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Conductance plateaus and shot noise in fractional quantum Hall point contacts
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Quantum point contact devices are indispensable tools for probing the edge structure of the fractional quantum
Hall (FQH) states. Recent observations of quantized conductance plateaus accompanied by shot noise in such
devices, as well as suppression of Mach-Zehnder interference, call for theoretical explanations. In this paper
we develop a theory of FQH edge state transport through quantum point contacts, which allows for a generic
Abelian edge structure and assumes strong equilibration between edge modes (incoherent transport regime). We
find that conductance plateaus are found whenever the quantum point contact locally depletes the Hall bar to a
stable region with a filling factor lower than that of the bulk and the resulting edge states equilibrate. The shot
noise generated on these plateaus can be classified according to 13 possible combinations of edge charge and
heat transport in the device. We also comment on a relation between the the emergence of quantized plateaus
and the suppression of Mach-Zehnder interference. Besides explaining recent experimental findings, our results
provide novel insights and perspectives on quantum point contact devices in the FQH regime.
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I. INTRODUCTION

The fractional quantum Hall (FQH) effect [1,2] is a
paradigmatic realization of the bulk-boundary correspon-
dence: the topological order [3,4] of the two-dimensional
(2D), gapped bulk manifests itself holographically on the
edge through a gapless one-dimensional topological quantum
liquid. This so-called chiral Luttinger liquid, pioneered in
several papers by Wen [5–8] (see also Ref. [9] for a review),
has its origin in a requirement of the cancellation of the U (1)
gauge anomaly in (2+1)D Abelian Chern-Simons theory
[8,10,11]. While the latter topological field theory provides
a complete description of the low-energy degrees of freedom
in the bulk, it suffers from an anomalous term which violates
charge-conservation symmetry in the presence of boundaries.
This anomaly is cured by fixing the gauge on the boundary,
which naturally introduces the chiral Luttinger liquid hosting
the same anomaly as the bulk but with opposite sign. The two
anomalous terms therefore cancel exactly and render the full
theory consistent and anomaly free.

The topological properties of a chiral Luttinger liquid
describing an Abelian FQH edge are fully specified by the
so-called K matrix [12]. This matrix is a topological quantity
(i.e., it is fixed up to basis changes for a given topologi-
cal phase) and carries, in particular, information about the
bulk filling factor νB ∈ Q, as well as about charges and
exchange statistics of quasiparticle excitations. In addition,
the theory involves nontopological parameters including the

*Corresponding author: christian.spanslatt@kit.edu

edge-channel velocities and interchannel short-range density-
density interactions.

Through the bulk-boundary correspondence, some experi-
mentally measurable transport characteristics of the edge are
quantized under appropriate conditions (discussed below),
manifesting the topological order in the bulk. Most promi-
nently, the electrical Hall and two-terminal conductances GH

and G,

GH = νBe2/h, G = |GH |, (1)

are determined by the filling factor νB ≡ ∑
i δνi, where δνi are

the eigenvalues of K representing the filling-factor discontinu-
ities associated with the edge modes. Furthermore, the thermal
Hall and two-terminal conductances GQ

H and GQ,

GQ
H = νQκT, GQ = ∣∣GQ

H

∣∣, (2)

manifest νQ ≡ ∑
i sgn(δνi ) ≡ nd − nu ∈ Z, the difference be-

tween the numbers of “downstream” nd and “upstream” nu

edge channels [13,14]. Here the downstream direction is that
of predominant charge propagation as set by the magnetic
field, and upstream is the direction opposite to downstream.
Furthermore, T is the temperature, κ = π2k2

B/(3h), and kB is
Boltzmann’s constant.

The remarkable quantizations in Eqs. (1) and (2) hold very
generally for quantum Hall states with “maximally chiral”
edges such as, e.g., the Laughlin states [2] or the integer
quantum Hall states [15,16]. Such edges support channels
which all propagate unidirectionally, i.e., all eigenvalues of
the K matrix have the same sign (strictly speaking, this holds
under assumption that no edge reconstruction [17–20] takes
place). In this situation, the transport coefficients νB and νQ
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are extremely robust against disorder due to the absence of
backscattering.

Edges of generic FQHE states are not maximally chi-
ral, i.e., they consist of counterpropagating (downstream and
upstream) modes. Equivalently, the K matrix of such a state
has eigenvalues of both signs. In particular, edges of hole-
conjugate states (i.e., filling factors 1/2 < νB < 1) are of this
type, as was theoretically predicted [6,8] and experimentally
verified [21–24]. A prominent example is the νB = 2/3 state
which possesses one downstream edge channel associated
with filling factor discontinuity δν = 1 and one upstream
channel with δν = −1/3 [6,25]. The renormalization-group
analysis of a disordered interacting 2/3 edge was developed
by Kane, Fisher, and Polchinski (KFP) [26].

In general, the topological quantizations (1) and (2) do
not hold for edges with counterpropagating modes since the
conductances depend on degree of backscattering. However,
the quantizations (1) and (2) are restored in the incoherent
(fully equilibrated) regime [13,27–30]. The incoherent regime
takes place in the limit leq � L, where L is the edge length
and leq is a characteristic length for inelastic equilibration.
Beyond leq, individual channels fully equilibrate and form
hydrodynamic modes. What remains of the underlying edge
structure is the transport coefficients νB and νQ which are
entirely dictated by the topological order of the bulk.

The incoherent regime has been discussed in early theo-
retical papers [13,27] and later in the context of line junc-
tions [31,32]. More recently, Refs. [29,30,33,34] performed
a systematic study of the electric and thermal transport for the
incoherent νB = 2/3 edge. Furthermore, Ref. [29] reported an
analysis of the crossover between the coherent (L � leq) and
incoherent (L � leq) regimes with increasing temperature (or,
equivalently, increasing sample length). This analysis demon-
strates that the quantizations (1) and (2) are unique features
of the incoherent regime. To date, this quantization holds in
nearly all FQH experiments on complex edges, which implies
that the experimentally studied systems are generically in the
incoherent regime. Reaching the coherent regime in conven-
tional FQH structures would require either extremely low
temperatures or very small distances between contacts. Only
very recently was the full coherent-to-incoherent crossover (as
predicted in Ref. [29]) experimentally observed in a specially
designed double-well structure that permitted a high degree of
control over the intermode tunneling [35].

Measurement of thermal transport characteristics is much
more difficult than electric measurements and requires sub-
stantially more sophisticated schemes. While the thermal con-
ductance measurements [36–39] are in agreement with the in-
coherent result (2), only the two-terminal conductance GQ was
determined, which is proportional to the absolute value |νQ| of
the topological invariant. Such measurements do not provide
the information about the sign of νQ which distinguishes be-
tween downstream and upstream heat propagation. Motivated
by this limitation, a complementary and fully electrical ap-
proach to identify upstream heat propagation with shot noise
measurements was recently proposed in Refs. [34,40]. There
it was shown that in the incoherent regime, the noise falls
into three topologically distinct universality classes depending
on the direction of heat propagation with respect to that of
the charge flow (defined as downstream). In particular, when

νQ < 0, the noise is constant as a function of the edge length
up to exponentially small corrections in L/leq.

Another powerful tool for probing the FQH edge struc-
ture is the quantum point contact (QPC) geometry [41–47].
By using appropriately etched gates that locally deplete the
2D electron gas, local constrictions in the FQH sample are
formed. When the gate voltage varies, the size of the depletion
region, and thereby the sample boundary, is modified. The two
edges of the sample can therefore be brought into proximity
which allows interedge tunneling and thus leads to a gradual
change of the conductance through the sample.

QPC experiments performed for the hole-conjugate states
[48–50] have brought forward a number of remarkable obser-
vations. First, it was found that, as the gate voltage is tuned
such that the QPC varies from fully open to fully closed,
the resulting two-terminal conductance G typically develops
a set of quantized plateaus. The most prominent is the plateau
with G = (1/3)e2/h; other plateaus that have been reported
are characterized by G equal to 1/5, 4/5, 2/3, 2/5, and 3/7
in units of e2/h. Second, these plateaus are characterized
by shot noise S that was measured in Ref. [50] for the 1/3
plateau for bulk filling factors νB = 1, νB = 2/3, νB = 3/5,
and νB = 4/7. The strength of this noise was characterized by
the Fano factor that was defined according to

S = 2FeIimpτ (1 − τ ), (3)

where Iimp is the current impinging on the QPC and τ is
the transmission through the QPC (defined as the ratio of
the current through to QPC and Iimp). The found values of
F were of order unity, implying that the noise is strong.
Interestingly, the obtained values of F were always close to
the bulk filling factor νB. A qualitatively similar behavior,
with noisy intermediate conductance plateaus, was found in
a double-QPC geometry [51].

Complementary experimental information on the coher-
ence in the system was obtained from studying an electronic
Mach-Zehnder interferometer defined by two QPCs [50]. The
visibilities of the interference patterns were found to be quite
clear for νB � 5/3 but were drastically washed out for lower
filling factors. This “melting of interference” was observed to
be correlated with the onset of the G = (1/3)e2/h plateau in
transport through the QPC. The authors of Ref. [50] attributed
the loss of interference to proliferation of neutral modes
[52,53] induced by edge reconstruction due to a soft edge
confinement potential [17,20,51].

The onset of the 1/3 plateau for the νB = 2/3 state is
consistent with a picture developed by Wang, Meir, and Gefen
(WMG) [17,20]. The starting point of the WMG theory is the
edge reconstruction of the 2/3 edge due to a sufficiently small
slope of the edge confinement potential. The corresponding
edge structure includes, in addition to δν = 1 and δν = −1/3
modes of the “conventional” 2/3 edge, two counterpropagat-
ing modes with δν = ±1/3. WMG demonstrated that, under
certain assumptions, disorder can drive such an edge towards
a renormalization-group fixed point with two downstream
δν = 1/3 charge modes and two upstream neutral modes. At
this fixed point, the presence of the G = (1/3)e2/h plateau is
accounted for by assuming that in certain ranges of the gate
voltage controlling the QPC, the outermost charged channel
is transmitted through the QPC while the inner charged one
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is reflected. The noise on this plateau is further attributed to
the generation of quasiparticle-quasihole pairs created by the
equilibration-induced decay of the neutral modes [51].

