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Spin noise at electron paramagnetic resonance
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We develop a microscopic theory of spin noise in solid-state systems at electron paramagnetic resonance,
when the spin dynamics is driven by static and radio-frequency (rf) magnetic fields and the stochastic effective
magnetic field stemming from the interaction with environment. The rf field splits the peaks in the power
spectrum of spin noise into the Mollow-type triplets and also gives rise to additional spin-spin correlations
which oscillate in the absolute time at the rf frequency and the double frequency. Even in systems with strong
inhomogeneous broadening, the spin-noise spectrum contains narrow lines insensitive to the dispersion of the
effective g factors. Thus, the measurements of spin noise at electron paramagnetic resonance provide an access
to the intrinsic spin lifetime of electrons.
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I. INTRODUCTION

The optical spectroscopy of spin fluctuations [1], first
demonstrated for a vapor of alkali-metal atoms [2,3] and
lately applied to solid-state systems [4], has developed into
a powerful method for the study of spin dynamics [5,6] and
diffusion [7,8]. While most of early experimental studies
benefit from the fact that the noise spectroscopy requires
no excitation of an electron system and allows one to study
the system in the conditions close to thermal equilibrium,
the modern spin-noise spectroscopy goes beyond the mea-
surement of linear response [9,10]. In particular, the study
of spin noise in the presence of a radio-frequency (rf) field
provides an additional insight into the physics of fluctuations
and spin dephasing processes [11–17]. A scheme to measure
the spin fluctuations via optical Faraday rotation with an
oscillating magnetic field instead of a static magnetic field
commonly used in experiments was discussed in Ref. [11].
The power spectrum of electron spin noise driven by a rf field
for an ensemble of localized electrons in the presence of a
random hyperfine field was theoretically studied in Ref. [12].
Experimentally, the spin-noise spectroscopy in the geometry
of electron paramagnetic resonance with a static magnetic
field and a weak perpendicular rf field was recently realized
for a vapor of potassium atoms demonstrating an access to
the spin dynamics beyond thermal equilibrium and linear
response [13]. An approach to probe spin quadrupole noise of
spin- 3

2 color centers in semiconductors by measuring optical
blinking was proposed in Ref. [16].

Here, we present a microscopic theory of electron spin
fluctuations in the conditions of paramagnetic resonance when
electrons interacting with environment are subject to a static
magnetic field and a weak perpendicular rf magnetic field. We
obtain analytical expressions for the components of spin-spin
correlation function and study the effect of inhomogeneous
broadening on the noise spectrum. We show how the rf field
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suppresses the spin dephasing caused by the dispersion of the
effective g factors, thereby providing an access to the intrinsic
spin lifetime of electrons. We also demonstrate that the rf
field driven spin correlations contain contributions oscillating
with the absolute time at the single and double frequencies
of the rf field. These contributions are accessible by a lock-in
technique.

II. THEORY

We consider the spin dynamics of an ensemble of electrons
in the static magnetic field B ‖ z and a weak perpendicular
circularly polarized rf magnetic field Brf (t ) (see Fig. 1).
Interaction with environment for a spin- 1

2 particle is described
in terms of a fluctuating effective magnetic field Bfl(t ) acting
on the particle spin. Thus, the dynamics of the spin operator s
of an individual electron in the Heisenberg picture is governed
by the equation

ds
dt

= [�L + �rf (t ) + �fl(t )] × s, (1)

where �L = (0, 0,�L ), �rf (t ) = �rf (cos ωrft, sin ωrft, 0),
and �fl(t ) are the Larmor frequencies corresponding to the
fields B, Brf (t ), and Bfl(t ), respectively. We consider the case
of rather high temperatures (or low magnetic fields) when the
average spin polarization is negligible.

