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Paired electron motion in interacting chains of quantum dots
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We study the motion of a pair of electrons along two separate parallel chains of quantum dots. The electrons
that are released from the central dot of each chain tend to accompany and not avoid each other. The correlated
electron motion involves entanglement of the wave functions which is generated in time upon release of the
initial confinement. Observation of the simultaneous presence of electrons at the same side of the chain can
provide a fingerprint of the paired electron motion.
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I. INTRODUCTION

Single-electron charge dynamics in semiconductor double
quantum dots is extensively studied in the context of quan-
tum states control [1–5] and quantum information processing
[4,6,7]. Observation of charge oscillations from one dot to the
other in the time domain is used to evaluate the coherence and
energy relaxation times [1–6]. Shuttling of single electrons
across arrays of quantum dots have recently been performed
[8–10]. Devices with systems of multiple quantum dots that
are mutually coupled by the Coulomb interaction are consid-
ered for conditional operations on charge [11] and spin [12]
qubits as well as for wave function entanglement [13–15].

In this paper we consider two chains of quantum dots each
containing a single electron and the quantum dynamics upon
release of the initial potential localizing both electrons in the
central dots of the chain. We find that the electrons tend to
accompany each other in their motion across the chain of
dots and that the correlation of the electron motion due to
the entanglement of the wave function can be read out by
simultaneous detection of electrons at the ends of the chains.

II. THEORY

We work in a model of quasi-one-dimensional confinement
in two parallel chains of quantum dots [Fig. 1(a)]. The chains
are separated by a distance d . Each of the chains contains a
single electron. We neglect the tunneling between the chains,
so that the spin has no influence on the dynamics of the spatial
wave functions. We assume that the interaction does not affect
the state of quantization in the transverse direction and apply
a model of one-dimensional confinement in each chain. The
Hamiltonian is taken in the form

H =
2∑

i=1

(
− h̄2

2m

∂2

∂x2
i

+ V (xi, t )

)
+ e2

4πεε0r12
, (1)

with r12 =
√

d2 + (x1 − x2)2, and material parameters corre-
sponding to Si, i.e., the electron effective band mass m =
0.2m0, with m0 standing for the electron mass in vacuum, and
the dielectric constant ε = 12. The potential V (x, t ) is taken in
the same form for both the chains. We use the finite difference

approach for the wave function φ(x1, x2, t ) spanned on a grid
with mesh spacing of �x = 0.5 nm.

As the initial condition we take the ground state of the
electron pair for the potential that confines the electrons to the
central dots of the chain [see the dotted black line in Fig. 1(b)].
For t > 0 the potential is changed: V is lowered for other dots
to the level of the central one [red dashed line in Fig. 1(b)].
Upon release of the initial confinement the electrons tunnel
across the barriers that are 100 meV high and 6 nm wide and
separate quantum dots of length of 14 nm.

In order to describe the dynamics of the system we solve
the two-electron Schrödinger equation ih̄ ∂φ

∂t = Hφ to account
for the electron motion using the Askar-Cakmack [16] explicit
scheme,

φ(x1, x2, t + dt ) = φ(x1, x2, t − dt ) + 2dt

ih̄
Hφ(x1, x2, t ),

(2)
with the time step dt equal to half the atomic time unit. The
solution is exact in the numerical sense with a full account
taken for the electron-electron correlation.

In the left column of Fig. 2 we plot the probability wi to
find an electron in the dot i as a function of time,

wi(t ) =
∫

qdi

dx1

∫ ∞

−∞
dx2|φ(x1, x2, t )|2, (3)

where qdi stands for integration over the ith quantum dot. The
wi probabilities are the same for both chains. The probabilities
of simultaneous presence of electrons in the quantum dot i and
j of the respective chains are calculated as

bi j (t ) =
∫

qdi

dx1

∫
qd j

dx2|φ(x1, x2, t )|2. (4)

In the right column of Fig. 2 we plot the probability of
simultaneous electron detection at the extreme dots located at
the ends of the chains: in the dots at the same (b2,2 = b−2,−2)
or opposite (b−2,2 = b2,−2) ends of the chains.