Even though this theory seems to successfully explain the
experiments for νB = 2/3, there are two important points of
critique. First of all, sharp plateaus of G = (1/3)e2/h were
found also for νB = 3/5, νB = 4/7, and perhaps most surpris-
ingly, for the integer state νB = 1 [50]. Additional plateaus,
albeit less prominent, at G = (2/5)e2/h (for both νB = 3/5
and νB = 4/7) and G = (3/7)e2/h (only for νB = 4/7) were
observed as well. It seems difficult to imagine that edges of
all hole-conjugate states, as well as νB = 1 edge, would get
reconstructed by additional δν = ±1/3 modes, and we are
not aware of any microscopic analysis that would support
this feature. It is also difficult to imagine that an edge would
undergo such a complex edge reconstruction that it would ex-
plain multiple plateaus. Second, the WMG theory is based on
assumption that the renormalization-group flow has enough
room to drive the system to the fixed point with coherent
neutral modes (in analogy with the KFP fixed point [26]).
At the same time, current FQH experiments appear to be far
from the transport regime involving coherent neutral modes
(see Ref. [29] for a detailed analysis). Specifically, reaching
such a regime would require much lower temperatures than in
current experiments (inelastic processes at finite temperature
stop the renormalization-group flow). The hallmark of such
a regime—strong mesoscopic fluctuations of G—has never
been observed experimentally. The goal of this paper is to de-
velop a theory of transport of FQH edge states through QPCs
applicable to generic bulk filling factors νB, which would
explain the emergence of multiple noisy plateaus and predict
the associated transport characteristics. For this purpose, we
model the QPC as a low density constriction with filling factor
νQPC < νB [see Fig. 1(a)]. Similar models were considered
earlier in Refs. [32,54–57]. Our main focus here is the in-
coherent regime, where the equilibration length leq is much
smaller than both LQPC and LArm [see Fig. 1(b)]. As indicated
in the above discussion, the motivation for focusing on the
incoherent regime is twofold: (i) the FQH edge transport is
incoherent in almost all experiments and (ii) the incoherent
regime has a much higher degree of universality. We study the
electrical and thermal transport characteristics, including the
conductances and the noise. Our most salient findings are as
follows.

(i) We show that the considered model accounts for all ob-
servations of conductance plateaus (Sec. III B). The injected
current impinging onto the QPC, Iimp = νBe2V0/h (where V0

is the bias voltage), splits into two parts which eventually
reach two different drains CD1 and CD2 [see Fig. 1(a)]. The
conductances measured in these drains in the incoherent
regime (full equilibration) are GD1 = νQPCe2/h and GD2 =
(νB − νQPC)e2/h. Remarkably, GD1 depends only on νQPC.
Assuming that the FQH state corresponding to the filling νQPC

is stable in a certain range of the densities, the observation
of conductance plateaus follows. Since νQPC = 1/3 is the
most stable state in the whole hierarchy of FQH states, the
G = (1/3)e2/h plateau is the most visible one.

(ii) We show that the experimental results for double-QPC
geometries [51] also can be accounted for by our model
(Sec. III C). With a short distance between the two QPCs,

FIG. 1. (a) Model of a FQH QPC device: In a FQH state with
filling factor νB, a low density region with filling factor νQPC < νB

is formed by the QPC gate. The edge states of these regions (with
net chirality depicted by the red arrows) interact and equilibrate in
two narrow regions (ladders of black dashed lines). An edge current
injected from the source contact CS reaches, after equilibration with
the low density edge, the two drains CD1 and CD2. The contact CG

is without loss of generality taken to be grounded. (b) Hierarchy
of length scales in the QPC device. The total device length LArm

is assumed to be much larger than the length scale of the QPC:
LQPC (this condition is always fulfilled experimentally). Depending
on the relations between the inelastic equilibration length leq and
LArm and LQPC, we distinguish between three transport regimes. In
this paper we focus primarily on the incoherent regime leq � LQPC �
LArm, but we will also briefly comment on the partially coherent
regime LQPC � leq � LArm towards the end of the paper. The fully
coherent regime LQPC � LArm � leq (which may only be achieved at
extremely low temperatures or in devices with a special control over
leq) is not considered in this work.

the setup is found to be equivalent to a single QPC [see
Fig. 5(a)], leading to GD1 = νQPCe2/h. With more distant
QPCs, the setup is instead equivalent to two QPCs in series
[see Figs. 4(b) and 5(b)] and we find GD1 = (ν2

QPC/νB)e2/h.
For the specific configuration νB = 2/3 and νQPC = 1/3, the
conductance changes from GD1 = e2/3h to GD1 = e2/6h as
the distance between the QPCs increases, which is in excellent
agreement with experiment.

(iii) We derive the topological characteristics of the shot
noise for the possible combinations of electrical and thermal
transport in the single-QPC geometry (Sec. IV A). We find
that the noise falls into 13 topologically distinct classes (see
Table I). The qualitative asymptotic length dependencies of
the noise on LQPC and LArm are only governed by the directions
of heat propagation along the edge segments forming the
device. Most interestingly, some of the classes exhibit super-
Poissonian noise: F > 1.

(iv) We compute quantitatively the noise on the G =
(1/3)e2/h plateau for a few representative FQH states (see
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TABLE I. Asymptotics of the normalized noise S/(e3V0/h) (where S is the shot noise, and V0 is the bias voltage) in the incoherent regime
leq � LQPC � LArm, for the possible combinations of the heat transport (B = ballistic, D = diffusive, AB = antiballistic) along the outer arms,
the line junctions between the QPC region and the bulk, and the upper and lower edges of the low density region. Ballistic (antiballistic) heat
transport is defined as heat propagating in the same (opposite) direction with respect to the charge transport.

Outer arms Line junctions Central upper/lower edges Noise asymptotics Possible realizations

B 0 νB = 2/5, νQPC = 1/3

B D
√

leq

LQPC
νB = 1, νQPC = 2/3

B AB const νB = 1, νQPC = 3/5

D B
√

leq

LQPC
νB = 1, νQPC = 1/3

AB B const νB = 1, νQPC = 2/5

B AB
√

LArm
leq

νB = 2/3, νQPC = 3/5

D D D
√

LArm
LQPC

νB = 4/5, νQPC = 2/3

AB B
√

LArm
leq

νB = 2/3, νQPC = 1/3

B AB const νB = 3/5, νQPC = 4/7

D AB const +
√

leq

LQPC
νB = 11/7, νQPC = 3/5

B const νB = 3/5, νQPC = 1/3

AB D const +
√

leq

LQPC
νB = 11/7, νQPC = 2/3

AB AB const νB = 4/7, νQPC = 3/11

Sec. IV B). No quantization of the corresponding Fano factors
is found.

(v) Our theory also explains the strong suppression of
the Mach-Zehnder interference in devices that show the 1/3
plateau for the QPC transport. Indeed, the emergence of the
(most prominent) 1/3 conductance plateau in our theory is a
result of the incoherent character of the transport, leq � LQPC.
The inelastic processes establishing this incoherent transport
regime will also destroy the coherence of Mach-Zehnder inter-
ferometry. The suppression of the Mach-Zehnder interference
pattern is thus not related to neutral modes but rather has a
much more general origin: it is an indicator of the incoherent
regime.

The remainder of this paper is organized as follows. In
Sec. II we present our model of the incoherent regime and
derive transport equations determining the local voltages,
local temperatures, and shot noise along a FQH edge. We then
apply the model to QPC geometries, obtaining expressions
of the conductance in Sec. III and the noise in Sec. IV. We
discuss our results in Sec. V and conclude our studies with a
summary and an outlook in Sec. VI.

II. MODEL OF THE INCOHERENT REGIME

We consider a general Abelian FQH edge segment (see
Fig. 2) of length L hosting nd downstream and nu upstream
propagating channels. The total number of channels is de-
noted N ≡ nd + nu. This model describes both a complex
edge of a FQH state as well as an interface between two
FQH states, i.e., a line junction of the corresponding FQH
edges.

To simplify our treatment of the edge structure, we shall
hereafter assume that all edge channels with a given chirality
equilibrate into effective hydrodynamic modes on the length

scale ∼a which thus serves as the UV cutoff of the model (see
Ref. [40] for a detailed discussion). The resulting two modes,
labeled by n = ±, have effective filling factor discontinuities

ν+ =
nd∑

n=1

δνn, (4a)

ν− =
N∑

n=nd +1

δνn, (4b)

respectively. Here δνn are the filling factor discontinuities of
individual channels. Without loss of generality, we hereafter
assume ν+ > ν−. In the sequel we will denote the hydrody-
namic mode chiralities by χ± = ±1.

To model local equilibration between the two remaining
(counterpropagating) hydrodynamic modes, we introduce M
virtual reservoirs (which absorb neither charge nor energy)
for each mode [30,34,40,58]. Since we are only interested in
steady state properties and zero frequency noise, we neglect
any temporary charge or heat accumulation in the reservoirs.
The charge and energy currents along the edge segment are
then locally conserved and we can write

In, j,out = In, j,in ≡ In, j, (5a)

Jn, j,out = Jn, j,in ≡ Jn, j, (5b)

where I (J )n, j,out(in) is the outgoing (incoming) charge (energy)
current of mode n into its reservoir at location j. Here and
below, the quantities are understood as time averaged (we do
not indicate time averaging explicitly in order to simplify the
notation). The local voltages

Vn, j ≡ h

e2νn
In, j (6)
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FIG. 2. Effective model of a FQH edge segment (either a com-
plex edge or a line junction of two edges) in the incoherent regime.
Two hydrodynamic modes with filling factors ν+ and ν− equilibrate
due to random tunneling. The local voltages V±, j and temperatures
T±, j of the modes are determined by local virtual reservoirs (labeled
by j) which drive charge Iτ

j and energy Jτ
j tunneling currents (the

reservoirs do not absorb charge or energy). Given that ν+ > ν−, the
equilibration results in a voltage drop and heat generation at the hot
spot ∼x = L (red dot). The type of heat conduction is fixed by the
topological quantity νQ ≡ nd − nu, i.e., the difference between the
number of downstream and upstream microscopic channels. If heat
reaches the region close to x = 0, the noise spot (yellow dot), shot
noise is generated. The locations of the hot and noise spots as well as
the value of the noise are independent of the direction in which the
voltage bias is put.

and temperatures Tn, j drive local charge and energy tunneling
currents Iτ

j and Jτ
j at position j,

I+, j+1 = I+, j − Iτ
j , (7a)

I−, j+1 = I−, j + Iτ
j , (7b)

J+, j+1 = J+, j − Jτ
j , (7c)

J−, j+1 = J−, j + Jτ
j . (7d)

To lowest order in the dimensionless tunneling coupling g �
1, these currents can be written as

Iτ
j = g

e2

h
(V+, j − V−, j ), (8a)

Jτ
j = g

e2

2h

(
V 2

+, j − V 2
−, j

) + γ g
κ

2

(
T 2

+, j − T 2
−, j

)
, (8b)

where γ is a parameter of order unity, characterizing the
deviation of the ratio of intermode charge and heat tunnel-
ing conductances from Wiedemann-Franz law (Wiedemann-
Franz law corresponds to γ = 1). Generally, γ depends on the
edge structure and the intermode interactions. In particular,
for two noninteracting channels with δν1 = 1 and δν2 = ν =
1/(2p + 1) with an integer p, the value of γ was found to be
γ = 3/(2ν + 1) [30]. For simplicity, we neglect any voltage
and temperature dependence in g.