The spin correlation function, which is a measure of spin
fluctuations, is defined by

Kαβ (t, t ′) = 〈{sα (t ), sβ (t ′)}〉, (2)

where {sα (t ), sβ (t ′)} = [sα (t )sβ (t ′) + sβ (t ′)sα (t )]/2 is the
symmetrized product and the angle brackets denote averaging
with the spin-density matrix of electrons. Below, we cal-
culate the correlation function for different regimes of spin
dynamics.

A. Spin noise in the absence of static and rf fields

First, we describe briefly the procedure to calculate spin
noise in the absence of static and rf fields. In this case, the
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FIG. 1. Dynamics of an electron spin s in the presence of static
B, radio-frequency Brf (t ), and fluctuating Bfl(t ) magnetic fields.

spin dynamics of an electron is described by the equation

ds
dt

= �fl(t ) × s. (3)

The formal solution of Eq. (3) can be presented in the form

s(t ) = U (t, 0)s(0), (4)

where U (t, 0) is the matrix describing the spin evolution. The
expansion of U (t, 0) into the series in �flt yields

U (t, 0)s(0) =
[

1 +
∫ t

0
�fl(t1)dt1 × +

∫ t

0
�fl(t1)dt1

×
∫ t1

0
�fl(t2)dt2 × + · · ·

]
s(0). (5)

The spin correlation function (2) is then given by

Kαβ (t, t ′) =
∑
γ ,δ

〈{Uαγ (t, 0)sγ (0),Uβδ (t ′, 0)sδ (0)}〉. (6)

Taking into account that, for spin- 1
2 particles, {sα (t ), sβ (t )} =

δαβ/4 at any t we obtain

K(t, t ′) = 〈U (t, t ′)〉θ (t − t ′) + 〈UT (t ′, t )〉θ (t ′ − t )

4
. (7)

We assume that the mean value of the effective magnetic
field Bfl(t ) originating, e.g., from electron-phonon interaction
or electron motion in a noncentrosymmetric structure, is zero.
Besides, the effective field is weak and rapidly fluctuates in
time so that the condition �flτc � 1 is satisfied, where τc is
the correlation time of the effective field. In this case, the spin
relaxation time of the electron ensemble Ts is of the order of
1/(�2

flτc) being much longer than τc [18]. On the timescale δt
much smaller than the spin relaxation time Ts but much larger
than the correlation time τc, the ensemble-averaged matrix of
the spin evolution reads as

〈Uαβ (t + δt, t )〉 = δαβ − 
αβ (t )δt, (8)

where 
αβ (t ) is the tensor defined by


αβ (t ) =
∫ ∞

0
〈�fl(t − τ ) · �fl(t )δαβ

−�fl,α (t − τ )�fl,β (t )〉dτ. (9)

Equations (8) and (9) follow from Eq. (5).

Equations (7) and (8) allow us to formulate the differential
equations for the spin correlation function

∂K(t, t ′)
∂t

= �T (t )K(t, t ′)θ (t ′ − t ) − �(t )K(t, t ′)θ (t − t ′),

∂K(t, t ′)
∂t ′ =K(t, t ′)�(t ′)θ (t − t ′)−K(t, t ′)�T (t ′)θ (t ′ − t ),

(10)

which must be solved with the initial condition Kαβ (t, t ) =
δαβ/4. Equations (10) are very general equations for the
correlation function of an ensemble of spin- 1

2 particles. Below,
we use them to calculate the spectra of spin noise in various
conditions.

In an isotropic ergodic system in the absence of external
fields, the tensor 
αβ is diagonal, 
αβ = γ0δαβ , and indepen-
dent of time. It has the meaning of the tensor of spin relaxation
rates. Solution of Eqs. (10) for this simple case has the
form

Kαβ (t, t ′) = δαβ

4
exp(−γ0|t − t ′|). (11)

The spin correlation function (11) is well known and can
be obtained by different theoretical approaches including the
use of the fluctuation-dissipation theorem, the method of
Langevin forces, or the stochastic master-equation approach
[1,15,19]. An advantage of the method presented above is that
it enables the straightforward calculation of the correlation
function in the presence of external driving forces.

