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Plane-wave many-body corrections to the conductance in bulk tunnel junctions
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The conductance of bulk metal–insulator–metal junctions is evaluated by the Landauer formula using an
ab initio electronic structure calculated using a plane-wave basis set within density functional theory and beyond,
i.e., including exact nonlocal exchange using hybrid functional (HSE) or many-body G0W0 and Coulomb-hole
screened exchange (COHSEX) quasiparticle schemes. We consider an Ag/MgO/Ag heterostructure model and
we focus on the evolution of the zero-bias conductance as a function of the MgO film thickness. Our study shows
that the correction of the electronic structure beyond semilocal density functionals goes in the right direction to
improve the agreement with experiments, significantly reducing the zero-bias conductance. This effect becomes
more evident at larger MgO thickness, that is, in increasing tunneling regime. We also observe that the reduction
of the conductance seems more related to the correction of wave functions rather than energies, and thus not
directly related to the correction of the band gap of bulk MgO. G0W0 and HSE both provide a band gap in
agreement with experiments, but only HSE gives a significant reduction of the conductance. COHSEX, while
overestimating the band gap, gives a reduction of the conductance very close to HSE.
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I. INTRODUCTION

Metal–insulator–metal junctions are of high technological
interest since they are used in currently developed electronic
devices, like new generation memories based on the variation
of the electric resistance (RRAM [1,2]) or magnetoresistive
devices [3–5]. First-principles calculations of the tunneling
conductance in these junctions can provide an important
understanding to drive technological developments. With the
downscaling of microelectronics, the typical size of devices
can reach a few nanometers, which calls for an atomistic and
quantum treatment of the electronic transport. In particular,
the calculation of the transmission of electrons through an in-
terface between two materials requires an accurate description
of the electron wave functions at the atomic scale.

The prevalent approach to study quantum transport at the
atomic scale is the ab initio “DFT + Landauer” scheme.
Density functional theory (DFT) [6,7] is used to calculate
the electronic structure of the junction and of the leads. The
probability of transmission of electrons through the junction
is then calculated using the Green’s function method, and the
zero-bias conductance is obtained via the multichannel Lan-
dauer formula [8–11]. Several available codes, e.g., the ones
documented in Refs. [12–14], implement DFT + Landauer on
spatially localized basis sets (atomic orbitals, Wannier func-
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tions), which are more convenient to compute the quantum
transmission.

This approach has two main limitations. First, the Landauer
formalism only holds in the coherent regime of transport,
which means that inelastic scattering such as electron-electron
and electron-phonon interactions cannot be taken into ac-
count. Second, only calculations close to the zero-bias limit
are formally correct since so far there exist no exact formu-
lation of DFT for out-of-equilibrium and open systems (i.e.,
varying number of electrons).

However, some DFT + Landauer codes, such as
TRANSIESTA [12], allow applying a finite-bias voltage
between the electrodes, still using the equilibrium density
functional. Despite the incompleteness of such approach [15],
it allows addressing realistic devices within a reasonable
computing time and provides valuable information about
the transmission of electrons through interfaces, for instance
when the symmetries of the wave functions in each material
strongly impact the transmission [3]. The DFT + Landauer
method should also provide a good estimation of the elastic
scattering of electrons by defects and impurities. This holds
in the coherent regime, which is a reasonable approximation
for short junctions (a few nanometers) and at very low
temperature, so that the electrons do not lose their phase
coherence between the two electrodes.

Unfortunately, in the coherent regime and at zero-bias
voltage, DFT + Landauer turns out to catch only a qualitative
description of transport, and to systematically overestimate
conductances by one or even several order of magnitudes
in the tunneling regime. This was pointed out by Vignale
and Di Ventra [15], and there are several hypotheses about
this failure. One of them [16–19] attributes the systematical
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overestimation of the conductance to the systematical un-
derestimation of the HOMO-LUMO gap in molecules, and
analogously of the band gap in insulators, by DFT [20]. On
the contrary, when inelastic scattering becomes dominant,
DFT + Landauer often underestimates the tunneling conduc-
tance. Electron-phonon and electron-electron scatterings can
be added on top of ab initio calculations [21,22]. This is not
the topic of this work, which focuses on the limitation of
DFT + Landauer in the coherent regime and at zero bias.

For this purpose, this study goes beyond DFT toward
many-body quasiparticle (MB-QP) approaches, including the
GW [23] or the COHSEX [23] (Coulomb-hole screened ex-
change) approximations. We also consider the Heyd-Scuseria-
Ernzerhof (HSE) hybrid functional [24] which, rigorously
speaking, cannot be considered an approximation within DFT
like the local density approximation (LDA) or generalized
gradient approximation (GGA), and should be rather con-
sidered as a semiempirical MB approximation, with a mod-
ified Hartree-Fock exchange Fock operator mimicking the
COHSEX statically screened exchange nonlocal self-energy.
With respect to DFT LDA or GGA, these QP approaches
certainly provide a more physical electronic structure, and
this should translate into an improved description of quan-
tum transport properties. The approach used in this work is
still based on the Landauer formalism, but with a corrected
electronic structure. Along these lines, several authors have
already attempted to go beyond DFT + Landauer to describe
quantum transport in molecular junctions, for example, by
using semiempirical models like the image-charge DFT +
� model [17], or the Hubbard model with an adjustable
U parameter local interaction term placed only on chosen
correlated electrons solved by dynamical mean-field theory
(DMFT) [25–27], or recent out-of-equilibrium approaches
based on the time-dependent-DFT formalism (TDDFT) [28],
but also fully ab initio approaches [29–31] like GW or COH-
SEX. Such attempts remain rare in the literature. The main
reason is that MB-QP calculations on bulk materials are not
implemented in the available DFT codes using localized basis
sets, which are the most suitable for transport calculations.
Moreover, MB-QP corrections on bulk tunnel junctions, such
as the Ag/MgO/Ag heterostructure studied here, are barely
explored so far. By bulk junctions, we mean junctions with
macroscopic dimensions along the directions parallel to the
interfaces. Faleev et al. [32] have studied the Fe/MgO/Fe
junction within a MB-QP framework, but making use of
an empirical formula [Ref. [32], Eq. (1)] instead of a full
Landauer formula to compute the transmission function.

