the eigenstates in the continuum ap-
proach we use Hamiltonian (5) in Cartesian coordinates and
the finite-element method with the triangular elements on
both sublattices and the shape functions in the form of the

second-degree Lagrange interpolation polynomials within
each of the elements [59]. The elements are right-angle isosce-
les triangles with a leg length of 5 nm. The side length of
a rectangular computational box is taken up to 180 nm. We
work with up to 3528 elements.

In order to deal with the fermion-doubling problem and
remove the spurious states from the low-energy spectrum [58]
we introduce the Wilson term [60] to the Hamiltonian

HD = −WD∇2τz, (10)

with the Wilson parameter WD = 36 meV nm2. This value
of the Wilson parameter removes the spurious states with
a negligible influence on the actual smooth solutions of the
Dirac equation.

III. RESULTS

A. Circular potential: Topological confinement

For the circular topological confinement we take the
potential given by Eq. (1) and take Vg = 0.1 eV with
R = 24 nm. The results are given in Fig. 3. Figure 3(a) shows
the results obtained with the atomistic tight-binding approach.
The color of the lines corresponds to the localization of
the wave function, i.e., the integral of the probability den-
sity within the area r ∈ (0.6R, 1.4R). Within the energy gap
opened for E ∈ (−Vg,Vg) we find a discrete energy spectrum.
All the states within the gap are localized near the zero line.

The energy levels form quadruplets at B = 0, or more
precisely, a pair of doublets split by the spin-orbit interaction
of a few meV. The dependence of the energy levels on the
magnetic field can be more easily explained using the results
of the continuum approach of Fig. 3(b). The energy levels
of the discrete part of the spectrum agree very well with the
results of the atomistic tight-binding approach [Fig. 3(a)]. The
continuum approach explicitly resolves the valley degree of
freedom. For the states that are not localized near the zero line,
with the energy outside the gap, the results differ, since the
energy levels are localized either outside a hexagonal silicene
flake (atomistic tight-binding) or near the edges of a circular
flake (continuum approach). The form of the boundary condi-
tion has no influence on the confined states which are kept off
the edge by the electrostatic potential [24].

In Fig. 3(b) we can see that the K ′ (K) energy levels
increase (decrease) with increasing B. In Figs. 3(d) and 3(e)
we display the probability density and probability density
current for the first positive-energy spin-down states of the
K and K ′ valleys. The results were obtained with the atom-
istic tight binding; in particular the current distribution was
calculated using Eq. (4). The arrows representing the currents
show the net currents calculated by summation of interatomic
currents on a square mesh of a side length of 2.7 nm. We
find that the current orientation depends only on the valley,
and that the current circulation in the K ′ (K) valley leaves
the negative (positive) potential on the left-hand side of the
current orientation in agreement with the nature of the chiral
confinement of the zero lines in silicene [33].

For quantitative analysis we define the current moment

χ = 1

2

∑
kl

rkl × Jkl |z, (11)
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FIG. 3. (a) The energy spectrum as calculated with the atomistic tight-binding approach. Color of the lines shows the localization of the
states within the band inversion area calculated by integration of the probability density within the annular area for r ∈ (0.6R, 1.4R). (b) The
spectrum as calculated with the finite-difference method. Color of the lines indicates the spin and valley of the states. The states with |m| � 16
are shown. (c) Zoom of (b) with the magnetic quantum numbers m for the A sublattice. Panels (d) and (e) show the probability density and the
probability current density for the first K (d) and K ′ (e) spin-down energy levels at E > 0.

where rkl = (rk + rl )/2 is the center of the bond between ion
k and ion l , and Jkl is the probability current flowing from
ion k to ion l as given by Eq. (4). χ is negative (positive) for
clockwise (counterclockwise) probability current flow. The
magnetic dipole moment has the opposite orientation to χ .

In Fig. 4(a) we plotted the values of χ for 20 energy levels
of Fig. 3(a) of the lowest absolute value of the energy. We
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FIG. 4. (a) The current moment as given by Eq. (11) plotted for
20 states of Fig. 3(a) with the smallest absolute values of the energy.
The red (black) dots correspond to the spin up (down) states. Panels
(b) and (c) show the zoom of the lower (higher) bands of panel (a).

can see that the χ values are nearly the same for all the states
of a fixed valley, i.e., the same current orientation, and a very
similar distribution of the currents is found for all the localized
states of a given valley. In Figs. 4(b) and 4(c) we display
the zoom of the parts of Fig. 4(a) that correspond to K and
K ′ valley states, respectively. Splitting of the current moment
with respect to the spin of the state can be resolved.