III. RESULTS AND DISCUSSION

In the absence of the electron-electron interaction (d = ∞)
the time evolution is periodic [Fig. 2(a)] and the electrons are

2469-9950/2020/101(7)/075306(5) 075306-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6938-3247
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.075306&domain=pdf&date_stamp=2020-02-19
https://doi.org/10.1103/PhysRevB.101.075306


BARTŁOMIEJ SZAFRAN PHYSICAL REVIEW B 101, 075306 (2020)

(a)

 0

 0.5

 1

-40 -20  0  20  40
 0

 100

 200
t=0

t>0

c 
[a

rb
.u

n.
]

V[
m

eV
]

x[nm]

(b)

FIG. 1. (a) Schematics of two chains of five quantum dots sep-
arated by a distance d . A single electron is confined in each chain.
For the initial condition the electrons are set in the central quantum
dots of each chain. For t > 0 the confinement is released and the
electrons tunnel to other dots. We consider simultaneous detection
of electrons in the same or opposite ends of the chain. (b) The black
dotted line shows the potential along the chain that is used for the
initial condition. The red dashed line shows the potential that is set at
t > 0. With the solid black (red) line we plot the charge density for
the ground state in the initial condition (in the ground state for the
potential set at t > 0) for d = 100 nm.

found with equal probability in the same or opposite ends
of the chain [Fig. 2(b)]. For finite d the interaction enters
the dynamics [Figs. 2(c)–2(h)] and electron motion becomes
correlated, with a larger probability to find both electrons at
the same end of the chain. Counterintuitively, the electrons
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FIG. 2. Left column: The probability wi to find an electron in
dot i of the chain. Right column: probabilities to find electrons in
the same b2,2 = b−2,−2 or opposite ends of the chain b−2,2 = b2,−2,
for d = ∞ (a),(b), d = 200 nm (c),(d), d = 100 nm (e),(f), and d =
50 nm (g),(h). In the left column the linear entropy L is plotted with
the dotted line.
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FIG. 3. Probability densities on the x1, x2 plane at t = 14.7 ps
(a)–(c), t = 19.6 ps (d)–(f), and t = 24.5 ps (g)–(i) upon release of
the initial potential for d = ∞ (a),(d),(g), d = 100 nm (b),(e),(h),
and d = 50 nm (c),(f),(i).

accompany and do not avoid each other with b2,2 � b−2,2 for
d = 100 nm [Fig. 2(f)] and d = 50 nm [Fig. 2(h)]. Figure 3
shows the snapshots of the probability density for d = ∞
(left column), d = 100 nm (central column), and d = 50 nm
(right column). The stronger the electron-electron interaction
the stronger is the correlation of the electron motion—the
probability density tends to gather at the diagonal of the x1, x2

plane for small d .
The correlation appears due to entanglement of the two-

electron wave function. The left column in Fig. 3 calculated
for d = ∞ corresponds to a separable wave function with the
relative probability to find an electron in dot x1 independent of
the position of the electron in x2 chain, with same values of the
probability density on the diagonal x1 = x2 and antidiagonal
(x1 = −x2) of the plot. In the presence of the interaction
(central and right columns of Fig. 3 for d = 100 nm and
d = 50 nm) a distinct imbalance of the density at the diagonal
and antidiagonal appears.

In order to quantify the entanglement we use the
linear entropy [17–19] L = 1 − Trρ2

r , where ρ2
r (x1, x2) ≡∫

ρr (x1, x3, t )ρr (x3, x2, t )dx3 is the square of the reduced den-
sity matrix ρr (x1, x2, t ) ≡ ∫

φ∗(x1, x3, t )φ(x2, x3, t )dx3. The
entropy of the separable system is L = 0 and the maximal
value of the entropy for the electron pair is 1 [18]. L is plotted
with the dotted lines in the left panel of Fig. 2. The entropy
remains zero L = 0 in the absence of the interaction and it is
nearly zero L � 0 for the initial state of the interacting pair
with the electrons localized in the central dots of the chain.
L grows from zero when the electrons are released from the
central dot with the confinement change at t > 0.

The reason for the paired electron motion in the coherent
electron dynamics is the energy conservation. In the chain of
five quantum dots the five lowest energy levels form a band
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(g) α = 0.1, T1 = 68ps
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FIG. 4. Left column: The probability wi to find an electron in dot i of the chain for the interchain distance of d = 100 nm with the energy
relaxation introduced by the imaginary time stepping. Right column: probabilities to find electrons in the same b2,2 = b−2,−2 or opposite ends
of the chain b−2,2 = b2,−2. In the left column the linear entropy L is plotted with the dotted line. The ratio of imaginary steps to the total
number of steps α is 0.005 (a),(b), 0.01 (c),(d), 0.05 (e),(f), and 0.1 (g),(h), respectively. The corresponding result without the relaxation
is given in Figs. 2(e) and 2(f). The blue line in (b), (d), (f), and (h) shows the expectation value of the energy. The effective relaxation
time T1 = 1.36 ns (a),(b), 680 ps (c),(d), 136 ps (e),(f) and 68 ps (g),(h) is obtained as a fit to the quantum average of the energy E (t ) =
Ef + (Ei − Ef ) exp(−t/T1), with Ei and Ef standing for the initial and final energy, that correspond to the ground-state energies for the
potential set at t = 0 and at t > 0, respectively [Fig. 1(b)].

of width of about 0.2 meV while the higher energy band
is about 17 meV higher. The electron-electron interaction
for d = 100 nm in the initial state is about 1.5 meV. The
interaction energy is therefore too large to be transferred to
the excitations within the lowest energy band and it is too low
to excite the higher energy band. In consequence the electrons
need to move together to conserve the energy and keep the
electron-electron interaction strong.