By relying on a quantum transport implementation based
on plane waves and Wannier functions (see Sec. II), we com-
pute the quantum transmission spectra and zero-bias conduc-
tances of metal–insulator–metal junctions made of a thin film
of MgO sandwiched between two bulk Ag electrodes. This
model of heterostructure is reasonable since, experimentally,
thin layers of MgO can be epitaxially deposited on an Ag
substrate [33]. Considering ferromagnetic electrodes would
be of higher technological interest as they form magnetic
tunnel junctions with MgO [3–5]. However, we have chosen
Ag electrodes to avoid the additional complexity of spin-
polarized transport and to focus only on the effect of MB
corrections on the tunneling conductance.

We study the transport properties of the junction as a
function of the oxide thickness, from 1 to 4 MgO cubic
cells, and we consider four different approximations: DFT
in the GGA PBE approximation; G0W0 [23] on top of DFT,
which takes into account only a diagonal GW self-energy
and allows recalculating only the QP energies, keeping the
DFT wave functions unchanged; the self-consistent COHSEX
approximation, which instead recalculates both QP energies
and wave functions; the HSE hybrid functional, which also
updates both energies and wave functions. In Sec. III, we
present the simulation results and we analyze the effect of
the different approximations on the transport properties in the
tunneling regime.

II. METHOD AND COMPUTATIONAL DETAILS

In this section we describe the method and the compu-
tational details used to calculate the tunneling conductance
through Ag/MgO/Ag junctions. The procedure is divided
into three parts.

(1) The electronic structure of Ag/MgO/Ag supercells is
computed self-consistently on a plane-wave basis set. The
calculations are performed within DFT or using various MB
corrections on top of DFT in order to compare their impact on
electronic transport.

(2) A basis-set transformation is performed from plane
waves to maximally localized Wannier functions [34–36],
using the WANNIER90 code [37]. The Hamiltonian expressed
in this basis is convenient for transport calculations.

(3) The electron transport through Ag/MgO/Ag junctions
is computed by the Landauer formalism [10] and the Green’s
functions method, using our in-house code which allows
calculating the transmission for any transverse wave vector k‖
parallel to the Ag/MgO interfaces. This is necessary for eval-
uating the conductance through junctions with macroscopic
surface area.

A. DFT computational details

Ab initio calculations based on DFT are carried out using
the VASP code [38,39] with the PBE [40] functional. The core-
valence interaction is described by projector augmented wave
(PAW) data sets including 4d and 5s states for Ag, 2s and 2p
for O, and 3s for Mg. Electron wave functions are expanded in
a plane-wave basis set with a kinetic energy cutoff of 415 eV.
HSE calculations and MB corrections are detailed in Sec. II C.

For comparison purpose, DFT calculations have also been
performed using the SIESTA code [41,42]. The chosen func-
tional is also PBE, while the pseudopotentials are of norm-
conserving Troullier-Martins type [43] and include the same
states as the VASP PAW data sets. A polarized double-zeta
basis set of atomic orbitals is used, with a cutoff radius
yielding an energy shift of 25 meV. The plane-wave cutoff
for the real-space grid is taken equal to 450 Ry.

B. Structures studied in ab initio

Ag and MgO both have face-centered-cubic structure and
are stacked along the [100] direction. O atoms are located in
front of Ag atoms, which is known to be the most stable con-
figuration [33]. In the following, m Ag/n MgO/m Ag denotes
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FIG. 1. 4 Ag/2 MgO/4 Ag supercell (outlined by a solid line rectangle) studied in ab initio. 3Ag cubic cells of its right-side periodic
replica are also represented. The Hamiltonian blocks used for transport calculations are schematized: HC is the Hamiltonian of the central
region and the blocks H0i define the semi-infinite periodic Ag electrodes. See Sec. II F for details.

a supercell with n MgO cubic cells surrounded on both sides
by m Ag cubic cells.

Cell volume relaxations are performed on bulk Ag and
bulk MgO, yielding lattice constants of 4.14 and 4.20 Å,
respectively. Then, structural relaxations of
2 Ag/n MgO/2 Ag supercells are performed, n ranging
from 1 to 4. The Brillouin zone is sampled using a 1 × 4 × 4
Monkhorst-Pack (MP) grid. The lattice constants along
directions [010] and [001], parallel to the interfaces, are fixed
to the lattice constant of bulk Ag (4.14 Å) in order to mimic
thin layers of MgO epitaxially sandwiched between thick
unstrained Ag layers. Hence, the MgO layer is compressively
strained in the in-plane directions. The length of the supercell
along [100] is relaxed. The interfacial distance turns out to
be d � 2.69 Å between the Ag and MgO atomic planes, in
good agreement with previous studies [33]. The MgO lattice
constant is elongated to about 4.33 Å along [100].

Supercells with thicker Ag layers are needed to
define the semi-infinite periodic electrodes in transport
simulations (see Fig. 1 and Sec. II F). These supercells
are built from the relaxed systems discussed above, by
keeping the relaxed atomic positions of the MgO layer
and of 1 cubic cell of Ag on each side of MgO, and by
adding 3 Ag cubic cells on each side, with an interplane
distance fixed to the bulk value, 2.07 Å. This ensures
the perfect periodicity of the first 3 and last 3 Ag unit
cells, which will be used to define the Hamiltonian
of the semi-infinite electrodes. In the following, all
ab initio calculations are performed on these
4 Ag/n MgO/4 Ag supercells, with a 2 × 4 × 4 MP grid
containing �. Given that each MgO cubic cell contains
8 atoms, and each Ag cubic cell contains 4 atoms, the
supercells contain 40, 48, 56, and 64 atoms for n = 1, 2, 3, 4,
respectively.

C. HSE calculations and many-body corrections

HSE calculations are carried out using VASP with the
HSE06 hybrid functional [44]. According to Viñes et al. [45],
HSE06 requires an α mixing parameter higher than 0.4 to
reproduce the MgO experimental gap. Here, α is fixed to 0.43,
which gives an electronic band gap at � of 7.77 eV for the
MgO primitive cell, in agreement with the experimental value
which lies between 7.67 and 7.83 eV [45]. The screening
parameter is fixed to 0.2 Å−1.