B. Spin noise in a static magnetic field

In the presence of a static magnetic field B ‖ z, the
spin dynamics of an electron can be fruitfully analyzed in
the coordinate frame (x′, y′, z′) rotating about the z axis
with the angular frequency �L. Mathematically, this coor-
dinate frame change is equivalent to the substitution s =
R s′ and �fl = R �′

fl in Eq. (1), where R is the matrix of
rotation

R(t ) =
⎛
⎝cos �Lt − sin �Lt 0

sin �Lt cos �Lt 0
0 0 1

⎞
⎠. (12)

In the rotating coordinate frame, the equation of spin dynam-
ics has the form

ds′

dt
= �′

fl(t ) × s′ (13)

which is equivalent to Eq. (3). Therefore, the spin correlation
function in the rotating frame K ′(t, t ′) satisfies Eqs. (10) with
the tensor �′ determined by Eq. (9) where �fl(t ) is replaced
by �′

fl(t ) = R−1(t )�fl(t ).
To be specific, we assume that the fluctuating field �fl(t ) is

described by the correlation function

〈�fl,α (t ) �fl,β (t ′)〉 = �2
fl

3
exp(−|t − t ′|/τc)δαβ , (14)

where �fl is the characteristic amplitude of the field and τc is
the correlation time. Then, the tensor �′ has the form

�′ = �2
f

3

∫ ∞

0
[I Tr R(τ ) − R(τ )]e−τ/τc dτ, (15)
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where I is the 3 × 3 identity matrix and we took into account
that the matrix of rotation is orthogonal, i.e., R−1 = RT .

Straightforward calculation of the integral in Eq. (15) with
the rotation matrix (12) shows that the tensor �′ has both the
symmetric �′(s) = (�′ + �′T )/2 and the antisymmetric �′(a) =
(�′ − �′T )/2 parts. The symmetric part stands for the tensor
of spin relaxation rates. Its nonzero components are



′(s)
x′x′ = 


′(s)
y′y′ = γ⊥, 


′(s)
z′z′ = γz, (16)

where

γ⊥ = γ0

2

(
1 + 1

1 + �2
Lτ 2

c

)
, γz = γ0

1 + �2
Lτ 2

c

, (17)

and γ0 = (2/3)�2
flτc. The antisymmetric second-rank tensor

�′(a) is equivalent to a pseudovector δ�L and represents,
in fact, a stochastic-field-induced correction to the Larmor
frequency �L. For the isotropic case under study, δ�L ‖ �L

and has the form

δ�L = γ0

2

�Lτc

1 + �2
Lτ 2

c

. (18)

The correction to the Larmor frequency can also be interpreted
as a (magnetic-field-dependent) renormalization of the effec-
tive electron g factor. The renormalization of the effective g
factor caused by the spin-orbit effective magnetic field at the
cyclotron motion of electrons in three- and two-dimensional
semiconductor structures was analyzed in Refs. [20–22]. In
our case, the renormalization occurs due to the action of the
stochastic effective magnetic field on the electron spin.

Solution of Eqs. (10) for the tensor �′ independent of time
gives the spin correlation function in the rotating coordinate
frame

K ′(t, t ′) = 1
4 exp[−�′(s)|t − t ′| − �′(a)(t − t ′)]. (19)

The spin correlation function in the initial (fixed) coor-
dinate frame K(t, t ′) is readily obtained by the transforma-
tion K(t, t ′) = R(t )K ′(t, t ′)R−1(t ′). The corresponding calcu-
lations give

Kxx(t, t ′) = Kyy(t, t ′) = 1
4 cos[�̃L(t − t ′)] e−γ⊥|t−t ′|,

Kxy(t, t ′) = −Kyx (t, t ′) = − 1
4 sin[�̃L(t − t ′)] e−γ⊥|t−t ′|,

Kzz(t, t ′) = 1
4 e−γz |t−t ′|, (20)

where �̃L = �L + δ�L is the Larmor frequency renormalized
by the stochastic field. The spin relaxation rates γ⊥ and γz and
the frequency correction δ�L are given by Eqs. (17) and (18),
respectively.