In order to observe the correlated electron behavior one
needs to perform simultaneous detection of the electrons at the
ends of each chain. The correlated state corresponds to higher
electron-electron interaction energy, so that the energy relax-
ation process with its characteristic time (T1) should be of the
principal concern. The correlation instead of anticorrelation
can be found only provided that the energy relaxation time
(T1) is longer than the time needed for the electrons to reach
the extreme dots of the chain. The relaxation and coherence
times in double quantum dots can reach several nanoseconds
[4,6] at most.

We simulated the energy relaxation by introducing the
imaginary time dt → −idt to the solution of the time-

dependent Schrödinger equation. This substitution, known
as Wick rotation [20], is used in the diffusion Monte Carlo
methods [21]. The evolution in the imaginary time [22,23]
brings the system to the ground state. In our calculation the
rate of the energy relaxation is controlled by the α parameter
which indicates the ratio of imaginary time steps to the total
number of steps.

In Fig. 4 we plotted the results of the electron dynamics
including the simulation of the energy relaxation processes
for the interchain distance of d = 100 nm for varied values of
the α parameter. In the left column of Fig. 4 we plotted the
electron localization within the wells and in the right column
the probabilities to find the electrons at both or opposite ends
of the chain. With the blue line in the right column of Fig. 4 we
plotted the energy (expectation value of the Hamiltonian). The
energy dependence on time is found nearly exponential with
the relaxation time T1, E (t ) = E f + (Ei − E f ) exp(−t/T1),
with Ei standing for the energy of the initial state and E f as
the ground-state energy for the electron pair in the potential
that is introduced for t > 0 [Fig. 1(b)]. The corresponding
probability density for the ground state is given in Fig. 5.
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FIG. 5. Ground-state probability density for the potential intro-
duced at t > 0 [see Fig. 1(b)].

Probability to find both electrons at the opposite side of the
chain exceeds the one for both electrons at the same side of
the chain around half the relaxation time.

An experimental study of the correlation and anticorrela-
tion effects discussed here requires fabrication of quantum dot
arrays with mutual charge coupling. The quantum dots need
to be gated for manipulation of the confinement potential in
time [24,25]. The arrays or multiple quantum dots connected
in series were recently considered [8–10,24], and the potential
switching is routinely used for discussion of, e.g., spin and
charge [1–4] qubits in quantum dots. The charge coupling
between the gated arrays has been used in experiments on con-
trolled quantum logic [11,12] and entanglement generation
[14]. Finally, an experiment calls for the charge detection at
the extreme dots of the chain. In recent experiments on quan-
tum dot arrays the presence of electrons in chosen quantum
dots of the chain was detected by charge sensors, e.g., by a
nearby quantum dot [10,24] or a quantum point contact [8].

The present model assumed a one-dimensional confine-
ment along the chain of quantum dots (x axis). The assump-
tion is justified when interaction energy of electrons localized

in separate chains of quantum dots are smaller than the
excitation energy for the spatial quantization in the transverse
directions (y, z). The electrostatic quantum dots can be tai-
lored from the two-dimensional electron gas [1–4] (2DEG) for
which the state of quantization along the the growth direction
(z) is frozen by the strong vertical confinement. The confine-
ment energy along the other transverse direction (y) needs to
surpass the interchain interaction energy. Alternatively, chains
of quantum dots defined in two separate quantum wires can be
used instead of the 2DEG systems. The electrostatic quantum
dots on gated Si [26], InAs [27], or InSb [28] quantum wires,
as well as on semiconducting carbon nanotubes [29], can be
considered for this purpose.

IV. SUMMARY

In summary, we have studied the coherent dynamics of
system of two interacting electrons, each confined in a sep-
arate chain of quantum dots, upon release of the confinement
potential that initially keeps the electrons in the central dot of
the chain. We find entanglement generation and a paired mo-
tion of electrons which are correlated instead of anticorrelated
and tend to move together along the chain. The detection of
electrons at the ends of the chains provides a fingerprint of the
correlation and spatial entanglement of the wave functions.
The relaxation processes turn correlation into anticorrelation
but preserve the entanglement of the wave function.
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