MB effects are accounted for by using G0W0 (correction
of eigenvalues only) and self-consistent COHSEX (correction
of both eigenvalues and eigenfunctions) on top of DFT. The
use of a full self-consistent GW calculation on both eigen-

values and eigenfunctions is not considered here, due to the
high computational cost. COHSEX is an approach halfway
between Hartree-Fock [46] and GW . The HF bare exchange is
statically screened in COHSEX, and it considers an additional
“Coulomb-hole” term which accounts for a classical response
of the medium after the addition of a point charge (electron
or hole). It requires less computational resources than GW ,
but it systematically overestimates the band gap. For G0W0

calculations, we use a cutoff energy of 210 eV for the response
function, and 64 frequency grid points. The number of empty
bands used in the dielectric function and for the Green’s
function is 6144 for the structures with 1 and 2 MgO cubic
cells, and 6656 for the structures with 3 and 4 MgO cubic
cells. For self-consistent COHSEX the number of bands is
reduced to 2048, except for the biggest structure (4 MgO),
which uses 3072 bands. The number of self-consistent cycles
is taken equal to 3.

D. Transformation to a Wannier basis set

The transformation from Bloch waves to maximally lo-
calized Wannier functions is performed with the WANNIER90
code [37] and its interface with VASP. The bands around the
Fermi level are not isolated in the energy spectrum. Hence,
we use the method of Souza et al. [35]: The bands within a
“frozen” energy window are completed by an optimal sub-
space of higher-energy bands. The Wannier functions describe
exactly the bands within the frozen window, which is chosen
here between the bottom of the valence band up to 3 eV above
the Fermi level.

A set of trial orbitals is needed as a starting point for
the WANNIER90 code. For Ag, we choose the set of orbitals
proposed by Souza et al. [35] for copper: 5d orbitals centered
on each atom, and interstitial s orbitals. For MgO, we choose
1s and 3p orbitals on oxygen atoms, and also interstitial s
orbitals. Hence, there are 28 Wannier functions per Ag cubic
cell and 24 Wannier functions per MgO cubic cell, which
yields 320 Wannier functions for the largest structure (4 Ag/4
MgO/4 Ag). The number Nb of ab initio bands included in the
optimization of the Wannier subspace is chosen at least twice
the number Nw of Wannier functions. Using 100 iterations
for optimizing the subspace (“disentanglement” step) and 100
iterations for optimizing the Wannier functions, we obtained
well-localized functions with quadratic spreads not exceeding
2 Å2.

We give here some notations and recall some basic prop-
erties of Wannier functions [36] which will be used in the
following. Let ai denote the real lattice basis vectors of
the ab initio supercell, which will be referred to as the “ref-
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erence supercell” (RS). Here, a1, a2, and a3 are chosen along
the crystal directions [100], [010], and [001], respectively. Let
gi denote the reciprocal lattice basis vectors. The ab initio
Bloch states |ψnk〉 are computed for k points in a MP grid
containing � with Ni mesh points along each direction gi.
Hence, these states satisfy periodic boundary conditions over
an extended supercell (ES) made of Ni replicas of the RS along
each direction ai. The replicas are indexed by their translation
vector R with respect to the RS:

R = p1a1 + p2a2 + p3a3, (1)

where pi are integers. The Wannier functions are optimized
linear combinations of Bloch states:

|Rn〉 = 1

N

∑
k

e−ik·R
Nb∑

m=1

U (k)
mn |ψmk〉, (2)

where n indexes the Nw Wannier functions of each cell R,
and N is the number of k points. The U (k) are Nb × Nw com-
plex matrices with orthonormal columns, optimized by the
WANNIER90 code to maximize the localization of the Wannier
functions. The average position of |0n〉, called Wannier center,
is denoted as r̄n. The phases of the U (k) matrices are chosen
so that the r̄n are within the RS. |Rn〉 is the translation by R
of |0n〉, hence, its center is at r̄n + R.

Wannier functions form an orthonormal basis. They satisfy
periodic boundary conditions over the ES. Hence, each Wan-
nier function |Rn〉 contains periodic replicas centered around
positions R + T + r̄n, where T is any vector of the lattice
defined by the periodic repetition of the ES:

T = p1N1a1 + p2N2a2 + p3N3a3. (3)

E. Hamiltonian in the Wannier basis

From Eq. (2), one obtains the expression of the ab initio
Hamiltonian in the Wannier basis:

〈Rn|Ĥ |R′n′〉 = 1

N

∑
k

eik·(R−R′ )
Nb∑

m=1

U (k)∗
mn εmkU (k)

mn′ , (4)

where εmk are the Bloch state energies. From these matrix
elements, a Hamiltonian with finite-range coupling is defined.
It is meant to describe the infinite crystal instead of the ES, and
it will be used for transport calculations and for interpolating
the band structure at k points which are not in the MP grid. For
this purpose, each Wannier function |Rn〉 is now interpreted
as a localized function centered around R + r̄n, independent
from its periodic replicas centered around R + T + r̄n. Each
|Rn〉 is only coupled to the |R′n′〉 whose centers R′ + r̄n′

are in the Wigner-Seitz cell centered around R + r̄n and
associated to the ES. In other words, R′ + r̄n′ must be closer
to R + r̄n than any of its periodic replicas R′ + r̄n′ + T. This
convention for defining the Hamiltonian is an available option
in the WANNIER90 code. It implies, in this study, that the
maximum coupling range along the transport direction is
N1 × L/2, where L is the RS length.

The accuracy of this Hamiltonian improves rapidly when
refining the MP grid of the ab initio calculation. For the
systems considered here, a 2 × 4 × 4 grid is sufficient. The
reason to use two k points along the transport direction is
discussed in Appendix A.

Obviously, the Hamiltonian is modified when performing
MB corrections. For G0W0, the Bloch states are unchanged
and only the eigenvalues εmk are modified. Hence, we keep the
same Wannier functions and only recompute the Hamiltonian
matrix elements of Eq. (4). For HSE and self-consistent
COHSEX, since Bloch states are modified, Wannier functions
must be reoptimized.