By combining Eqs. (7) and (8) we next derive continuum
equations for the voltage, current, temperature, and noise
profiles along the edge segment.

A. Voltage equilibration and two-terminal charge conductance

The distance between successive reservoirs is a (the UV
cutoff of our model), and we define x = ja. The continuum
limit is obtained by setting g → 0, a → 0 but keeping x and
l ≡ a/g constant. We then obtain the following differential
equation for the local voltages:

∂x �V (x) = MV �V (x), (9)

where �V (x) = (V+(x),V−(x))T (superscript T denotes trans-
position) and

MV = 1

l

(−χ+/ν+ χ+/ν+
χ−/ν− −χ−/ν−

)
. (10)

The corresponding local electric currents �I (x) =
(I+(x), I−(x))T obey a similar equation

∂x �I (x) = MI �I (x), MI = DMVD−1, (11)

with D = diag(χ+ν+, χ−ν−).
We are interested in the solution of Eq. (9) for the case of

counterpropagating modes, χ+ = 1 and χ− = −1. The equa-
tion should be then supplemented by the boundary conditions
fixing V+(0) and V−(L). We first choose the boundary condi-
tion describing the bias applied at the x = 0 end of the edge
segment, V+(0) = V0 and V−(L) = 0, which corresponds to
the downstream direction of the electric current. The solution
of Eq. (9) then becomes

V+(x) = V0
ν+eL/leq − ν−ex/leq

ν+eL/leq − ν−
, (12a)

V−(x) = V0
ν+ex/leq − ν+eL/leq

ν+eL/leq − ν−
, (12b)

where we have defined the phenomenological equilibration
length leq ≡ lν+ν−/(ν+ − ν−).

In the incoherent limit leq � L, we obtain V+(L) 	
V0(ν+ − ν−)/ν+ and the “downstream conductance”

Gd ≡ I+(L)/V0 	 (ν+ − ν−)e2/h ≡ νe2/h. (13)

With reversed boundary conditions, V+(0) = 0 and V−(L) =
V0, which corresponds to upstream direction of the electric
current, we obtain analogously

V+(x) = V0
ν−ex/leq − ν−
ν+eL/leq − ν−

, (14a)

V−(x) = V0
ν+ex/leq − ν−
ν+eL/leq − ν−

, (14b)

and the “upstream conductance”

Gu ≡ I−(0)/V0 	 0. (15)

Hence, an injected current propagates entirely downstream in
the fully equilibrated (incoherent) limit.

The two-terminal charge conductance G is given by G =
Gd + Gu. Equations (13) and (15) yield (up to an exponen-
tially small correction)

G = νe2/h, (16)

which is a hallmark of the incoherent regime. We plot the
voltage profiles of the edge segment for both choices of
boundary conditions in Fig. 3.
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FIG. 3. Voltage profiles for counterpropagating modes V+(x)
(downstream, red lines) and V−(x) (upstream, blue lines) with filling
factor discontinuities ν+ and ν− < ν+, respectively (see Fig. 2).
With a voltage bias V0 on the contact at x = 0 (thick curves), the
downstream-mode voltage V+(x) drops from V0 to (ν+ − ν−)V0/ν+
within the length leq from the right grounded contact (x = L) due to
equilibration. Biasing instead the contact at x = L (dashed curves)
results also in a voltage drop in this region. In this case, the current
reaching the other (grounded) contact at x = 0 is exponentially
suppressed in L/leq. For all curves, we have used L/leq = 20.

By combining Eqs. (12) and (14), the fully equilibrated
edge segment is described by the following conductance
equation:(

I+(L)
I−(0)

)
= e2

h

(
ν+ − ν− ν−

ν− 0

)(
V+(0)
V−(L)

)
. (17)

By using the local current-voltage relations [see Eq. (6)]
V+(0) = I+(0)h/(ν+e2) and V−(L) = I−(L)h/(ν−e2), we can
write an equivalent branching matrix relation in terms of the
currents, (

I+(L)
I−(0)

)
=

(
1 − ν−/ν+ 1

ν−/ν+ 0

)(
I+(0)
I−(L)

)
. (18)

From Eqs. (12) and (14) we further note that, for both choices
of boundary conditions, the local voltage difference along the
edge segment reads

δV (x) ≡ |V+(x) − V−(x)| =
∣∣∣∣V0

ex/leq (ν+ − ν−)

eL/leqν+ − ν−

∣∣∣∣. (19)

From this expression, we conclude that, regardless of the
choices of source and drain contacts, the local voltage along
the edge drops only within a region of length ∼leq in the
vicinity of x = L and is therefore fixed by the net chirality,
i.e., the downstream direction (see Fig. 3). This voltage drop
is associated with Joule heating, and the region is therefore
referred to as the hot spot [34,40,59] (see Fig. 2).

The corresponding dissipated power P can be computed
according to

P ≡ Pin − Pout

= e2

2h
[ν+V 2

+(0) + ν−V 2
−(L) − ν+V 2

+(L) − ν−V 2
−(0)]

= e2

h

[V+(0) − V−(L)]2(ν+ − ν−)ν−
2ν+

. (20)

As will be shown next, the nature and the direction of the heat
transport away from the hot spot depend crucially on νQ which
is fixed by the topological order of the bulk [13,14].

B. Heat equilibration

For the local temperatures, Eqs. (7) and (8) yield in the
continuum limit

∂x �T 2(x) = MT �T 2(x) + 
 �V (x), (21)

where �T 2(x) = (T 2
+ (x), T 2

− (x))T ,

MT = γ

l

(−χ+nu χ+nu

χ−nd −χ−nd

)
, (22)

and the Joule heating contribution


 �V (x) = e2[δV (x)]2

hκl

(−1
+1

)
. (23)

Note that Eq. (22) includes nd and nu and therefore takes
into account the microscopic composition of downstream and
upstream propagating channels [60]. It was shown in Ref. [40]
that Eq. (22) allows three different types of heat transport
along the edge.

(i) Ballistic heat transport nd > nu:

kBT±(x) ∼ V0
[
O

(
e− γ

2
ν+ν−

ν+−ν−
L−x
leq

) + O
(
e− L−x

leq
)]

. (24)

In this case, the heat propagates ballistically downstream. As
a result, the heat propagating upstream from the hot spot is
exponentially suppressed in L/leq. The special case nu = 0
yields exact T±(x) ≡ 0: without any upstream channels, no
heat can propagate upstream.

(ii) Diffusive heat transport nd = nu:

kBT±(x) ∼ V0

√
x/L. (25)

(iii) “Antiballistic” heat transport nd < nu:

kBT±(x) ∼ V0 × const. (26)

In this case, the heat propagates ballistically upstream; we call
this type of heat transport antiballistic.

Since the charge transport is always downstream in the
incoherent regime, we conclude that there exist exactly three
possible combinations of edge transport: (i) Both charge and
heat flow ballistically downstream; (ii) charge flows ballis-
tically downstream and the heat diffuses; and (iii) charge
flows ballistically downstream but heat flows ballistically
upstream, i.e., antiballistically. It was shown in Ref. [40] that
these topologically distinct cases exhibit three different noise
characteristics. For completeness, the derivation of this result
is outlined next.

C. Noise generation

On the FQH edge segment depicted in Fig. 2, noise is gen-
erated due to partitioning of the electric current by intermode
charge tunneling (see Refs. [61,62] for review of shot noise
induced by partitioning in various systems). Fluctuations of
the local tunneling current of charge can be decomposed into

δIτ
j = δIτ,tr

j + δIτ,int
j . (27)

Here and below, δX denotes the deviation of a quantity X from
its time average δX ≡ X − X . The intrinsic contributions
δIτ,int

j arise from local Johnson-Nyquist noise; we take them
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to be independent random variables with zero mean and with
variance

δIτ,int
j δIτ,int

j′ = 2e2

h
gkB(T+, j + T−, j′ )δ j, j′ . (28)

We have here assumed that the local voltage difference be-
tween the two modes is much smaller than their average
temperature: V+, j − V−, j � kB(T+, j + T−, j )/2. This approx-
imation is excellent [it holds up to exponentially small cor-
rections in L/leq, see Eq. (19)] around x = 0, which will be
shown below to be the region where most of the noise is gen-
erated. The transmitted contributions δIτ,tr

j in Eq. (27) reflect
fluctuations in the voltage difference between the channels,

δIτ,tr
j = g

e2

h
(δV+, j − δV−, j ), (29)

which are induced by δIτ,int
j according to the transport equa-

tion (9).
In the continuum limit, we find the following equation for

the local electric current fluctuations:

∂x �δI (x) = MI �δI (x) + �δI
τ,int

(x), (30)

where

�δI
τ,int

(x) ≡ lim
a→0

δIτ,int
j

a

(−1
+1

)
. (31)

The noise at the two ends of the edge segments S ≡ δI+(L)2 =
δI−(0)2 becomes [34]

S 	 2e2

hleq

ν−
ν+

(ν+ − ν−)
∫ L

0
dx

e− 2x
leq kB[T+(x) + T−(x)](

1 − e− L
leq ν−/ν+big)2

, (32)

where we have used the continuum limit of Eq. (28),

δIτ,int (x)δIτ,int (y) = 2e2g

h
kB[T+(x) + T−(y)]δ(x − y). (33)

Equation (32) is derived under the assumption that the
fluctuations in the source contact are negligible (the effect
of drain fluctuations can be shown to be exponentially sup-
pressed in L/leq). While the noise in principle originates
from the heating along the full edge, Eq. (32) shows that the
dominant contribution comes from the region of extension
∼leq near x = 0: the noise spot. The other contributions are
exponentially suppressed in x/leq. The noise spot is therefore
always located on the opposite side of the edge segment with
respect to the hot spot (see Fig. 2).