The spectrum of spin noise, which is usually investigated
in experiments, is determined by the Fourier image of the
spin correlation function K(t, t ′) = ∫

K(ω)e−iω(t−t ′ )dω/2π .
The corresponding Fourier images of the functions (20) have

the form

Kxx(ω) = Kyy(ω) = 1

4

∑
±

γ⊥
(ω ± �̃L )2 + γ 2

⊥
,

Kxy(ω) = −Kyx(ω) = i

4

∑
±

±γ⊥
(ω ± �̃L )2 + γ 2

⊥
,

Kzz(ω) = 1

2

γz

ω2 + γ 2
z

. (21)

Equations (20) and (21) generalize previous results for
the spin dynamics and spin noise of electrons in an external
static magnetic field [2,11]. They show that, even in isotropic
systems, stochastic effective magnetic field can modify the
electron g factor and leads to an anisotropy of spin relaxation.

C. Spin noise in static and RF fields

Now, we are ready to discuss the spin noise in the presence
of both the static magnetic field B ‖ z and the rf field Brf (t ) ⊥
z. The rf field rotates about the z axis with the frequency
ωrf . Therefore, it is convenient to consider the spin dynamics
in the coordinate frame F ′ rotating with the rf field. In this
coordinate frame, the equation of spin dynamics has the form

ds′

dt
= [�′ + �′

fl(t )] × s′, (22)

where �′ = (�rf , 0,�L − ωrf ), s′ = R−1
1 s, �′

fl = R−1
1 �fl, and

R1 is the matrix of rotation. The matrix R1(t ) is given by
Eq. (12) where �L is replaced by ωrf .

Equation (22) describes the spin dynamics in the static and
stochastic magnetic fields. To solve this equation and calculate
the spin correlation function, we apply the method developed
in Sec. II B. First, we change once again the coordinate frame
and consider the spin dynamics in the frame F ′′ rotating
with the frequency �′ with respect to the frame F ′. This
transformation is described by the rotation matrix

R2(t ) =
⎛
⎝u2 + v2 cos �′t −v sin �′t uv(1− cos �′t )

v sin �′t cos �′t −u sin �′t
uv(1− cos �′t ) u sin �′t v2 + u2 cos �′t

⎞
⎠,

(23)

where �′ = |�′| =
√

�2
rf + (�L − ωrf )2 , u = �rf/�

′, and
v = (�L − ωrf )/�′. In the frame F ′′, the evolution of the spin
operator s′′ = R−1

2 (t )R−1
1 (t )s is governed solely by the fluc-

tuating field �′′
fl(t ) = R−1

2 (t )R−1
1 (t )�fl(t ). Then, we calculate

the tensor �′′ in the frame F ′′ using Eq. (9) where �rf (t ) is
replaced by �′′

rf (t ). Because the rotation matrices R1 and R2

do not commute with each other, the tensor �′′ in general
case becomes time dependent. This time dependence is given
by �′′(t ) = RT

2 (t )�′R2(t ) with time independent �′. For the
correlation function (14), the tensor �′ has the form

�′ = �2
fl

3

∫ ∞

0
{I Tr[R2(τ )R1(τ )] − R2(τ )R1(τ )}e−τ/τc dτ.

(24)

The tensor �′ describes spin relaxation in the F ′ frame. If the
static field or rf field is very strong, the components of �′

are suppressed by the large factors �Lτc or �rfτc, similarly
to Eq. (17).
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To simplify further calculations we suppose that the corre-
lation time of the fluctuating field τc is short in comparison
with 1/�′ and 1/ωrf . In this regime, one has �′′ = �′ = Iγ0

and, accordingly,

K ′′(t, t ′) = exp(−γ0|t − t ′|)
4

I. (25)

Finally, the spin correlation function in the fixed coordinate
frame has the form