F. Calculation of the tunneling conductance

The Wannier Hamiltonian allows replacing the periodic
repetition of the ab initio supercell along the transport direc-
tion by semi-infinite Ag electrodes. It also allows interpolating
the band structure on a finer grid of transverse k points.
Indeed, the quantum transmission through the Ag/MgO/Ag
junction strongly depends on the wave vector parallel to
the interfaces k‖ = k2g2 + k3g3. The 4 × 4 grid used in our
ab initio simulations is not fine enough to resolve this depen-
dence. Hence, we consider a finer MP grid of k‖ points. Wave
functions are developed on the following basis, indexed by
the lattice vector R⊥ = p1a1 along the transport direction, the
Wannier index n, and the transverse wave vector k‖:

|R⊥nk‖〉 = 1√
N‖

∑
R‖

eik‖·(R‖+r̄n )|(R⊥ + R‖)n〉, (5)

where N‖ is the number of k‖ points, and R‖ runs over
transverse lattice vectors:

R‖ = p2a2 + p3a3. (6)

These basis states are localized along the transport direction
a1, and Bloch type along the transverse directions. The Hamil-
tonian only couples states with the same transverse wave
vector k‖ and its matrix elements are computed in terms of
the matrix elements of Eq. (4):

H (k‖ )
R⊥nR⊥′n′ =

∑
R‖′

eik‖·(R‖′+r̄n′−r̄n )〈R⊥n|Ĥ |(R⊥′ + R‖′)n′〉. (7)

In some cases, the matrix elements will be neglected be-
yond a cutoff distance Lcut along the transport direction. The
cutoff condition reads as

|(R⊥ + r̄n − R⊥′ − r̄n′ ) · â1| > Lcut, (8)

where â1 is the unit vector along the transport direction.
We can now define the Hamiltonians of the central region

and of the electrodes. The central region is defined as the RS
and its Nw × Nw Hamiltonian reads as

HC
nn′ = H (k‖ )

0n0n′ , (9)

where we have omitted the transverse wave vector in HC

to lighten the notations. The Hamiltonian of the periodic
electrodes is extracted from Ag unit cells which are far enough
from MgO so that its influence is screened. We also need to
define a cutoff distance beyond which the couplings between
orbitals in Ag are negligible. A convergence study has shown
that we can neglect the couplings between one cubic unit cell
of Ag and its fourth neighbors and beyond. The remaining
Hamiltonian blocks, schematized in Fig. 1, are extracted from
the Hamiltonian (7). More precisely, the diagonal block of the
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last Ag cubic cell H00 is made of the matrix elements

H (k‖ )
0n0n′ (10)

with n and n′ restricted to the orbitals of the last cubic cell.
Similarly, the coupling blocks H0i between this cell and the
first three cells of the right-side RS replica (R⊥ = a1) are
made of the matrix elements

H (k‖ )
0na1n′ (11)

with n and n′ restricted to the relevant cubic cells. The blocks
H0i have dimension 28 × 28. They are used to build the
Hamiltonians of the electrodes, which are block-tridiagonal,
each block corresponding to three cubic cells. The right
electrode Hamiltonian reads as

HR =

⎛
⎜⎜⎝

D τ

τ † D
. . .

. . .
. . .

⎞
⎟⎟⎠ (12)

with the diagonal block

D =
⎛
⎝

H00 H01 H02

H01† H00 H01

H02† H01† H00

⎞
⎠ (13)

and the coupling block

τ =
⎛
⎝

H03 0 0
H02 H03 0
H01 H02 H03

⎞
⎠. (14)

The Hamiltonian of the left electrode is defined in a similar
way, using the same blocks. τ also defines the coupling
between the electrodes and the central region. The decimation
algorithm of Lopez-Sancho et al. [47,48] is used to compute
the electrodes’ self-energies �L(k‖, E ) and �R(k‖, E ). Full
matrix inversion is used to compute the Green’s function of
the central region. Then, the sum of transmission coefficients
T (k‖, E ) is obtained from the trace formula [49]

T (k‖, E ) = Tr[�R(k‖, E ) Gr (k‖, E ) �L(k‖, E ) Ga(k‖, E )],

�R,L(k‖, E ) = i[�R,L(k‖, E ) − �
†
R,L(k‖, E )] (15)

and it is averaged over transverse k‖ points to obtain the total
sum of transmission coefficients per Ag cubic cell area:

T (E ) = 1

N‖
∑

k‖
T (k‖, E ). (16)

In the following, a 10 × 10 MP grid of k‖ points is sufficient
to reach convergence of T (E ) around the Fermi energy.

Finally, we obtain the zero-bias conductance per Ag cubic
cell area, at zero temperature:

G = G0T (E f ), (17)

where G0 = 2e2/h = 7.75 × 10−5 �−1 is the quantum of
conductance and E f is the Fermi energy, defined here as
the charge neutrality point of the electrodes. This allows a

more reliable comparison between structures with different
MgO thicknesses. E f is obtained as the energy at which
the integrated density of states (DOS) of the bulk infinite
electrode gives charge neutrality. The DOS is computed from
the Green’s function on a fine energy grid starting below the
valence bands.

G. Range of the Wannier Hamiltonian and cutoff distance

Figure 2 shows how the maximum modulus of the Wan-
nier Hamiltonian matrix elements (7) decreases with the dis-
tance between Wannier centers along the transport direction,
defined by the left-hand side of Eq. (8). The Hamiltonian
is computed in DFT-PBE and with the three different MB
corrections, using a 2 × 4 × 4 MP grid. The decay is ex-
ponential and similarly fast for all approximations up to a
distance where it saturates to constant values. This distance
is around 30 Å to saturation values around 10−5 eV for
all approximations except G0W0, which saturates before the
others, around 13 Å, to much higher values, around 10−2 eV.
This is at first sight surprising since the Wannier functions
are exactly the same than in DFT-PBE and well localized.
However, the modification of the eigenvalues by the G0W0

correction is equivalent to a modification of the Hamiltonian
which is local in energy, hence nonlocal in space. It induces
long-range couplings between Wannier functions. This was
already noticed by Ferretti et al. [50] who studied the impact
of G0W0 corrections in conjugated polymers. This effect is
also proven in Appendix B for a simple one-dimensional, two-
level, tight-binding model. These long-range couplings have a
strong influence on the transmission spectra, which turn out
to be noisy. An analysis detailed in Appendix A shows that,
if the Hamiltonian accuracy is sufficient, transmission spectra
should be nearly insensitive to long-range couplings, which
could be safely discarded. We conclude that the high G0W0

long-range couplings may be not physical, and we decide
to discard them beyond a cutoff distance Lcut = 13 Å, after
which the G0W0 matrix elements become higher than in the

l

l

l

FIG. 2. Maximum modulus of the Wannier Hamiltonian matrix
elements (7) as a function of the distance between Wannier centers
along the transport direction, as calculated by various approxima-
tions, here shown for the longest system (4 Ag/4 MgO/4 Ag). The
difference between DFT and G0W0 is only due to the change of
eigenvalues in Eq. (4). On the contrary, for HSE and COHSEX, the
matrix U (k)

mn also changes.
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other approximations. However, in the following, one should
keep in mind that G0W0 spectra are subject to caution, and that
G0W0 does not seem to be a reliable method to compute the
transport properties of tunnel junctions.