The physical mechanism for the shot noise in the inco-
herent regime is the following: the voltage drop within �eq

from x = L (the hot spot) produces heat that propagates along
the edge. In turn, this heating induces thermally activated
tunneling between the edge modes which lead to particle-
hole pair excitations. Such a pair gives a contribution to the
zero-frequency shot noise if its constituents reach different
contacts. This happens with a considerable probability if
the pair is created within a distance ∼leq from the x = 0
contact. Particles and holes created much further away from
x = 0, will eventually flow in the downstream direction (to the
x = L contact) in view of the corresponding property of the
charge conductances discussed in Sec. II A. This is reflected

in the exponential suppression of contributions from x � leq

to Eq. (32).
Equation (32) also indicates that the characteristics of the

noise depends crucially on the temperature profiles T±(x).
Substituting the three possible temperature profiles from
Sec. II B, we obtain three topologically distinct types of the
scaling of the noise in the incoherent regime:

(i) Ballistic heat transport yields exponentially suppressed
noise:

S ∼ (e3V0/h) exp

(
−γ

2

ν+ν−
ν+ − ν−

L

leq

)
. (34)

The special case nu = 0 yields identically zero noise.
(ii) Diffusive heat transport yields algebraically decaying

noise:

S ∼ (e3V0/h)
√

leq/L. (35)

(iii) Antiballistic heat transport yields constant noise:

S ∼ (e3V0/h) × const. (36)

These distinct noise characteristics were shown in Ref. [40]
to provide a topological classification of the Abelian FQH
states and provides an indirect probe of upstream heat trans-
port on the edge.

D. Key hallmarks of the incoherent regime

We find it instructive to summarize here the key features of
transport through an edge segment in the incoherent regime
leq � L:

(1) The transport coefficients exhibit a robust quantization
(1) and (2) in the incoherent regime.

(2) The charge propagates ballistically downstream. The
upstream charge transport is suppressed exponentially in
L/leq.

(3) The thermal transport is ballistic for νQ > 0, diffusive
for νQ = 0, and antiballistic for νQ < 0. In the diffusive (νQ =
0) case the correction to the quantized (zero) value of the
thermal conductance is of order leq/L. In the ballistic and
antiballistic cases, the correction to the quantized value is
exponentially small in L/leq.

(4) The regions where heat and noise are generated are
spatially separated since they are located on the opposite
ends of the edge segment. The locations of these spots are
solely determined by the net chirality (the direction of charge
propagation).

(5) The combination of different types of thermal trans-
port with the spatial separation of heat and noise generation
leads to three different types of asymptotic shot noise char-
acteristics: S 	 0 up to exponentially small corrections (for
νQ > 0), S ∼ L−1/2 (νQ = 0), or S ∼ const (νQ < 0).

At this point, the following comment is in order. Transport
in the incoherent regime is described in terms of hydrody-
namic modes which are solutions to the transport equations
(9) and (21). Remarkably, the charge- and heat-carrying de-
grees of freedom are decoupled and generally propagate in
a very different manner. This hydrodynamic charge-energy
separation should not be confused with the emergence of
heat-carrying “neutral modes” in the sense of chargeless
eigenmodes (whose quanta are frequently called “neutralons”)
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FIG. 4. (a) Effective geometry with characteristic length scales
LArm and LQPC, both assumed to be much longer than the equilibration
length leq, for a single QPC or a short-distance double-QPC setup.
The red dots A and B denote the hot spots where voltage drops
occur, while the yellow dots C–F denote regions where noise may
be generated. The conductances and the shot noise are measured
at the drain contacts CD1 and CD2. (b) Geometry of a long-distance
double QPC. Note the extra grounded contact in the central region.
The distance between the low-density regions is L12.

of a chiral Luttinger liquid Hamiltonian. A description in
terms of such modes requires a coherent renormalization
of the system to an infrared KFP fixed point at which the
neutral modes decouple from the charged degrees of freedom
[26,29,63,64]. As has been discussed above, staying in the
coherent regime and reaching the KFP fixed point is a very
difficult experimental task since it would require an extremely
low temperature. At the same time, the separation into charge
and heat hydrodynamic modes in the incoherent regime is
ubiquitous in experiments on complex FQH edges.

In the next two sections we apply and extend the model
of the incoherent regime to compute charge conductance and
noise in QPC geometries.

III. CONDUCTANCE PLATEAUS IN QPC GEOMETRIES

A. Quantum point contact branching matrix

We model a single QPC device as a low density constric-
tion with filling factor νQPC < νB [see Fig. 4(a)] and assume
that leq � LQPC � LArm so that we can treat this system as
fully incoherent [see also Fig. 1(b)]. Under this assumption,
the QPC is equivalent to two line junctions in series. Within
this picture, charge and heat propagate across the device due
to successive equilibrations in these line junctions. Note that
the assumption of full equilibration eliminates any effects of
possible edge reconstruction on every edge segment of the
device. Upon biasing the source contact CS with respect to
the ground contact CG, the conductances measured in the
two drains CD1 and CD2 can be computed (cf. Ref. [65])
by considering two coupled line junction branching matrix

equations (18):(
ID2

IA

)
=

(
1 − νQPC/νB 1

νQPC/νB 0

)(
IS

IB

)
(37)

and (
IB

ID1

)
=

(
0 νQPC/νB

1 1 − νQPC/νB

)(
IA

IG

)
. (38)

Eliminating the internal currents IA and IB, we obtain the
branching matrix equation of the QPC as(

ID1

ID2

)
=

(
νQPC/νB 1 − νQPC/νB

1 − νQPC/νB νQPC/νB

)(
IS

IG

)
. (39)

The dissipated power in each of the two line junctions can
be computed according to Eq. (20). Since the voltage drop
only depends on νB and νQPC, both dissipated powers are equal
and read

PA = PB = e2

h

V 2
0 (νB − νQPC)νQPC

2νB
, (40)

where V0 is the bias voltage in the source contact CS . The
location of the two hot spots, depicted by the red regions
labeled A and B in Fig. 4(a), are on oppositely oriented corners
of the low density region. In principle, there exist two possible
additional voltage drop locations (i.e., hot spots) in the setup.
Specifically, dissipation takes place also in the drain contacts
CD1 and CD2. However, since the drain contacts are floating
with respect to DC currents in the QPC experiments of
Refs. [50,51], those hot spots are neglected in the calculation
of noise below; see Appendix A for a more detailed discussion
of this issue.

B. Conductance plateaus in single QPCs

To apply our model to the experiment in Ref. [50], we
begin by setting, without loss of generality, IG = 0 in Eq. (39).
This amounts to a choice of ground. We then readily obtain the
conductances measured at the drain contacts CD1 and CD2,

GD1 = νQPC
e2

h
, (41a)

GD2 = (νB − νQPC)
e2

h
. (41b)

We see that GD1 is independent of νB. This provides a
general explanation for the formation of the experimentally
observed GD1 = (1/3)e2/h conductance plateau for a variety
of νB states. Specifically, if for a finite interval of the QPC
gate voltage there exists a stable νQPC = 1/3 FQH state in
the low density region (which is highly plausible because
the νQPC = 1/3 state is the most stable state in the FQH
regime), the incoherent transport through the QPC leads to
GD1 = (1/3)e2/h.

Other plateaus emerge within this theory in the same way
if stable FQH states corresponding to filling factors νQPC <

νB are formed in the QPC region. The number of observed
plateaus and their visibilities will thus strongly depend on the
quality of the underlying 2D electron gas and on the temper-
ature. In addition, they may be influenced by the geometry
of the low-density region. Indeed, additional plateaus are also
observed but they are less prominent than the G = (1/3)e2/h
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FIG. 5. Schematic representation of experimental double-QPC
setups in Ref. [51]. Dark gray regions have filling factors νB, light
gray represent fully depleted regions (i.e., non-FQH regions). Middle
gray regions represent regions depleted to filling factor νQPC < νB.
Red thick lines depict the downstream charge current upon injection
in the source contact CS and the dashed lines depict the reflected
currents at the QPCs. (a) When the distance between the QPCs L12

is sufficiently short, a single low-density (νQPC) region is formed and
the setup is similar to the single QPC in Fig. 4(a). (b) Setup with
a long distance L12 between the QPCs gives rise to two separated
low-density regions as modeled in Fig. 4(b).

plateau. This is not surprising since νQPC = 1/3 is the most
stable FQH state.

C. Conductance plateaus in double QPCs

We next apply our model to the double-QPC setup in
Ref. [51] (see Fig. 5). In our formalism, such a device can
be treated as two identical QPCs in series. We will assume
that both QPC have identical properties, inducing a depletion
region with the same filling factor νQPC. In line with the ex-
periment where the distance between the QPCs was varied, we
distinguish between two different scenarios: (i) The distance
between the two low-density regions is sufficiently small
such that they constitute a single region [see Fig. 5(a)]. The
effective model then becomes identical to that of a single QPC
depicted in Fig. 4(a). (ii) The distance between the two low-
density regions is sufficiently large, so that they are separated
by a region with filling factor νB [see Fig. 5(b)]. The effective

model for this case is shown in Fig. 4(b). The experimental
setup is operated with a grounded contact on the edge of the
central region [implemented in Fig. 4(b) by the central ground
contact CG].

In the first scenario (two closely located QPCs), we can
straight away use the QPC branching matrix (39), leading to
conductances

GD1,short = νQPC
e2

h
, (42)

GD2,short = (νB − νQPC)
e2

h
. (43)

In the second scenario (two distant QPCs), we obtain the two
coupled matrix equations(

IA

ID2

)
=

(
νQPC/νB 1 − νQPC/νB

1 − νQPC/νB νQPC/νB

)(
IS

0

)
(44)

and (
IB

ID1

)
=

(
νQPC/νB 1 − νQPC/νB

1 − νQPC/νB νQPC/νB

)(
0
IA

)
, (45)

where we have taken into account the additional central
ground contact. Eliminating the internal-region currents IA

and IB, we find that the conductances measured at the drain
contacts read

GD1,long = ν2
QPC

νB

e2

h
, (46a)

GD2,long = (νB − νQPC)
e2

h
. (46b)

We note that for the single or short length double QPC, the
injected current IS is split into the two drains CD1 and CD2

(i.e., IB = 0 for IG = 0). For the long distance double QPC,
on the other hand, the grounded contact in the central region
[see Fig. 4(b)] also collects a fraction of the injected current:

IB = e2V0
(
νQPC − ν2

QPC/νB
)
/h. (47)

We now consider some examples, which allow us to compare
with the experiment of Ref. [51]. Let us assume that each of
the two QPCs separately is at the G = (1/3)e2/h plateau, i.e.,
νQPC = 1/3. In Fig. 2 of Ref. [51], yellow curves in all panels
correspond to this situation. Let us first take the bulk filling
factor to be νB = 2/3 as in Figs. 2(a) and 2(b) of Ref. [51]. For
the case of two closely located QPCs we find then according to
Eq. (42) the double-QPC conductance GD1,short = (1/3)e2/h,
in full agreement with Fig. 2(b) of Ref. [51] (according to the
notation of Ref. [51], one should multiply the transmission
shown in their Fig. 2 by the filling factor νB in order to get
the conductance GD1). For the case of two QPCs separated
by a large distance, we get from Eq. (46a) the conductance
GD1,long = (1/6)e2/h, in full agreement with the plateau on
the yellow curve in Fig. 2(a) of Ref. [51].