The change of the energy levels of Figs. 3(a) and 3(c) with
B is consistent with the classical formula for the interaction
of the magnetic dipole moment generated by the current
loop with the external magnetic field. The counterclockwise
probability current (χ > 0) in K ′ states produces a clockwise
charge current that generates the magnetic dipole moment
oriented to the −z direction, i.e., antiparallel to the external
magnetic field, hence the increase of the confined K ′ energy
levels with growing B. The orientation of the dipole moment
and the sign of the energy change is opposite for the K valley.

The structure of energy levels and the angular momentum
quantum numbers are presented in Fig. 3(c), which contains
a zoom of the continuum spectrum Fig. 3(b) for low absolute
value of the energy. We can see that all the energy levels of the
degenerate quadruplet have the same value of |m|. For the first
energy level at the positive energy side the angular momentum
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FIG. 5. (a) A trivial confinement potential given by Eq. (12)
without the inversion of the energy gap [compare with Fig. 1(b) for
the topological confinement]. (b), (d) The energy spectrum calculated
with the continuum model. Panel (b) is a zoom of panel (d). (c) The
results of the atomistic tight binding; same as Fig. 3(a) for the trivial
potential. The color scale shows the integral of the probability density
within the area r ∈ (0.6R, 1.4R).

quantum number m is equal to 0 for all four states. The m
values increase (decrease) by 1 for the K (K ′) valley when
one moves to quadruplets of increasing energy.

B. Circular potential: Trivial confinement

The properties of the states with topological confinement
can be compared to the ones found for the trivial one, which
appears at a local reduction of the energy gap. The trivial
confinement potential is taken as the absolute value of the one
given by Eq. (1),

V t
A(r) = |Vg[1 − 2 exp(−r4/R4)]|, (12)

with the potential on the B sublattice taken opposite V t
B(r) =

−V t
B (r). The same Vg and R as in Eq. (1) are adopted.

The potential is plotted in Fig. 5(a). The energy spectrum
calculated with the tight-binding approach is given Fig. 5(c).
For |E | > Vg a large number of delocalized energy levels are
observed. For |E | < Vg discrete energy levels appear that are

(a) (b) (c)

FIG. 6. Electron density on the A sublattice (color scale) and the
electron current (vectors) for the K ↓ state with m = 1 for B = 2T
(a), B = 4T (b), B = 7.5T (c); see the dots on this energy level
in Fig. 5(b) for the trivial confinement. See Fig. 7 for the current
moment of m = 1 state.

localized near the dip of the local energy gap in Fig. 5(a), with
a clear separation of the conduction and valence bands in the
spectrum. In Fig. 5(d) we plot the results of the continuum
approach with a zoom of the conduction band side of the
spectrum in Fig. 5(b).

For larger B the states near the energy gap [Fig. 5(d)]
correspond to K (K ′) states at the E > 0 (E < 0) side of
the gap. However, there is no general strict correspondence
between the valley index and the reaction of the energy level
to the change of the magnetic field which is observed for
the topological confinement of the preceding subsection. In
Fig. 5(b) one can find the localized states which move up and
down the energy scale for any valley. Moreover, for a given
energy level the sign of the dE/dB derivative changes with
B; see Fig. 5(c). The sign of this derivative agrees with the
current moment as calculated with Eq. (11).

In Fig. 6 the current distribution is plotted for the K ↓ m =
1 state at B = 2 T, 4 T, and 7.5 T [see the dots in Fig. 5(b)].
In Fig. 7 we plotted the values of the current moment χ for 30
states of the lowest absolute values of the energy. The larger
red, black, and purple dots show the values for the lowest-
energy states at the E > 0 side. The lowest-ones correspond
to the K ↓ states with the values of the m quantum number
given in Fig. 7. In Fig. 6 and in Fig. 7 we can see that the

FIG. 7. The current moment as given by Eq. (11) plotted for 30
states of Fig. 5(c) of the smallest absolute values of the energy. With
the red, black, and purple dots we mark the lowest, second, and third
lowest energy states on the E > 0 side of the zero energy. By the
integers we mark the m values for the lowest-energy K ↓ states [cf.
Fig. 5(b)].
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FIG. 8. The energy spectrum for the double-center system for
potential given by Eq. (9) with l = R [(a), (b)] and l = 1.2R [(c),
(d)]. The results of the atomistic tight binding are given in (a) and
(c) with the color standing for the spin (down, black; up, red). The
finite-element solution to the continuum problem is given in (b) and
(d) with the color of the lines standing for the spin and valley of the
energy level.

orientation of the current for the m = 1 K ↓ states is inverted
between 2 T and 7.5 T, with the generated magnetic dipole
moment reoriented from parallel to antiparallel to the external
magnetic field, respectively.