III. RESULTS

A. Transmission spectra in the DFT approximation

The transmission values computed at the level of DFT-PBE
are expected to be consistent with existing codes based on
localized functions basis set. Such comparison is interesting
to see if the results are robust with respect to the basis choice.
Figure 3 shows the transmission spectra T (E ) calculated for
different MgO thicknesses, in the DFT-PBE approximation.
As expected, the plane-waves/Wannier results are in very
good agreement with those obtained with TRANSIESTA.

We will now provide an interpretation of the transmission
curves. At low energies we are in the valence band (VB) of
MgO, and the transmission is high and independent of the
MgO thickness. The VB edge lies at about −2.2 eV below E f .
Beyond the VB, in the MgO band gap, we enter into the tun-
neling regime and the transmission decreases exponentially
with the thickness. The values of the zero-bias conductance
are given in Table I and its exponential decay with the MgO
thickness is shown in Fig. 5.

The analysis, not shown here, of the k‖-resolved transmis-
sion T (k‖, E f ), shows that the main contribution comes from
transverse wave vectors close to zero. This is similar to what
is obtained in DFT + Landauer simulations of Fe/MgO/Fe
magnetic tunnel junctions with parallel magnetizations [3].
The decay rate of the conductance with the MgO thickness
is also in very good agreement with Ref. [3]. The decay is
associated to evanescent states in the gap of MgO, discussed
in Appendix C. These states have 	1 symmetry at k‖ = 0 [3].
The first conduction band of MgO has the same symmetry.
However, the conduction band edge, which is expected to be at
about 2.5 eV above E f , is not visible on the transmission plot.
This is due to the transition, at E > E f + 1.6 eV, to an Ag
band with a different symmetry, which cannot be transmitted

l

FIG. 3. Transmission spectra T (E ) through MgO barriers of
different thicknesses, from 1 cubic layer (1L) to 4 cubic layers
(4L). The calculations are done in the DFT-PBE approximation. The
results obtained by the plane-wave/Wannier method are compared to
those obtained by TRANSIESTA.

through the 	1 states of MgO. This symmetry analysis is
detailed in Appendix D.

B. Effect of MB corrections on the tunneling transmission

Figure 4 shows how G0W0, self-consistent COHSEX
(simply referred as COHSEX in this section) and HSE modify
the DFT transmission function, for the four structures with
increasing MgO thickness, from 1 to 4 cubic layers. For
the lowest transmission spectra, that is HSE and COHSEX
applied to the thickest MgO structure, the long-range Hamil-
tonian couplings were discarded by applying a cutoff distance
Lcut = 13 Å. This has eliminated some moderate numerical
noise occurring at these very low tunnel transmissions below
10−7. This point is detailed in Appendix A.

We expect to observe a reduction of the transmission
spectra with respect to the DFT ones. This is confirmed for
COHSEX and HSE, which for the 3 and 4 MgO structures
reduce the T (E f ) value of more than one order of magnitude.
For a more complete analysis it is interesting to compare
our results to the experimental results of Gangineni et al.
[5]. In this work, measurements of the tunneling conductance
have been performed on Fe/MgO/Fe junctions at different
MgO thicknesses, up to four cubic cells. The experimental
conductances for parallel magnetizations of the Fe electrodes
have been then compared to the theoretical values obtained
by Butler et al. [3] with the DFT + Landauer approach. For 4
MgO cubic cells, the deviation between experiment and the-
ory turns out to be between one and two orders of magnitude
(Fig. 3 of Ref. [5]). Similar results were also obtained by
Yuasa et al. [51]. This is comparable to the deviation observed
in our Ag/4 MgO/Ag system between DFT and COHSEX or
HSE. It indicates that the correction introduced by COHSEX
and HSE goes in the right direction to improve the agreement
with experiments. This comparison is qualitative since the
electrodes considered in the experiment are made of Fe. But, it
remains physically relevant since, for both Ag electrodes and
Fe electrodes with parallel magnetizations, the exponential
decay of the conductance with the MgO thickness is related
to evanescent states of symmetry 	1 in MgO.

The values of zero-bias conductance (at zero temperature),
that is T (E f ), are shown in Table I for the four structures
and four approximations. Figure 5 shows that the decay
with the MgO thickness is exponential, with a net separation
between DFT/G0W0 and HSE/COHSEX. For DFT the decay
rate is very close to what was found in Ref. [3]. We have

TABLE I. Zero-bias tunneling conductance (in �−1 μm−2)
through a MgO barrier of different thickness, from 1 to 4 cubic cells,
with Ag electrodes, as calculated by various approximations. The
conductances are evaluated at zero temperature by Eq. (17). Their
values at room temperature, not given here, do not differ by more
than a few percent.

Method 1 MgO 2 MgO 3 MgO 4 MgO

DFT-PBE 31 8.9 × 10−1 3.3 × 10−2 1.5 × 10−3

PBE + G0W0 27 5.8 × 10−1 2.3 × 10−2 1.1 × 10−3

COHSEX 14 1.6 × 10−1 2.6 × 10−3 3.9 × 10−5

HSE 13 1.6 × 10−1 2.7 × 10−3 4.7 × 10−5
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l

l l

l

FIG. 4. Transmission spectra calculated by various approximations, for different MgO thicknesses (1 to 4 cubic layers). All the G0W0

transmission functions, and the HSE and COHSEX ones for the thickest structure (4 MgO), are calculated by applying a Hamiltonian cutoff
distance Lcut of 13 Å (see Sec. II G and Appendix A).

G ∝ exp(−2κa × nMgO), where nMgO is the number of MgO
cubic cells and 2κa � 3.3. κ is related to the decay rate
of evanescent wave functions in MgO, and a is the lattice
constant of MgO. 2κa increases for HSE and COHSEX to
values around 4.2. This entails that the overestimation error
of the DFT + Landauer approach becomes more important in

l

FIG. 5. Values of Table I in logarithmic scale with respect to the
number of MgO layers in the central region. The left y axis shows
values in unit of G0 = 7.75 × 10−5 �−1, that is T (Ef ), while the
right y axis shows values in �−1 μm−2. The straight lines are linear
regressions on the data logarithm. Therefore, the conductance goes
as G = A exp(−2κa × nMgO). The fit parameters are also shown.

higher tunneling regimes. The decay rate obtained in HSE and
COHSEX (2κa � 4.2) is also in good agreement with the rate
obtained for the A sample in Ref. [5]. On the contrary, the
decay rate obtained in DFT (2κa � 3.3) is closer to the B
sample (Fig. 3 of Ref. [5]). A comparison of the decay rates
with the ones obtained from the complex band structure of
bulk MgO is performed in Appendix C.