We further take the bulk filling factor to be νB = 3/5 as
in Figs. 2(c) and 2(d) of Ref. [51]. The value of GD1,short in
our theory remains (1/3)e2/h, which is in perfect agreement
with Fig. 2(d) of Ref. [51]. For the case of two distant QPCs,
we get GD1,long = (5/27)e2/h, which is again in a very good
agreement with the plateau on the yellow line in Fig. 2(c) of
Ref. [51].
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FIG. 6. Current fluctuations in the incoherent QPC geometry.
The chiralities of the charge propagation are depicted by red arrows.
δIS and δIG denote the current fluctuations generated at the noise
spots E and F (cf. Fig. 2), δIu,d,l,r denote current fluctuations in
the central region, and δVC and δVD denote fluctuations in the
electrochemical potentials at the noise spots C and D, respectively.
The temperatures at the noise spots are TC and TD and the dissipated
power at the hot spots A and B are PA and PB, respectively.

Finally, we consider the case when the current is injected
in the integer quantum Hall regime, νB = 1, still keeping
a symmetric double QPC with νQPC = 1/3. In this situa-
tion our results predict GD1,short = (1/3)e2/h and GD1,long =
(1/9)e2/h. We hope that these predictions can be tested in
future experiments.

IV. NOISE IN THE SINGLE-QPC GEOMETRY

In this section we study generation of shot noise in the
single QPC geometry outlined in Sec. III [see Fig. 4(a)]. We
will show that the characteristics of the noise are determined
by the nature of the thermal transport [controlled by the
signs of the topological thermal coefficients νQ in Eq. (2)] in
the outer arms (consisting of the edge channels between the
contacts and the QPC), the line junctions (i.e., the interfaces
between the low density region and the bulk regions), and the
upper and lower edges in the QPC. Hence, the noise can be
classified according to possible combinations of heat transport
along these edge segments (see Table I). We thereby extend
our previous studies of noise classification on single edges
[34,40] to the QPC geometry.

We also present below a general expression for the noise
and apply it to the specific configurations (νB, νQPC) =
(3/5, 1/3) and (νB, νQPC) = (4/7, 1/3) for comparison with
the experiments in Ref. [50]. Two other configurations are
treated in Appendix B.

A. Topological noise classification

In the incoherent regime, noise in the QPC is generated by
charge partitioning from thermally activated tunneling at four
different noise spots (denoted by the yellow circles C, D, E ,
and F in Fig. 6). A tunneling event yields a contribution to
the noise if the respective constituents of a particle-hole pair
generated by interchannel tunneling reach different drains. In
analogy with the discussion of the noise in a single segment
of the edge, this happens with a sizable probability in the
vicinity of noise spots where particles and holes may travel in

different directions and eventually end up in different drains
CD1 and CD2. On the other hand, a pair partitioned far from the
noise spot eventually propagates in the downstream direction,
reaches the same contact, and thus does not contribute to the
(DC) noise.

The amount of generated noise crucially depends on the
nature of the heat reaching the noise spots as specified in
Sec. II C. When all source contacts have the same base
temperature, heating in the device is generated solely due to
voltage drops, which only occur at the hot spots due to the
chiral nature of the charge transport. The hot spots in the QPC
geometry are depicted as the red dots A and B in Fig. 6. The
generated heat may propagate to the noise spots and in turn
generate the noise that is measured in CD1 and CD2. How much
heat is transported to the noise spots is dictated by the signs of
the thermal coefficients νQ,B in the outer arms, νQ,QPC in the
upper and lower edges in the QPC, and (νQ,B − νQ,QPC) in the
line junctions.

Each of the thermal coefficients νQ,B, νQ,QPC, and (νQ,B −
νQ,QPC) can be either positive, negative, or zero. Taking into
account that νQ,B is the sum of the other two coefficients, we
find 13 possible combinations that are listed in Table I. We
use this to classify the noise asymptotics in the incoherent
regime leq � LQPC � LArm (see Fig. 1 for the definition of the
lengths involved). We use the same terminology as introduced
in Sec. II B: ballistic (antiballistic) heat flow indicates that the
heat transport is downstream (upstream), i.e., along (opposite
to) the direction of the charge transport. We use abbreviations
B, AB, and D for the ballistic, antiballistic, and diffusive heat
transport, respectively.

We begin by considering QPC configurations supporting
ballistic heat transport along all edge segments, which is the
(B, B, B) line of Table I. In this case, the heat generated at
the hot spots flows downstream directly to the contacts CD1

and CD2, and does not reach the noise spots since they are
located upstream from the hot spots. Only an amount of heat
exponentially suppressed in LQPC/leq reaches the noise spots,
which leads to vanishing noise up to exponential corrections.
Examples for this fully ballistic scenario include any of the
bulk filling fractions νB = 2/5, νB = 3/7, or νB = 4/9, in
combination with νQPC = 1/3. Indeed, no noise was detected
on the G = (1/3)e2/h plateau (implying νQPC = 1/3 in our
model) for these filling fractions [50].

We next consider QPC configurations with diffusive heat
transport on the outer arms while the other segments have
either ballistic or antiballistic heat transport. There are two
such lines in Table I: (D, B, AB) and (D, AB, B). An
example for such a situation is the combination (νB, νQPC) =
(2/3, 1/3); the corresponding pattern of the heat flow is
shown in Fig. 7(a). While the applied bias voltage gives
rise to steady heating at the hot spots, the escape of the
generated heat from the QPC region to the contacts is very
slow due to the diffusive nature of heat transport in the
outer arms. This slow escape is dictated by a small heat
conductance ∼leq/LArm � 1 of the outer arm. By solving the
heat equations in a self-consistent way (see Appendix B for
more details), we find that the steady state temperatures at the
hot spots are proportional to

√
LArm/leq. The heat generated

at the hot spot flows via the AB segments to the noise spots
C and D that thus also acquire a temperature proportional to
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FIG. 7. Edge heat propagation (blue arrows) in the incoherent
QPC geometry for various choices of νB and νQPC = 1/3. The contact
CS is voltage biased while CG is grounded. The chiral nature of the
edge ensures that heat is generated only due to voltage drops at the
hot spots (red dots, A and B). In the steady state, this heat generates
a rise in the local temperature at the noise spots (yellow dots, C–F ).
This local temperature increase, which depends on the nature of heat
propagation, in turn determines the characteristics of the generated
shot noise. (a) νB = 2/3. Heat propagation is diffusive along the
outer arms (double headed arrows), antiballistic in the line junctions,
and ballistic on the upper and lower edge. Heat exits the system from
all four contacts. (b) νB = 1. Heat propagation is diffusive in the line
junctions but ballistic everywhere else. If leakage of heat to the bulk
is negligible, heat only exits the system from contacts CD1 and CD2.
(c) νB = 3/5. Heat propagation is antiballistic along the outer arms
and the line junctions but ballistic on the upper and lower edges at
the low density region. Heat can only leave the system via contacts
CS and CG.

√
LArm/leq. The noise S then becomes

S ∝ (TC + TD) ∝
√

LArm

leq
. (48)

We consider now the case when the heat transport is
diffusive in all the segments, which is the line (D, D, D) of
Table I. The enhancement of the temperature of the hot spots
is the same as in the previous case. At the same time, the
temperatures at the noise spots C and D is now suppressed by
a factor ∼√

leq/LArm as compared with those of the hot spots.

Such a configuration thus leads to the noise asymptotics

S ∝ (TC + TD) ∝
√

LArm

leq

√
leq

LQPC
=

√
LArm

LQPC
. (49)

It follows from Eqs. (48) and (49) that in the case of
diffusive heat transport in the outer arms, the effective Fano
factor [as defined by Eq. (3)] is super-Poissonian: F �1.
This strong noise is related to slowness of the leakage of the
heat generated at the QPC to the external contacts in such
configurations.

We now move on to treat QPC configurations with ballistic
heat transport along the outer arms but diffusive transport in
the line junctions or in the upper/lower edges in the QPC
region. There are two such lines in Table I: (B, B, D) and (B,
D, B). One example of such a configuration is (νB, νQPC) =
(1, 1/3); the corresponding pattern of the heat flow is shown
in Fig. 7(b). Since the generated heat directly can flow out
of the QPC region, the hot spot temperatures in the steady
state are found to be constant in the sense that they do not
depend on any length scales of the system. Due to the diffusive
line junctions, the temperatures at the noise spots C and D
are suppressed by a factor ∼√

leq/LQPC � 1 compared with
those of the hot spots. Thus the generated noise asymptotics
becomes

S ∝ (TC + TD) ∝
√

leq

LQPC
. (50)

Now we turn to the case when all heat flow types are
ballistic or antiballistic, with at least one of the segments
showing the antiballistic transport. This includes the following
five lines of Table I: (B, B, AB), (B, AB, B), (AB, B, AB),
(AB, AB, B), and (AB, AB, AB). An example of such a con-
figuration is (νB, νQPC) = (3/5, 1/3); the corresponding heat-
flow pattern is depicted in Fig. 7(c). The hot-spot temperatures
are constant (i.e., length independent) as in the previous case.
Furthermore, the heat propagates efficiently from a hot spot to
at least one of the noise spots via an AB segment, so that the
temperature at the noise spots, and thus the generated heat, is
constant as well. In the case that the heat flows antiballistically
on the outer arms, heat also arrives at the noise spots E and
F , yielding an additional constant contribution to noise. Since
only ballistic and antiballistic transport of heat is involved in
this class of configurations, corrections to the constant noise
are exponentially small. A quantitative calculation of the noise
for (νB, νQPC) = (3/5, 1/3) and (4/7, 1/3) is presented in
Sec. IV C.

Finally, we consider the remaining two lines of Table I:
(AB, D, AB) and (AB, AB, D). The only difference in com-
parison with the preceding case is that the heat can propagate
from the hot spot to the noise spots not only along the AB
segments but also (in parallel) along the diffusive ones. As a
result, a power-law correction ∼√

leq/LQPC to a constant noise
emerges.

B. General expression for the noise

We derive now a general expression for the noise measured
on the conductance plateaus in contacts CD1 and CD2. This
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expression allows us to present quantitative values for the
noise characterized in Sec. IV A.