For the topological confinement of the preceding section
no reorientation of the current is observed with B. For the
states confined at the flip of the electric field the current
orientation is fixed by the valley degree of freedom, and the
dependence of the confined energy levels on the magnetic field
is monotonic.

In circular semiconductor quantum rings [49,50] the
ground state of a single electron at B = 0 corresponds to zero
angular momentum and is only degenerate with respect to the
spin. For this state the persistent charge current at B = 0 is
zero [49,50], and a nonzero value would break the inversion
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FIG. 9. (a) Same as Fig. 3(e) but for the double-ring system
with l = R. (b) The charge density at the A sublattice for the
lowest positive energy K ′ ↓ in the double-ring system with l = 1.2R.
(c) Same as (b) only for the next higher K ′ ↓ energy level. The plots
(a)–(c) were taken at B = 0.

symmetry of the system. The persistent current for this ground
state appears only induced by external field [50]. For the rings
considered here as well as for graphene quantum rings without
the Rashba interaction [53] the lowest-positive-energy states
at B = 0 are twofold degenerate with respect valley. Each
of the valley degenerate states corresponds to nonzero but
opposite persistent current and the magnetic field lifts the
degeneracy of the states due to opposite sign of the magnetic
dipole moments for these states. According to Ref. [61] the
valley crossings in the magnetic field which are quite visible
in the spectra for the topological confinement correspond
to magnetic fields for which the Berry phase is an integer
multiple of π .

The states studied here for both the trivial and the topolog-
ical confinement are bound and are similar in this respect to
the quantum dots for which the energy levels can be resolved
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FIG. 10. The energy levels of the K (a) and K ′ (b) energy levels
for l = R [taken from Fig. 8(b)] with the color of the lines indicating
the average distance to the closer of the two centers of potential given
by Eq. (9), r′ = min (|r − (l, 0, 0)|, |r + (l, 0, 0)|).

by the transport spectroscopy [1]. The persistent currents can
be deduced from the dependence of the energy levels on the
external perpendicular magnetic field.

C. Coupled current loops

The results of this section are obtained for topological
confinement with twin centers given by Eq. (9) (see Fig. 2).
The calculated energy spectra are displayed in Fig. 8 for l = R
[panels (a) and (b)] and l = 1.2R [panels (c) and (d)]. For
l = R the zero line forms a single loop (see Fig. 2). The
probability current for the lowest positive energy K ′ ↓ level at
B = 0 is plotted in Fig. 9(a). The energy spectrum [Figs. 8(a)
and 8(b)] resembles the one of the single ring [Figs. 3(a)
and 3(b)] only with a larger number of bound energy levels.

For the distance between the ring centers increased to
l = 1.2R the energy levels at B = 0 become nearly twofold
degenerate for each spin and valley [Figs. 3(c) and 3(d)]. The
rings are nearly separated and a tunnel coupling between them
is present [Fig. 9(b)]. The electron density bears signatures
of bonding [Fig. 9(b)] and antibonding [Fig. 9(c)] orbitals

with enhanced and reduced tunneling between separate rings.
Figure 3(d) shows that at higher B the K ′ states at E > 0 and
K energy levels at E < 0 tend to degenerate in pairs, which
indicates lifting of the tunnel coupling between the rings. In
order to study this effect in more detail in Figs. 10(a) and 10(b)
we plot the spin-down K and K ′ energy levels, respectively,
with the color of the lines that indicates the average distance to
the nearest center of the ring 〈r′〉, where for position r in space
r′ is defined as r′ = min (|r − (l, 0, 0)|, |r + (l, 0, 0)|). We
can see that for B = 0 the localization of the wave functions
measured with r′ is the strongest for the states near the
zero energy. As the magnetic field grows, the average r′ is
decreased for all the states. For high magnetic field (B = 10 T)
the strongest localization is observed for the localized K
levels of the lowest energy and for the K ′ energy levels of
the highest energy. When r′ is small the densities are more
strongly localized near the centers of separate rings so the
tunnel coupling between the rings is lifted and the energy
levels become doubly degenerate.

IV. SUMMARY

We have studied the states bound by inhomogeneous verti-
cal electric field in buckled silicene that is either reduced or in-
verted along a closed line that supports trivial and topological
carrier confinement, respectively. We used the atomistic tight-
binding approach and the continuum model for both radially
symmetric systems and for pairs of coupled inversion loops.
We determined the discrete part of the spectrum within the
energy gap that is open by the vertical electric field far from
its inversion area. For trivial confinement the orientation of the
persistent currents depends on the external magnetic field and
can be counterclockwise or clockwise for both valleys. For
the topological confinement the orientation of the persistent
current is fixed by the valley degree of freedom.
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