The fact that G0W0 does not provide a significant reduction
of transmission and conductance (Figs. 4 and 5) leads to
another interesting analysis. The DFT systematical underes-
timation of the insulators’ band gap [20] is suspected to be
the main cause of the overestimation of the tunneling trans-
mission. This is inferred by assuming that the band offsets
between the Fermi level E f of the electrodes and the valence
and conduction band edges of MgO are both underestimated
by DFT. This underestimation of the energy barriers should
lead to an overestimation of tunneling. MB corrections on
eigenvalues are thus expected to give more accurate con-
ductance values. Table II shows the electronic band gap of
bulk MgO calculated in different approximations: DFT-PBE,
G0W0, COHSEX, and HSE. G0W0 gives a band gap close
to the experimental values, whereas COHSEX, as expected,
overestimates the band gap. Our observation is that the de-
crease of the tunneling transmission is not simply correlated to
the opening of the MgO band gap. In the G0W0 approximation,
the zero-bias conductances remain close to the DFT values,
despite the band-gap opening from 4.72 to 7.44 eV. The HSE
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TABLE II. Electronic band-gap of bulk MgO, calculated by
various approximations. The lattice parameter equals 4.212 Å, which
is the experimental value at room temperature [52]. Values are in eV.

Method This work Other works

DFT-PBE 4.72 4.68 [53]; 4.45 [54]
PBE + G0W0 7.44 7.08 [53]; 7.41 [55]
COHSEX 9.37
HSE 7.77 7.67 [45]
Experimental 7.67–7.83 [45]

approximation gives similar gap opening but a smaller trans-
mission. The COHSEX approximation gives conductances
very close to the HSE ones, while the band gap is much larger.
The band offset between E f and the VB edge of MgO is also
not simply correlated to the band-gap opening. In particular,
the offset is larger in HSE than in COHSEX. The HSE offset
is around 4 eV, which is close to the experimental value
obtained by scanning tunneling spectroscopy on thin MgO
layers deposited on an Ag substrate [33].

These results point to the fact that it is not the correction
of the band gap and energies which drives the reduction
of the zero-bias conductance, but rather the correction of
wave functions. Indeed, G0W0, which keeps the Kohn-Sham
eigenfunctions unmodified, does not provide any significant
correction to the DFT zero-bias conductance, while HSE and
COHSEX, which update also eigenfunctions, provide signif-
icant and similar corrections to the zero-bias conductance,
despite the different MgO band gap. Figure 6, which shows
how DFT eigenvalues of the 4 Ag/1 MgO/4 Ag supercell are
modified by the different MB corrections, also supports this
argument. Eigenvalues close to the Fermi energy correspond
to wave functions mainly located in Ag, with evanescent tails
in MgO. Eigenvalues of a metal, which form a continuous
spectrum, are not very sensitive to QP corrections, and remain
almost unmodified with respect to DFT. Modifications occur
only far away from the Fermi energy and for Bloch states with
contributions which start to come from Mg and O electrons.
This means that a change in the transmission function around
the Fermi energy is necessarily caused by the modification of
eigenfunctions. This follows by the fact that the trace formula

l

l

l

FIG. 6. Quasiparticle energies as function of the DFT-PBE
eigenvalues shown for the 4 Ag/1 MgO/4 Ag structure.

(15) used to compute the transmission is local in energy.
Indeed, the transmission T (E ) only depends on the Green’s
functions G(E ). But, the Green’s functions for DFT and G0W0

can be written as

GDFT(E ) =
∑

m

∣∣ψDFT
m

〉〈
ψDFT

m

∣∣
E − εDFT

m

, (18)

GG0W0 (E ) =
∑

m

∣∣ψDFT
m

〉〈
ψDFT

m

∣∣
E − ε

G0W0
m

, (19)

that is, the wave functions ψm are kept at the level of DFT
and only the eigenvalues εm are updated. Now, the Green’s
function at E = E f only depends on the poles/eigenvalues ε j

close to E f . If G0W0 does not introduce significant corrections
to these eigenvalues, as Fig. 6 shows, then GG0W0 (E f ) �
GDFT(E f ). Therefore, the G0W0 zero-bias conductance cannot
be very much different from the DFT one. Only with a Green’s
function where also the wave functions are updated, one
might expect that, even if the eigenvalues close to E f are
substantially uncorrected, the wave functions can significantly
change the Green’s function.

This argument can be formulated in an alternative manner.
The transmission at energy E can be obtained by building
diffusion eigenstates made of incident, reflected, and trans-
mitted waves. These states are linear combinations of the
ab initio Bloch eigenfunctions at energy E . Hence, a modi-
fication of these wave functions is needed to modify the DFT
transmission close to E f since eigenvalues remain basically
unmodified.

A final comment is worth on the comparison between
COHSEX and HSE. The agreement of HSE with COHSEX
on the zero-bias conductance shown in Fig. 5 and Table I
might be fortuitous. Indeed, COHSEX and HSE differ on
all other quantities, e.g., eigenvalues, band gaps, so that it
looks unlikely that HSE and COHSEX could provide the same
eigenfunctions, even those located at the Fermi energy.

IV. CONCLUSION

The tunneling transmission spectra and zero-bias conduc-
tances of Ag/MgO/Ag junctions have been computed using
DFT-based ab initio calculations. A methodology combining
plane-wave DFT and transformation to a Wannier basis set
has been used to compute the quantum transmission. Since
DFT systematically underestimates the band gap of insulators,
it is expected that the tunneling transmission in the coherent
regime is overestimated. This should be improved by MB
corrections. For this purpose, the impact of different MB cor-
rections to DFT has been evaluated. Our conclusion is that MB
corrections of energies and band offsets have nearly no impact
on the zero-bias conductance if the DFT eigenfunctions are
not updated. The conductance is significantly reduced only if
the eigenfunctions are updated in the MB correction scheme.
Ferretti et al. [50] gave a similar conclusion about the decay
lengths of evanescent states in the band gap of conjugated
polymers. Here, we have reinforced this conclusion by eval-
uating MB corrections on a bulk tunneling heterojunction.
Indirect comparison of our simulations with experiments
(Gangineni et al. [5]) indicate that MB corrections go toward
more accurate tunneling conductances.
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HSE and self-consistent COHSEX seem the most practi-
cal options for performing MB corrections of the tunneling
transmission since these corrections are available in many
DFT codes. Self-consistent GW would be in principle more
accurate but it is more computationally demanding. An in-
teresting but ambitious perspective would be to include MB
corrections directly inside the nonequilibrium Green’s func-
tions (NEGF) formalism, starting from a DFT Hamiltonian in
a localized basis set (Wannier functions or atomic orbitals).
This should correct the band gap and zero-bias conductance,
and would allow considering finite-bias voltages and electron-
phonon interaction.