The current fluctuations generated at the noise spots E and
F are denoted as δIS and δIG, respectively (see Fig. 6). Current
conservation at the noise spots C and D yields

δIS = δIu + δIl , (51a)

δIG = δId + δIr, (51b)

where δIu/d/l/r are the fluctuations in the currents exiting the
noise spots on the up, down, left, and right segments of the
QPC region (see Fig. 6). Each of these fluctuations can in turn
be decomposed into two contributions:

δIl = (νB − νQPC)
e2

h
δVC + δI th

l , (52a)

δIu = νQPC
e2

h
δVC + δI th

u , (52b)

δIr = (νB − νQPC)
e2

h
δVD + δI th

r , (52c)

δId = νQPC
e2

h
δVD + δI th

d . (52d)

The first contribution follows from the fluctuations of the
effective electrochemical potentials δVC and δVD at the respec-
tive noise spots, and the second, denoted as δI th

l,u,r,d , comes
from nonzero temperature fluctuations. Employing Eqs. (51)
and (52), we can write δVC and δVD as

νB
e2

h
δVC = δIS − δI th

l − δI th
u , (53)

νB
e2

h
δVD = δIG − δI th

r − δI th
d . (54)

The current fluctuations at the contact CD1 read

δID1 = δIu + δIr

=
[
νQPC

e2

h
δVC + δI th

u

]

+
[

(νB − νQPC)
e2

h
δVD + δI th

r

]
. (55)

Inserting Eqs. (53) and (54) into Eq. (55), we obtain δID1 given
in terms of the independent current fluctuations:

δID1 = νQPC

νB
δIS + νB − νQPC

νB
δIG

+ νB − νQPC

νB

(
δI th

u − δI th
d

) + νQPC

νB

(
δI th

r − δI th
l

)
. (56)

The zero frequency shot noise SD1 ≡ (δID1)2 is then given by

SD1 = SD1,QPC + SD1,Contact,

SD1,QPC = 2e2

h

νQPC

νB
(νB − νQPC)kB(TC + TD),

SD1,Contact = 1

ν2
B

(
ν2

QPC(δIS )2 + (νB − νQPC)2(δIG)2
)
. (57)

As is clear from Eq. (57), the noise SD1 is given by a sum
of two contributions: SD1,QPC, which is generated in the noise
spots C and D, and SD1,Contact, which is generated in E and F .

In the derivation of Eq. (57), we have used the local Johnson-
Nyquist noise relations

(
δI th

u

)2 = 2e2νQPCkBTC/h,(
δI th

l

)2 = 2e2(νB − νQPC)kBTC/h,(
δI th

d

)2 = 2e2νQPCkBTD/h,(
δI th

r

)2 = 2e2(νB − νQPC)kBTD/h,

and the fact that all mutual correlations between these thermal
noises are uncorrelated. The zero frequency noise SD2 mea-
sured at the contact CD2 is identical to SD1, Eq. (57), in view
of current conservation, as can be also checked by a direct
calculation.

The Fano-factor F for the noise at the contact CD1 (CD2) is
defined by the relation

SD1 = SD2 = 2FeIimpτ (1 − τ ), (58)

where Iimp is the current impinging on the QPC, i.e., Iimp =
e2νBV0/h. The transmission τ ≡ ID1/Iimp = νQPC/νB. Insert-
ing these expressions to Eq. (58), we finally obtain the Fano
factor expressed in terms of the noise as

F ≡ FQPC + FContact,

FQPC = SD1,QPC νBh

2e3V0νQPC(νB − νQPC)
,

FContact = SD1,Contact νBh

2e3V0νQPC(νB − νQPC)
. (59)

Below we use the general formulas, Eqs. (57) and (59), in
order to evaluate the noise and the corresponding Fano factor
for a specific class of filling factors νB and νQPC.

C. Noise for the (AB, AB, B) heat transport configuration

As an application of Eq. (59), we now focus on the
QPC configuration where the heat propagation is antibal-
listic along the outer arms and the line junctions, but is
ballistic along the upper and lower edges in the low density
region [see Fig. 7(c)]. Specific examples that we consider
are (νB, νQPC) = (3/5, 1/3) and (4/7, 1/3) which were both
studied experimentally in Ref. [50]. As specified in Sec. IV A,
the noise is constant for such combinations, i.e., it does not
depend on any length scales in the system.

Energy conservation at the hot spots leads to

PA + π2(kBTD)2

6h
|νQ,QPC| = π2(kBTC )2

6h
(|νQ,QPC| + |νQ,B|),

(60a)

PB + π2(kBTC )2

6h
|νQ,QPC| = π2(kBTD)2

6h
(|νQ,QPC| + |νQ,B|),

(60b)

where we have used that the dissipated power is transported
away ballistically or antiballistically. The dissipated powers
PA = PB due to the voltage drops are given by Eqs. (40). The
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temperatures at the noise spots C and D are then obtained as

TC = TD = eV0

πkB

√
3νQPC(νB − νQPC)

νB|νQ,B| . (61)

Then, FQPC, defined in Eq. (59), reads

FQPC = 2

π

√
3νQPC(νB − νQPC)

νB|νQ,B| . (62)

We emphasize that the contribution FQPC is topological in the
sense that it is expressed solely through topological invariants
ν and νQ [cf. Eqs. (1) and (2)] of the device edge segments.

Next, we compute the part FContact of the Fano factor.
The noise generated in the outer arms is found according to
Eq. (32) as

(δIS )2 = (δIG)2

	 2e2

hleq

ν−
ν+

νB

∫ LArm

0
dx

e− 2x
leq kB[T+(x) + T−(x)](
1 − e− L

leq ν−/ν+
)2

. (63)

Here ν+(−) is the total filling factor of the downstream (up-
stream) mode in the outer arms and thus νB = ν+ − ν−. To
obtain the temperature profiles, we solve Eq. (21) with bound-
ary conditions T+(0) = 0 and T−(LArm ) = TC . As there are no
voltage drops along the edge segments CS − C and CG − D,
the Joule heating contribution [see Eq. (23)] vanishes. In the
limit leq � LArm, we find

k2
BT 2

+ (x) = k2
BT 2

C

nu − nue−αx/leq

nu − nd e−αL/leq
, (64a)

k2
BT 2

− (x) = k2
BT 2

C

nu − nd e−αx/leq

nu − nd e−αL/leq
. (64b)

where we have introduced the parameter α ≡ −(nd −
nu)γ ν+ν−/νB. Using these general profiles in Eq. (63), we
find the asymptotics

(δIS )2 = (δIG)2 	 e2

h

νBν+k2
BT 2

C

ν−

×
[√

π
(

2+α
α

)
2

(
3
2 + 2

α

) + 2F1

(
−1

2
,

2

α
;

2 + α

α
;

nd

nu

)]
,

(65)

where (c) is the gamma function and 2F1(a, b; c; z) is the
hypergeometric function.

We next apply this formula to the combination
(νB, νQPC) = (3/5, 1/3). The microscopic composition of
νB is ν+ = 1, ν− = 2/5, nu = 1, nd = 2, and νQ,B = −1. The
contribution FQPC to the Fano factor, Eq. (62), then becomes

FQPC ≈ 0.42,

while Eq. (65) reduces to

(δIS )2 = (δIG)2 	 e3V0

h

×
4
[√π

(
γ+3
γ

)
2

(
3
2 + 3

γ

) + 2F1
(− 1

2 , 3
γ

; γ+3
γ

; 1
2

)]
25π

≡ e3V0

h
f (γ ).

(66)

( )

( )

FIG. 8. The dimensionless functions f (γ ) and g(γ ) which de-
termine the dependence of shot noise for the transport through a
QPC with (νB, νQPC) = (3/5, 1/3) and (4/7, 1/3) on the parameter
γ controlling the violation of the Wiedemann-Franz law in the
intermode tunneling. The exact functional expressions are given in
Eqs. (66) and (68).

The only remaining parameter is the Wiedemann-Franz pa-
rameter γ (see Sec. II) which depends on the interaction
between the modes and is unknown. We plot f (γ ) in Fig. 8.
For γ = 1, we obtain

(δIS )2 = (δIG)2 = e3V0

h
f (1) ≈ 0.063

e3V0

h
,

which leads to

FContact ≈ 0.032.

The total Fano factor is then

F3/5,1/3 ≈ 0.45, (67)

which is constant as expected.
For the configuration (νB, νQPC) = (4/7, 1/3) the analysis

is carried out in the same way. We have in this case ν+ = 1,
ν− = 3/7, nu = 1, nd = 3, and νQ,B = −2. Equation (62) then
yields

FQPC ≈ 0.29,

while Eq. (65) leads to

(δIS )2 = (δIG)2 	 e3V0

h

×
2
√

10
[√3π

(
1+ 4

3γ

)
4

(
3
2 + 4

3γ

) +
√

3
2 2F1

(− 1
2 , 4

3γ
; 1+ 4

3γ
; 1

3

)]
49π

≡ e3V0

h
g(γ ). (68)

The function g(γ ) is plotted in Fig. 8. With γ = 1, we obtain

FContact ≈ 0.027.

Hence,

F4/7,1/3 ≈ 0.32. (69)

The above values of the contact contribution FContact to the
Fano factor are obtained for γ = 1. Varying γ does not
modify the order of magnitude of FContact but can change it
within a factor ∼2 (see Fig. 8).

075308-13



CHRISTIAN SPÅNSLÄTT et al. PHYSICAL REVIEW B 101, 075308 (2020)

Experimentally found values of the noise for the
(νB, νQPC) = (3/5, 1/3) and (4/7, 1/3) plateaus are F ≈ 0.6
and F ≈ 0.56, respectively [50]. These values are comparable
with but somewhat larger than our results (67) and (69).

We end this section by discussing the effect of possible
leakage of the heat to the bulk of the system. Let us assume
that the length scale over which all the heat is transferred into
the bulk is much smaller than LArm but much larger than LQPC.
In this case, the fluctuations (δIS )2 and (δIG)2 vanish since
no heat generated at the hot spots reaches the noise spots E
and F but instead leaks into the bulk. Then, the Fano factor
F is given entirely by the topological quantity FQPC. We also
note that, even if the heat leakage is fully absent, the contact
contribution FContact turns out to be numerically much smaller
than FQPC. Therefore, F remains numerically close to FQPC

independently of the degree of heat leakage to the bulk within
the distance LArm.

V. DISCUSSION

A. Noisy QPC conductance plateaus: Comparison with
experiments

Our model, which assumes the incoherent transport
regime, i.e., full equilibration along all edge segments, pre-
dicts formation of quantized plateaus in the transport through
a QPC at fractions νQPC < νB corresponding to stable FQHE
states. We emphasize that this plateau formation phenomenon
is very general and robust. In particular, the plateau formation
does not require any connection between the structure of the
edges at fractions νQPC and νB. Neither does it depend on any
proximity of the system to some RG fixed point. The only
assumption is the incoherent regime. The prediction of this
model on the ubiquity of such quantized conductance plateaus
is in agreement with experimental findings of Refs. [48–51]
which reveal an abundance of plateaus for various combina-
tions of νQPC and νB. In particular, the fact that the plateaus
occur also for νB = 1 demonstrates that no special proper-
ties of the νB edge is required for this phenomenon. We
are not aware of any other mechanism that would explain
formation of plateaus for a generic pair of fillings νQPC and
νB.