K(t, t ′) = R1(t )R2(t )K ′′(t, t ′)RT
2 (t ′)RT

1 (t ′). (26)

The presence of an external rf field breaks the time homo-
geneity in the system. Therefore, the correlation function
K(t, t ′) depends not only on the time difference t − t ′, but
also on (t + t ′)/2. The latter dependence is periodic in 2π/ωrf

because of the rf field periodicity.
To analyze the spectrum of spin noise, we expand the

correlation function in the Fourier series as follows:

K(t, t ′) =
∑

n

∫
dω

2π
K (n)(ω)e−inωrf (t+t ′ )/2−iω(t−t ′ ). (27)

The function R2(t )K ′′(t, t ′)RT
2 (t ′) depends only on the time

difference t − t ′ and the rotation matrices R1(t ) and RT
1 (t )

contain only the first time harmonics. Therefore, the only
nonzero harmonics K (n)(ω) are those with n = 0,±1,±2, and
K (−n)(ω) = K (n)∗(−ω).

The harmonics K (0)(ω), which are usually studied in ex-
periments, have the form

K (0)
zz (ω) = (�L − ωrf )2

�′2 +(ω, 0) + �2
rf

�′2 +(ω,�′),

K (0)
xx (ω) = K (0)

yy (ω) = (�L − ωrf + �′)2

4�′2 +(ω,ωrf + �′)

+ (�L − ωrf − �′)2

4�′2 +(ω,ωrf − �′)

+ �2
rf

2�′2 +(ω,ωrf ),

iK (0)
yx (ω) = − iK (0)

xy = (�L − ωrf + �′)2−(ω,ωrf + �′)
4�′2

+ (�L − ωrf − �′)2−(ω,ωrf − �′)
4�′2

+ �2
rf−(ω,ωrf )

2�′2 , (28)

where

�′ =
√

�2
rf + (�L − ωrf )2 (29)

and

±(ω,ω0) = 1

4

[
γ0

(ω + ω0)2 + γ 2
0

± γ0

(ω − ω0)2 + γ 2
0

]
.

The second term in the expression for K (0)
zz (ω) describes the

correlations of spin fluctuations centered at the frequency �′
which are caused by the Rabi oscillations.

Correlations of the longitudinal and transverse spin com-
ponents do not show up in the functions K (0)(ω). However,
they are revealed in the first time harmonics of the correlation

function which are given by

K (1)
xz (ω) = −iK (1)

yz (ω) = �rf

2�′

{
−

(
ω − ωrf

2
,�′

)

+ �L − ωrf

�′

[
+

(
ω − ωrf

2
, 0

)

+ +
(
ω − ωrf

2
,�′

)]}
(30)

and K (1)
αβ (ω) = K (1)

βα (−ω).
At last, the second time harmonics of the spin correlation

function have the form

K (2)
xx (ω) = − K (2)

yy (ω) = −iK (2)
xy (ω) = −iK (2)

yx (ω)

= �2
rf

4�′2 [+(ω, 0) − +(ω,�′)]. (31)

In a conventional spin-noise experiment, one collects the
time-average spectrum of the spin correlation function given
by K (0)(ω). Other harmonics K (n)(ω) correspond to correla-
tion function between spin-noise signal and the spin-noise
signal frequency-shifted by nωrf , i.e., to the spin-spin-rf field
correlation functions. They can be extracted from the mea-
sured fluctuating spin signals Sα (t ) by the averaging of the
product Sα (t + τ/2)Sβ (t − τ/2) einωrf t over t and the Fourier
transformation over τ . Technically, that could be done by
measuring the spectra s(ω) = T −1/2

∫ T
0 S(t ) eiωt dt during the

time frames that start at the times with a certain fixed phase of
the rf field, and then evaluating the average

K (n)
αβ (ω) = 〈sα (ω + nωrf/2)sβ (ω − nωrf/2)〉 (32)

over many measurements.