The plane-waves Wannier methodology used in this work
is applicable to larger supercells, with transverse dimensions
up to about 1.5 × 1.5 nm, in the DFT-PBE and HSE approx-
imations. Beyond this size, we reach the limits of ab initio
calculations and also of transport simulations, which scales to
the third power of each transverse dimension. Such supercells
are sufficient to study, e.g., the impact of a point defect or of a
conducting filament on the electron transmission through the
oxide layer.

APPENDIX A: ACCURACY OF THE WANNIER
HAMILTONIAN AND CUTOFF DISTANCE

During the first tests of the plane-wave/Wannier methodol-
ogy, we used a 1 × 4 × 4 MP grid in the ab initio calculations.
Using a single k point � along the transport direction seemed
sufficient, given the long length of the considered supercells.
However, for the thickest oxide, we have encountered ac-
curacy issues in transport calculations. Figure 7 shows the
DFT transmission spectra obtained with different values of
the cutoff distance Lcut. The couplings at distances around
20 Å strongly modify the tunneling transmission, and there
is no evident justification for discarding them. The problem
was solved by using a 2 × 4 × 4 MP grid. Figure 7 shows that
the DFT transmission spectrum is then nearly insensitive to
the cutoff. This proves that the couplings at distances beyond

FIG. 7. Transmission spectrum of the Ag/4 MgO/Ag structure
in DFT-PBE, using the plane-wave/Wannier method. If a single k
point is used along the transport direction, the spectrum depends
on the cutoff distance Lcut . If two k points are used, the spectrum
becomes nearly independent on Lcut down to ∼13 Å. Moreover, the
spectra with one or two k points are nearly identical at Lcut = 13 Å.

l

FIG. 8. (a) 4 Ag/4 MgO/4 Ag supercell, delimited by a dashed
line, and portions of its periodic replicas. (b) Sketch of a Wannier
function computed with one and two k points along the transport
direction (log scale). By using one single k point, the period of the
Wannier function equals the supercell length L. The Hamiltonian
matrix element between the two functions is impacted by the tails
of the periodic replicas, leading to an overestimate of the direct
coupling between Ag electrodes. By using two k points, the Wannier
replicas are moved away at distance 2L (not shown here) and have
much less influence.

13 Å have negligible impact on the transmission and can be
safely discarded.

The explanation is that the distant couplings are impacted
by the periodicity of the Wannier functions along the transport
direction. When using a single k point, this period equals the
length L of the supercell, and the influence of the replicas
can be strong, as illustrated in Fig. 8. When using two k
points, the period of the Wannier functions is 2L and the
periodic replicas have much less impact. The coupling of
the Wannier function |Rn〉 in Fig. 8(b) with another function
|R′n′〉 is defined as an integral over the ES. Hence, in the one
k-point case, the coupling calculation requires to integrate the
black plain line over the blue area in Fig. 8(b), whereas it
requires to integrate the red dashed line over the whole x-axis
range when using two k points. It is evident that, in the first
case, the impact of the closer periodic replicas leads to an
overestimation of the coupling. This overestimation can be
negligible for strong, short-distance couplings, but dominant
for weak, long-distance ones.

This interpretation is supported by Fig. 9, which shows
the decrease of Ag-Ag DFT Hamiltonian couplings with the
distance between Wannier centers. This is the same analysis
as in Fig. 2, but restricted to Wannier functions belonging
to the Ag electrodes. The couplings beyond 17 Å are direct
tunneling Ag-Ag couplings through MgO. These couplings,
which are expected to be very weak, are much larger with
one k point than with two k points. This overestimation when
using one k point is due to the effect of replicas, which
dominates the true, physical, weak couplings. On the contrary,
for short-distance strong Ag-Ag couplings inside the electrode
(<17 Å), the effect of replicas is negligible. The overestimated
direct Ag-Ag couplings beyond 17 Å are nonphysical, and
introduce some noise in the transmission spectrum.

Hence, to ensure a good accuracy, we have performed
all ab initio calculations of this study with a 2 × 4 × 4 MP
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l

l

FIG. 9. Decay of the Hamiltonian couplings between Ag Wan-
nier functions with the distance. The calculation is done on a 4 Ag/4
MgO/4 Ag supercell in the DFT-PBE approximation, using either
one or two k points along the transport direction.

grid. In the DFT-PBE, HSE, and self-consistent COHSEX
approximations, the transmission is nearly insensitive to an
increase of Lcut beyond 13 Å. Only for the thickest oxide,
where Ag-Ag direct couplings are extremely weak, we ob-
serve small fluctuations in the tunneling transmission when
Lcut approaches the maximum coupling distance L � 50 Å.
Such fluctuations are visible in Fig. 7, when using two k
points and no cutoff. These very distant couplings are related
to the periodicity 2L of the Wannier functions and must be
discarded. Hence, we have used a cutoff distance of 13 Å
to suppress these fluctuations when necessary. This cutoff
distance is shorter than the MgO thickness, thus, all the Ag-Ag
couplings through MgO are forced to zero.

Using two k points does not solve the problem of long-
range interactions in the G0W0 approximation. As discussed
in Sec. II G, these interactions are intrinsic to the method.