The experiment [50] reported that the most prominent
G = (1/3)e2/h plateau is observed only for νB < 5/3 and
disappears for higher νB. How can this be reconciled with our
theory? We can explain this observation by assuming that the
equilibration length increases strongly for larger νB. A recent
measurement [66] supports this assumption, where the equili-
bration length between edge channels from different Landau
levels was estimated to be an order of magnitude longer than
that between channels within a single Landau level. We can
therefore argue that the absence of the G = (1/3)e2/h plateau
for larger filling factors is due to insufficient equilibration:
the assumption of the incoherent regime, leq � LQPC, gets
violated. In addition, it is plausible that the stability of the
νQPC = 1/3 state in the QPC region is reduced with weaker
magnetic fields (i.e., larger νB). As we discuss below, violation
of the condition of incoherent transport regime at larger νB is
also supported by the observation of Mach-Zehnder interfer-
ence at these filling fractions.

The second prediction of our model is that the quantized
plateaus in the QPC transport are in general noisy. This is
in qualitative agreement with the findings of Ref. [50]. At
the same time, the values of the Fano factor F that we find
differ from the relation F = νB proposed in Ref. [50]. In fact,
for several of combinations (νB, νQPC) studied experimentally,
we find constant Fano factors F with numerical values not
far from those reported in Ref. [50] (see Sec. IV C). On the
other hand, for other combinations of filling factors, we find
Fano factors that depend on ratios of length scales. Further
work, both experimental and theoretical, should help to better
understand the difference in the values of F between the
experiment of Ref. [50] and our theory. Some promising
directions are discussed in Sec. VI.

We have also studied the transport through structure with
two identical QPCs (see Sec. III C). Our theory predicts
conductance plateaus also in this case, with the same value
of the conductance as in a single QPC for two closely located
QPCs and with a distinct value for a sufficiently large distance
between QPCs. These results are in full agreement with the
experimental findings of Ref. [51].

B. Mach-Zehnder interferometry

We further discuss the Mach-Zehnder interferometry mea-
surements performed in Ref. [50]. The fundamental require-
ment for interference is phase coherence. An important obser-
vation of Ref. [50] is that there are clear “anticorrelations”
between the observation of Mach-Zehnder interference and
the the quantized plateaus in the QPC transport: whenever the
(most prominent) 1/3 plateau is formed, the Mach-Zehnder
interference is strongly suppressed. This observation is fully
consistent with our theory of QPC plateaus as resulting from
the incoherent transport. Indeed, the loss of coherence in this
transport regime should lead to vanishing of Mach-Zehnder
interference in agreement with experiment. Conversely, the
disappearance of the 1/3 plateau at higher bulk filling factors
νB > 5/3, indicates that the transport is (at least partly) coher-
ent, consistent with observation of Mach-Zehnder interference
at these values of νB. We emphasize that the interference sup-
pression is generic in the incoherent regime, and is different
from that due to emission of neutralons at the KFP fixed point
[53].

C. Relation to edge reconstruction

It may be instructive to draw a certain parallel between
our model and the picture of edge reconstruction due to
a soft confinement potential [17,20,51]. Specifically, let us
somewhat deform the low-density area in Fig. 1(a), bringing
it to the form shown in Fig. 9. We see that this configuration
can be viewed as a “local edge reconstruction” of the νB

edge by a pair of counterpropagating modes with filling factor
discontinuities δν1,2 = ±νQPC. We emphasize, however, cru-
cial differences between the mechanism of formation of the
QPC conductance plateau in our work and that proposed in
Refs. [20,51]. Contrary to these works, we do not assume any
reconstruction of the νB edge as such (our analysis is instead
insensitive to the presence or absence of such reconstruction).
The additional νQPC edge appears only in the vicinity of the
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FIG. 9. Deformation of the shape of the low-density area in
Fig. 1(a) yields a configuration that can be viewed as a “local edge
reconstruction” of the νB edge by a pair of counterpropagating νQPC

modes.

QPC due to depletion of the density. Moreover, we do not
assume any coherent renormalization towards specific fixed
points; our analysis is fully general in this respect as well. As
has been already emphasized in the beginning of the paper,
the only assumption is the incoherent transport regime, i.e.,
full equilibration.

D. Partially coherent regime

Finally, we briefly discuss the QPC transport in the par-
tially coherent regime LQPC � leq � LArm [see Fig. 1(b)].
In this case there is no generic reason for the formation of
conductance plateaus with G = νQPC(e2/h). To illustrate this
point, we consider the specific case νB = 1 and νQPC = 1/3,
which is one of the prominent examples in which a well
developed plateau was observed experimentally [50]. The
corresponding results for the conductance G can be inferred
from the analysis in Sec. 6.2 of Ref. [29]. That paper studied
a slightly different experimental setup (with an intermediate
2/3 region), which, however, was described by essentially
the same effective model: a floating 1/3 mode forming two
line junctions with 1 modes. It is easy to see that our con-
ductance G can be obtained by subtracting from unity the
conductance G of Ref. [29]. We thus find the following results.
If the random tunneling along the line junctions is weak, the
conductance G is zero, up to a small correction. If the interface
at the line junctions is renormalized towards the KFP fixed
point (which happens for strong random tunneling), the con-
ductance shows strong mesoscopic fluctuations in the range
0 < G/(e2/h) < 1, i.e., the value of the conductance depends
on the microscopic details such as the specific realization of
disorder or the gate potential. It would be very interesting to
observe such a regime experimentally (see also a discussion in
Sec. VI) but presumably this requires very low temperatures.
In none of the described situations a G = (1/3)e2/h plateau
can emerge. Thus, the formation of this plateau unambigu-
ously points towards the incoherent transport regime.

For other pairs of filling factors νB and νQPC, the analysis of
the partially incoherent regime is more involved. Furthermore,
one can imagine situations with a hierarchy of equilibration
lengths, which will produce a wealth of possible types of
behavior of G. However, a paradigmatic example of νB = 1
and νQPC = 1/3 shows that, if the mechanism for formation
of plateaus is the same for various pairs νB, νQPC (which

is natural to expect), this should be the incoherent (fully
equilibrated) transport regime.

VI. SUMMARY AND OUTLOOK

In this paper we studied incoherent transport and shot
noise in QPC setups in the FQH regime. We modeled the
QPC as a low density region with νQPC < νB inside a FQH
state with filling factor νB, depicted in Fig. 1(a). Effectively,
the QPC is then equivalent to two line junctions in series.
The generic incoherent regime was implemented by assuming
full equilibration for both heat and charge: the characteristic
equilibration length leq was assumed to be much smaller than
the physical lengths of the edge segments.

Our main results are as follows. First, we explained the
formation of QPC conductance plateaus for a wide variety of
FQH states. As a prominent example, our theory explains the
fractional G = (1/3)e2/h conductance plateaus for the integer
state νB = 1. Such a plateau may look rather unexpected at
first sight since the integer νB = 1 edge does not contain
any fractional modes. We have further studied conductance
plateaus in the double-QPC setup assuming two equivalent
QPCs. When two QPCs are closely located, they serve as
a single QPC. For a sufficiently large distance between the
QPCs, our theory predicts plateaus with distinct values of the
conductance, again in agreement with experiment.

Second, we explored the generation of shot noise in the
single-QPC geometry. We showed that, depending on the
values of νB and νQPC, the system falls into one of 13 “univer-
sality classes” with different combinations of heat transport on
the edge segments. We have complemented this topological
classification of shot noise in QPC transport by the analysis of
the noise in various classes. Apart from one class, where the
noise is exponentially suppressed in the incoherent regime,
the QPC system is characterized by a rather strong noise.
This important conclusion of the theory that the conductance
plateaus are in general noisy is in qualitative agreement with
experiment. The specific behavior of the effective Fano factor
F depends on the “topological universality class” of the
system. In a number of important classes, the noise is constant
(i.e., F is a constant of order unity). Up to a numerically small
contribution originating from contacts, this constant is a topo-
logical invariant, i.e., it is fully determined by the topology
of the νB and νQPC states. At the same time, the constant F
is irrational and cannot be interpreted as an effective charge
of quasiparticles. In other classes, the noise shows a weak
(square-root) power-law dependence on relevant lengths char-
acterizing the system. This includes also situation in which
the noise can become super-Poissonian (F > 1) if the heat
leakage to the bulk (neglected in our analysis) is sufficiently
weak.

Finally, we elaborated on the visibility in the recently per-
formed Mach-Zehnder interferometry. We argued that the loss
of coherence due to strong equilibration explain the drastic
loss of visibility for lower filling factors νB. This explains in
particular why the strong suppression of the Mach-Zehnder
interference is experimentally correlated with the appearance
of the 1/3 plateau in the QPC transport.

We hope that this paper will stimulate further experimental
and theoretical investigations of transport through various
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setups in the FQH regime. Let us discuss a few prospective
research directions.

On the theory side, one particularly interesting extension
of our work is to study the proposed QPC model with non-
Abelian filling factors, most notably νB = 5/2. The exact edge
structure of this state is not known, and we envision that QPC
experiments could provide important input for determining it.
Another direction is a microscopic study of the partially co-
herent regime for various values of νB and νQPC. Furthermore,
it is important to study the Mach-Zehnder interferometry in
various regimes, from fully coherent to fully incoherent. This
is expected to be very useful towards the goal of constructing
a Mach-Zehnder interferometer device operating in the FQH
regime.

On the experimental side, an important challenge is to
observe the crossover from the coherent to incoherent regime
in the QPC transport. A recent experimental breakthrough
based on a specially designed double-well structure has al-
lowed observation of such a crossover in the two-terminal
conductance of a 2/3 edge [35]. We hope that this techno-
logical and experimental progress will permit also to explore
the coherent-to-incoherent crossover in transport through a
QPC. While various combinations of νB and νQPC are of
great interest, such an experiment for the paradigmatic case
νB = 1 and νQPC = 1/3 would be a very important reference
point. Furthermore, a systematic experimental study of the
dependence of the noise in the QPC transport with various
pairs (νB, νQPC) with system parameters (such as the temper-
ature, which affects the equilibration length) would be very
desirable. It would be extremely useful if such an investigation
is conducted parallel to the study of the noise in two-terminal
conductance of an edge [34,40], which is a simpler setup.
The classification of the noise in the two-terminal transport
[40] and in the QPC transport (the present work) can be
used to probe the character of the heat transport in these
devices. Another attractive experimental direction is to use
local thermometry [67] to probe the heat transport, and in
particular to image the two hot spots predicted by our model
[see Fig. 4(a)].