III. RESULTS AND DISCUSSION

In most of spin-noise experiments, an ensemble of spins
rather than a single spin is probed. The spin ensemble is
characterized by some variation in the parameters, which
leads to inhomogeneous broadening of the peaks in the spin-
noise spectra. The application of rf field can suppress this
broadening providing an access to the intrinsic spin relaxation
time. To illustrate it, we consider the ensemble with a distri-
bution of the effective g factors resulting in a variation of the
Larmor frequency �L. The variation of the Rabi frequency �rf

is small and neglected since �rf � �L. Then, for the Gaussian
distribution, the spin correlation function averaged over the
ensemble is given by

〈K〉 =
∫

K exp

[
− (�L − �̄L )2

2(δ�L )2

]
d�L√

2π (δ�L )
, (33)

where �̄L = ḡμBBz/h̄, δ�L = δgμBBz/h̄, ḡ is the mean value
of the g factor, and δg is the root-mean-square deviation.

Figure 2 shows the spectra of the spin-noise density 〈K (0)
xx 〉

calculated for the ensembles with different g-factor disper-
sions after Eqs. (28) and (33). Figure 2(a) shows the spin-
noise spectra in the absence of the rf field, which feature a
single peak at the average Larmor frequency of the ensemble
�̄L. The dispersion of the g factors results in a significant
broadening of the peak and a decrease of its amplitude. When
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FIG. 2. Noise spectra of the perpendicular spin component K (0)
xx (ω). (a) Shows the spectra in the absence of rf field for various value

of g-factor dispersion δg. (b), (c) Correspond to the case when the rf field with the frequency ωrf indicated in the graphs and the intensity
corresponding to the Rabi frequency �rf = 0.1�L is turned on. (d)–(f) Show the evolution of the spectra when the rf field frequency ωrf is
scanned. (g)–(l) Show the evolution of the spectra when rf field amplitude �rf is varied. The spin relaxation rate was chosen to be γ0 = 0.01�L .

the resonant rf field is on, the single peak is split into the
Mollow triplet [see Fig. 2(b)]. Importantly, the central peak
of the triplet at ω = ωrf is not broadened with the increase
of the g-factor dispersion while its amplitude exhibits only a
slight decrease. The side peaks of the triplet are shifted from
the central peak by the frequency �′ =

√
�2

rf + (�L − ωrf )2 .
In the ensemble with the dispersion of �L, the side peaks
are asymmetric: their outer wings are broadened while the
inner wings, which are shifted from the central peak by �rf,
remain sharp. Therefore, the narrow peaks with the widths
determined by the intrinsic spin relaxation time are resolved
in the rf-driven noise spectrum even for the ensembles with
large dispersions while the noise spectrum in the absence of
rf field is completely smeared [cf. thick red lines in Figs. 2(a)
and 2(b)].

The color maps in Figs. 2(d)–2(f) show evolution of the
spin-noise spectra when the frequency of the rf field is
scanned (vertical axis). The Mollow triplet in the spectra origi-
nates from the avoided crossing of resonance line at frequency
ω = �L, with the lines at ω = ωrf and ω = 2ωrf − �L [see

Fig. 2(d)]. The splitting between the peaks at the avoided
crossing is proportional to the rf field amplitude �rf [see
Figs. 2(g)–2(l) that show the dependence of the spin-noise
spectra on �rf (vertical axis)]. The increase of the g-factor
dispersion leads to smearing of lines at �L and 2ωrf − �L.
However, the line at ωrf remains narrow and the sharp fringes
at ωrf ± �rf arise [see Figs. 2(f), 2(i), and 2(l).