APPENDIX B: EFFECT OF A G0W0-LIKE CORRECTION
ON A 1D TIGHT-BINDING MODEL

We consider the 1D, two-band, tight-binding model con-
sidered by Tomfohr and Sankey [56]. It is an infinite 1D pe-

FIG. 10. Black lines: Band structure of the 1D tight-binding
model (see text). Red dotted line: Rigid shift of the conduction band
after application of a scissor operator of +2 eV.

l

FIG. 11. Maximum modulus of the Hamiltonian matrix element
vs distance between orbitals, after application of the scissor operator
in Bloch space. See model parameters in the main text.

riodic chain with alternating A and B orbitals, onsite energies
EA and EB, and nearest-neighbor coupling −t between A and
B. The band structure is given by

E (k) = � ±
√

	2 + 2t2[1 + cos(ka)], (B1)

where � = (EA + EB)/2, 	 = (EB − EA)/2, and a is the
lattice constant. Figure 10 shows the band structure for EA =
−1 eV, EB = 1 eV, t = 2 eV. It also shows the band structure
after application of a “scissor operator” which rigidly shifts
the conduction band by +2 eV.

Keeping the Bloch wave functions unchanged, and just
modifying the energies by the scissor operator, we have re-
computed the Hamitonian in the tight-binding basis. Figure 11
shows the decay of the new Hamiltonian matrix elements
with the distance between orbitals. We see couplings above
10−2 eV up to the 10th neighbor, while the original Hamilto-
nian was limited to nearest-neighbor couplings.

This scissor operator is analogous to a G0W0 correction,
where only the eigenvalues are corrected. This simple model
illustrates how an operator which is diagonal in Bloch space
can increase the range of the Hamiltonian in a basis of
localized orbitals. This may explain the long-range couplings
of the G0W0 Hamiltonian in Fig. 2. Ferretti et al. found a
similar behavior on a different tight-binding model [50].

APPENDIX C: CONDUCTANCE DECAY RATE FROM
BULK MgO COMPLEX BAND STRUCTURE

Figure 12 shows the complex band structure (CBS) of
bulk MgO within the four considered approximations. It was
computed in the Wannier basis, for a transverse wave vector
k‖ = 0, with an exponential decay of the wave functions along
the transport direction: exp(−κan), where a is the lattice
constant and n indexes the cubic cell. The couplings beyond
third-nearest-neighboring cubic cells are neglected along the
transport direction. The calculation of the CBS involves a
quadratic eigenvalue problem. It is solved by transforming it
into a generalized eigenvalue problem with doubled dimen-
sion [57,58].

The CBS can be used to infer the decay rate of the tunnel-
ing conductance of a junction composed by n MgO cubic cells
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FIG. 12. Complex band structure of bulk MgO calculated at
k‖ = 0 within the four considered approximations. κ is the decay
rate of the evanescent wave functions and a is the lattice constant.
For each approximation, the difference between the Fermi level and
the valence band edge is determined from the transmission spectrum
of the Ag/4 MgO/Ag structure (Fig. 4).

between two electrodes, when n increases: G ∝ exp(−2κan).
The factor 2 comes from the fact that the tunneling probability
is proportional to the square modulus of the evanescent state.
In the MgO band gap, the evanescent states with the slowest
decay (i.e., smaller κ) have the same symmetry as the states
of the Ag electrodes at the Fermi energy (see Appendix D for
details). Hence, the decay rate of the conductance is related
to the smallest value of κ at the Fermi energy E f . However,
the position of E f depends on the band alignment between Ag
and MgO. In Fig. 12, we have defined the Fermi level from the
band alignment of the thickest structure (Ag/4 MgO/Ag): For
each approximation, we have extracted the difference between
E f and the valence band edge from Fig. 4, and reported it in
Fig. 12.

Table III shows the values of 2κa extracted from the CBS
compared to the ones extracted from the transmission spectra
of the Ag/MgO/Ag junctions at k‖ = 0. The values obtained
by the two methods are reasonably consistent. The separation
between between DFT and G0W0 on one hand, and COHSEX
and HSE on the other hand, is confirmed. Some differences
may arise from the presence of the Ag/MgO interface when
computing κ from the transmission spectra. It is not surprising
that the decay factor of a junction is dependent on the material
the electrodes are made of. Thus, we do not expect to find
exactly the same values, especially for thin structures as the
ones considered here, where the bulk properties of MgO
are surely influenced by the presence of the Ag electrodes.
Moreover, the offset between the Fermi level of Ag and the

TABLE III. 2κa values extracted from the CBS of bulk MgO,
and from the transmission functions of Ag/MgO/Ag junctions of
different thickness, at k‖ = 0. The values are computed within the
four approximations considered in this work.

Method DFT G0W0 COHSEX HSE

CBS 2.87 3.09 3.68 3.85
Transmission 2.73 2.84 3.78 3.62

ll

l

ll

FIG. 13. DFT-PBE band structure of bulk Ag, either computed
in the primitive cell, or in the cubic cell along the [100] direction
(k‖ = 0). a is the lattice parameter.

valence band edge of MgO depends on the MgO thickness,
as visible in Fig. 4. Taking this into account would shift the
CBS curves along the energy axis in Fig. 12 and give slightly
different values of κ for each thickness.

APPENDIX D: SYMMETRY MISMATCH BETWEEN Ag
AND MgO BLOCH FUNCTIONS AT THE CONDUCTION

BAND EDGE

This Appendix details why the conduction band edge can-
not be determined from the transmission spectra in Figs. 3
and 4. The DFT-PBE band structure of bulk Ag is shown in
Fig. 13. It is computed either in the primitive cell, or in the
cubic cell at k‖ = 0 and with the longitudinal wave vector
k⊥ ∈ [0, π/a], where a is the lattice constant. The latter shows
two different bands joining at � at E � E f + 1.6 eV. The
upper band is actually the folding of XW paths in the first
Brillouin zone of the primitive cell, with X located along the

l

FIG. 14. Color maps of some Bloch wave functions at k‖ = 0 in
a (xy) slice of the cubic cell. State labeled 1 on the band structure plot
(Fig. 13) has symmetry 	1 while state labeled 2 has symmetry 	2 (it
is doubly degenerate, the other one having mirror symmetry along the
horizontal axis). The highest valence states and lowest conduction
states of MgO both have 	1 symmetry.
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transverse directions [010] and [001]. These X points fold to
� when considering the cubic cell instead of the primitive one.

Figure 14 shows a symmetry mismatch between the upper
band of Ag and the conduction band of MgO. Color maps
of the Bloch wave functions show that the lower band has
symmetry 	1, the same as the states of MgO, while the

upper band has symmetry 	2. Hence, at the conduction band
edge of MgO, which is well above E f + 1.6 eV even in the
DFT case, the Ag states cannot be transmitted through the
conduction states of MgO. They are probably transmitted by
tunneling through evanescent states visible in the complex
band structure of MgO (Fig. 12).
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