ACKNOWLEDGMENTS

We thank R. Bhattacharyya, M. Heiblum, C. Hong, A.
Rosenblatt, and B. Rosenow for useful discussions. C.S.,
Y.G., and A.D.M. acknowledge support by DFG Grant No.
MI 658/10-1. Y.G. and A.D.M. further acknowledge support
from the German-Israeli Foundation (GIF Research Grant No.
I-1505-303.10/2019).

APPENDIX A: HOT SPOTS IN THE VICINITY OF DRAINS

In this Appendix we outline the experimental implementa-
tion of the drain contacts and show that due to their specific
configuration, heat generated at the drains cannot flow back to
the QPC region and contribute to the noise generation.

We consider the drain contacts fabricated in Refs. [21,50]
(see Fig. 10). This type of drain (for simplicity depicted by
a single contact in the previous figures) actually consists of
three nearby contacts: a floating contact CD2,1 that serves to
measure voltage noise (which can eventually be converted into

FIG. 10. Schematic diagram for the CD2 drain contact specifying
the experimental configuration in Refs. [21,50]. This setup prevents
that any heat generated at the drain flows back to the QPC region,
where it would contribute to the noise. The drain (simply depicted
by a single contact in previous figures) consists of three individual
contacts: a floating contact CD2,1 measuring the noise from voltage
fluctuations, another floating contact CD2,2 acting as a heat reservoir,
and a contact CD2,3 connected to the ground. The net electrical current
impinges from the right-hand side of CD2,1 through a QPC (not shown
here). The charge (heat) propagation direction is drawn with red
arrows (a blue arrow). The hot spot and a possible noise spot are
denoted as red and yellow dots, respectively. A similar configuration
holds for the other drain CD1.

current noise), another floating contact CD2,2 acting as a heat
reservoir, and a third contact CD2,3 connected to ground. The
electrical current arrives to the ground contact CD2,3 from the
QPC region. The voltage drop and associated Joule heating,
depicted as a red dot, occur only in the vicinity of the ground
contact CD2,3. The generated heat can potentially propagate
upstream (the blue arrow) to CD2,2 but cannot propagate
beyond the heat reservoir CD2,2. Hence, no heat may flow
back to the QPC and contribute to the generation of the noise
discussed in the main text. We can therefore safely neglect the
effect of heat generation at the drain contacts.

We may, however, ask whether the generated heat can
induce additional noise during propagation between the
drain contacts. According to the noise-generating mechanism
specified in Sec. II C, thermally activated tunneling between
edge channels (due to the heating along the edge) can excite
particle-hole pairs. If only one of the constituents of such
pair would reach the contact CD2,1 (at which the noise is
measured), such a tunneling event would contribute to the
noise. A possible noise spot is located in the the vicinity of the
left-hand side of CD2,2 (depicted as a yellow dot). If the length
between CD2,1 and CD2,2 is larger than the equilibration length
leq, particles and holes generated in the process of tunneling
at this would-be noise spot will actually all eventually flow
downstream (to the ground contact CD2,3), so that no noise will
be generated in CD2,1. The above condition, that the length
between CD2,1 and CD2,2 is larger than leq, was reasonably
satisfied in these experiments. We therefore conclude that the
specific contact configuration allows us to ignore the effect of
the heating at the drain contacts.

APPENDIX B: HOT SPOT TEMPERATURES, NOISE, AND
FANO FACTORS FOR SPECIFIC QPC CONFIGURATIONS

This Appendix supplements Sec. IV C where we stud-
ied noise for two configurations (νB, νQPC) = (3/5, 1/3) and
(4/7, 1/3), which both yield (AB, AB; B) heat transport
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configurations and constant noise. Here we analyze the con-
figurations (νB, νQPC) = (1, 1/3) and (2/3, 1/3), which cor-
respond to (B, D, B) and (D, AB, B), respectively, and give
two distinct types of length-dependent noise in the incoherent
limit (see Table I).

1. (νB, νQPC) = (1, 1/3)

The bulk state νB = 1 hosts only a single edge mode,
and we immediately find that (δIS )2 = (δIG)2 = 0, since no
partitioning can occur close to the contacts CS and CG. Ac-
cording to Eq. (57), what then remains to compute are the
temperatures at the noise spots C and D [see Fig. 7(b)].

To this end, we first note that the heat transport is ballistic
on the outer segments (i.e., those with lengths LArm.) Since we
take νQPC = 1/3, the heat transport in the line junctions (with
lengths LQPC) is diffusive. Assuming zero temperature in the
contacts CS and CG, we can write the heat currents Ji along all
edge segments i as

JS = 0, (B1a)

Ju = κ

2
T 2

C , (B1b)

JD1 = κ

2
T 2

B , (B1c)

JG = 0, (B1d)

Jd = κ

2
T 2

D , (B1e)

JD2 = κ

2
T 2

A , (B1f)

Jl = l̃κ
(
T 2

A − T 2
C

)
2LQPC

, (B1g)

Jr = l̃κ
(
T 2

B − T 2
D

)
2LQPC

, (B1h)

where κ = π2k2
B/3h and l̃ is a characteristic diffusion length.

From inspecting diffusive solutions of Eq. (21), we take l̃ =
leq(νB − νQPC)/(νBνQPCγ ) = 2leq/γ . Conservation of energy
implies

JD2 + Jl = PA + Jd , (B2a)

JG + Jd = Jr, (B2b)

JD1 + Jl = PB + Ju, (B2c)

JS + Ju = Jl , (B2d)

where PA and PB are the dissipated powers at the two hot spots
A and B. These powers are equal and determined by Eq. (20).
Inserting νB = 1 and νQPC = 1/3 into that equation yields

PA = PB = e2

h

V 2
0

9
. (B3)

By solving the system (B2) for TC and TD, we find

k2
BT 2

C = k2
BT 2

D = 4e2leqV 2
0

3π2(2leq + γ LQPC)
≈ 4e2leqV 2

0

3π2γ LQPC
, (B4)

where we used leq � LQPC.

Combining Eqs. (B4), (57), and (59), we finally obtain the
Fano factor for (νB, νQPC) = (1, 1/3):

F1,1/3 = kB(TC + TD)

eV0
≈ 0.74

√
leq

γ LQPC
. (B5)

This result is in agreement with qualitative discussion
in Sec. IV A, see Eq. (50). The Fano factor shows the
(leq/LQPC)1/2 length dependence due to the diffusive nature
of the heat propagation in line junctions.

2. (νB, νQPC) = (2/3, 1/3)

Since the state νB = 2/3 hosts channels of both chiralities,
partitioning in the injected currents may also occur in the
vicinity of CS and CD and, contrary to Appendix B 1, we
should also take into account this contribution. We shall
however begin with computing the contribution from the hot
spots C and D. We proceed as in the previous calculation and
use the same conventions. Here, however, the external heat
currents are diffusive, while the internal ones are ballistic [see
Fig. 7(a)]. We therefore obtain

JS = leqκT 2
C

γ LArm
, (B6a)

Ju = κ

2
T 2

C , (B6b)

JD1 = leqκT 2
B

γ LArm
, (B6c)

JG = leqκT 2
D

γ LArm
, (B6d)

Jd = κ

2
T 2

D , (B6e)

JD2 = leqκT 2
A

γ LArm
, (B6f)

Jl = κ

2
T 2

A , (B6g)

Jr = κ

2
T 2

B , (B6h)

where we have used the same diffusion length 2leq/γ as in the
previous section. Solving again the system of equations (B2)
but now with

PA = PB = e2

h

V 2
0

12

and with the heat currents in Eq. (B6), we obtain

k2
BT 2

C = k2
BT 2

D = e2V 2
0 γ 2L2

Arm

8π2leq(leq + γ LArm )
≈ e2V 2

0 γ LArm

8π2leq
. (B7)

Equation (B7) indicates that the temperature at the noise spots
C and D grows with increasing length LArm. The reason for
this is that the generated heat from the current injection is
due to ballistic charge transport which is length independent.
The generated heat can however only leave the QPC region
by diffusion. The larger length segments LArm, the less heat
leaves the system. Hence, the steady state results from con-
stant heating that slowly diffuses away. In practice, if LArm is
made larger, effects of heat leakage to the bulk will become
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important at some point, so that the temperature will not
increase without bound.

Combining Eqs. (B7), (57), and (59), we find

FQPC = kB(TC + TD)

eV0
	 0.23

√
γ LArm

leq
. (B8)

What remains to compute is the contribution FContact from
the noise spots E and F . The microscopic structure of νB =
2/3 is ν+ = 1, ν− = 1/3, nu = 1, and nd = 1. To obtain the
temperature profiles of the downstream and upstream modes,
we solve Eq. (21), with boundary conditions T+(0) = 0 and
T−(LArm ) = TC . Again, no voltage drop occurs along the outer
edge segments CS − C and CG − D, and we find the diffusive
temperature profiles

k2
BT 2

+ (x) 	 e2V 2
0 xγ

8π2leq
, (B9a)

k2
BT 2

− (x) 	 e2V 2
0 (xγ + 2leq )

8π2leq
, (B9b)

where we used leq � LArm. We note that the LArm dependence
drops out for these profiles since the large factor ∼L1/2

Arm orig-
inating from the temperature at the noise spot [see Eq. (B7)]
is compensated by a small factor ∼1/

√
LArm describing the

reduction of the temperature towards the external contact.
The corresponding contribution to the noise should therefore
stay constant in the limit leq � LArm. Indeed, plugging these
profiles into Eq. (63), we obtain the asymptotically constant

noise

(δIS )2 = (δIG)2 	 e3V0

h

√
γ
(√

π + 2e4/γ 
(

3
2 , 4

γ

))
36π

≡ e3V0

h
h(γ ). (B10)

Inserting this result into Eq. (59), we get

FContact = 3h(γ ), (B11)

which yields the final expression for the total Fano factor

F2/3,1/3 	 0.23

√
γ LArm

leq
+ 3h(γ ). (B12)

This result is in agreement with qualitative discussion in
Sec. IV A [see Eq. (48)]. The Fano factor in this case increases
as (LArm/leq )1/2 because the only way the heat generated at the
hot spots can exit the QPC region is by diffusion. This leads
to a temperature at the noise spots that rises with increasing
LArm. Since the noise measured in the drains is proportional to
the temperature at the noise spot, the asymptotics of the Fano
factor follows.

As has already been discussed above, for very large LArm,
the increase of the noise will be limited by the leakage of
heat to the bulk. Specifically, if LArm becomes larger than the
leakage length, it will be replaced by the leakage length in the
first (dominant) term of Eq. (B12). The contact contribution
[second term of Eq. (B12)] will drop out in this situation.
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