The spin-noise spectra 〈K (0)
zz 〉 are shown in Fig. 3. In the

absence of rf field [Fig. 3(a)], the noise spectrum features
a peak at ω = 0. The peak is not sensitive to the g-factor
dispersion since the fluctuations of the z-spin component do
not experience precession in the static magnetic field B ‖ z.
However, the experimental study of spin noise around zero
frequency may face difficulties due to the presence of other
sources of low-frequency noise. Application of the rf field
leads to the formation of the triplet structure of the spin-noise
spectrum [Fig. 3(b)]. The emerging side peaks remain clearly
resolved even in the presence of strong inhomogeneous broad-
ening. Interestingly, the position and shape of the side peaks
depend not only on the rf field amplitude �rf and detuning
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FIG. 3. Noise spectra of the longitudinal spin component K (0)
zz (ω). (a) Shows the spectra in the absence of rf field for various value of

g-factor dispersion δg. (b), (c) Correspond to the case when the rf field with the frequency ωrf indicated in the graphs and the intensity
corresponding to the Rabi frequency �rf = 0.1�L is turned on. (d)–(f) Show the evolution of the spectra when the frequency ωrf is scanned.
(g)–(l) Show the evolution of the spectra when rf field amplitude �rf is varied. The spin relaxation rate was chosen to be γ0 = 0.01�L .

�L − ωrf , but also on the g-factor dispersion [see Fig. 3(c)].
Their spectral shift is given by

√
�2

rf + (�̄L − ωrf )2 if δg/g �
|ωrf/�̄L − 1| (black dashed line) and by �rf if the g-factor
dispersion is large (thick red line).

As shown in the previous section, the correlations of
the spin noise in the presence of the rf field contain also
contributions which are synchronized with the rf field and
have oscillating dependence on the absolute time (t + t ′)/2 in
addition to the dependence on the delay time t − t ′. Figure 4
shows the spectra of such correlation functions K (1)

xz and
K (2)

xx which oscillate in the absolute time at the frequencies
ωrf and 2ωrf, respectively. Generally, the spectra feature the
three-peak structure with the peaks of different signs and
amplitudes. The central peak is missing in the spectrum of
K (1)

xz in the resonance condition ωrf = �L [Figs. 4(a)–4(c)].
Similarly to the spectra of K (0)

xx and K (0)
zz , the dispersion of the

g factors leads to a modification of the side peaks but does
not affect the widths of the central peaks in the spectra of K (1)

xz
and K (2)

xx . Despite of the fact that the central peaks in K (1)
xz and

K (2)
xx are located at ω = 0, they describe the spin fluctuations

oscillating in the absolute time at the frequencies ωrf and
2ωrf, respectively. Therefore, they are not obscured by a low-
frequency noise and should be experimentally accessible, e.g.,
by means of lock-in technique.

To summarize, we have studied spin noise of an ensemble
of electrons in the nonequilibrium conditions of the magnetic
resonance. Interaction with the environment was taken into ac-
count as a stochastic effective magnetic field. This field leads
to spin dephasing and renormalization of the Larmor pre-
cession frequency. Application of a resonant radio-frequency
magnetic field splits the peaks in the spin-noise spectra into
the Mollow triplets. The central peak of the triplet appears
to be robust against inhomogeneous broadening, while the
side peaks are smeared in such an asymmetric way that their
inner wings remain sharp. Therefore, the measurements of
the spin-noise spectra in the presence of radio-frequency field
provide an access to the intrinsic spin relaxation time in
an inhomogeneous ensemble. The method is complementary
to established techniques of spin echo [23], hole burning
[24], two-color spectroscopy [25], or higher-order correlation
spectroscopy [26].
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FIG. 4. Maps of the spin-noise correlation functions (a)–(c) K (1)
xz and (d)–(f) K (2)

xx which arise in the presence of rf field and oscillate
with absolute time at the frequencies ωrf and 2ωrf, respectively. Plots are calculated for the rf intensity corresponding to the Rabi frequency
�rf = 0.1�L , the spin relaxation rate γ0 = 0.01�L , and different g-factor dispersion.

Apart from the modification of the orthodox spin-noise
correlation functions, that depend on the time delay, the
radio-frequency field also induces spin correlations that are
synchronized with the radio-frequency field and oscillate with
the absolute time. They are not obscured by low-frequency
noises and can be detected by means of lock-in techniques.
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