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Green exciton series in cuprous oxide
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We numerically investigate the odd-parity states of the green exciton series in cuprous oxide. Taking into
account the coupling to the yellow series and especially to the yellow continuum, the green excitons are
quasibound resonances with a finite lifetime which cannot be described with Hermitian operators. To calculate
their positions and linewidths, we use the method of complex-coordinate rotation, leading to a non-Hermitian
complex eigenvalue problem. We find that the behavior of the dominant P states is very well approximated by
a modified Rydberg formula using a negative quantum defect. The corresponding linewidths induced by the
coupling to the yellow continuum decrease with the third power of the principal quantum number.

DOI: 10.1103/PhysRevB.101.075208

I. INTRODUCTION

Early experiments on cuprous oxide in the 1950s were
able to observe excitons with principal quantum numbers up
to n = 9 [1]. Since then, experimental methods have made
tremendous progress. After Kazimierczuk et al. realized prin-
cipal quantum numbers up to n = 25 for the yellow series
in cuprous oxide [2], interest has been drawn to the field
of giant Rydberg excitons. Because of the influence of the
crystal symmetry, the exciton sequence shows deviations from
a perfect hydrogen-like spectrum. For example, a splitting of
the P and F states is observable [3,4].

In an idealized model, excitons can be described as bound
states between electrons and holes. In general, a range of
mechanisms make scattering possible and induce a finite
linewidth. The excitons become quasibound states or reso-
nances. In the case of the yellow excitons, the most prominent
process is the scattering with phonons [5,6]. Bound states can
also become resonances by application of an external electric
field, which allows for tunneling processes into the unbound
region [7,8].

In cuprous oxide, the excitons constituted by electrons in
the lowest conduction �+

6 band and holes in the highest �+
7

valence band are part of the yellow exciton series. An electron
can also be lifted from the �+

8 valence band into the �+
6

conduction band, forming a green exciton [9–11]. Since the
energy of the �+

8 valence band is lowered by an amount �

in comparison to the uppermost �+
7 valence band, all green

excitons, except for the even parity 1S states investigated
in Refs. [12,13], lie within the energy range of the yellow
continuum. Yellow and green states are coupled by the valence
band structure [4,14], and the green states with principal
quantum numbers n � 2 are therefore resonances instead of
truly bound states.

An efficient numerical method for the computation of the
bound states of Cu2O including the impact of the valence
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band structure (but ignoring the phonon coupling) is the
diagonalization of the Hamiltonian using a complete basis
set [4,13]. The method can be applied to obtain the bound
states of the yellow exciton series at energies below the gap
energy Eg = 2.17208 eV and the green 1S excitons, which are
the only bound states of the green exciton series. However,
the Hermitian eigenvalue problem does not allow for the
computation of unbound resonance states.

Recent work by Krüger and Scheel has focused on the in-
terseries transitions such as between the yellow and green ex-
citons [15]. A better understanding of the unbound resonances
of the green series is thus of interest. A convenient description
of these resonance states is achieved by the introduction of a
complex energy, where the imaginary part is related to the
linewidth of the quasibound state. These complex energies
can be calculated by way of the complex-coordinate-rotation
method [16–18], where a complex scaling operation is per-
formed to expose the resonance positions in the complex
plane. In this paper, the numerical algorithm introduced in
Refs. [4,13] for the computation of bound excitons is aug-
mented by application of the complex-coordinate rotation.
This rotation turns the Hermitian eigenvalue problem into a
non-Hermitian system, and thus allows for the computation
of the complex resonance energies of the green excitons. To
this end, we first introduce the necessary theory in Sec. II,
including the method of complex-coordinate rotation and the
exciton Hamiltonian, also giving a short discussion of the
numerical diagonalization and the extraction of the oscillator
strengths. In Sec. III, we present our numerical results and
discuss their implications. Finally, we draw conclusions and
give a brief outlook in Sec. IV.

II. THEORY

A. Hamiltonian

Both the yellow and the green series in Cu2O have a unified
description in terms of the Hamiltonian [4,14,19]

H = Eg + He(pe ) + Hh(ph) + V (re − rh) . (1)
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Here, Eg denotes the gap energy, He and Hh are the electron
and hole kinetic energies, and V is the screened Coulomb
potential

V (re − rh) = − e2

4πε0ε|re − rh| , (2)

with the dielectric constant ε. The electron and hole kinetic
energies are given by

He(pe ) = p2
e

2me
, (3)

Hh(ph) = HSO + 1

2h̄2m0

{
h̄2(γ1 + 4γ2)p2

h

+ 2(η1 + 2η2)p2
h(I · Sh)

− 6γ2
(
p2

h1I2
1 + c.p.

) − 12η2
(
p2

h1I1Sh1 + c.p.
)

− 12γ3({ph1, ph2}{I1, I2} + c.p.)

− 12η3[{ph1, ph2}(I1Sh2 + I2Sh1) + c.p.]
}
, (4)

where me and m0 are the effective and free electron mass,
respectively, {a, b} = 1

2 (ab + ba) is the symmetrized product,
and c.p. denotes cyclic permutation. The spin-orbit interaction

HSO = 2

3
�

(
1 + 1

h̄2 I · Sh

)
(5)

couples the hole spin Sh and the quasispin I introduced to
describe the degeneracy of the valence band Bloch functions.
The yellow and green series are split by the energy �. The
parameters η j and the three Luttinger parameters γ j param-
eterize the influence of the complex band structure and the
deviation from a parabolic dispersion relation. In contrast to
Refs. [13,20], we here focus on odd excitons and thus can
neglect the central-cell corrections. Finally, the Hamiltonian
(1) is transformed into relative and center-of-mass coordinates
[21],

r = re − rh , R = mhrh + mere

mh + me
,

P = pe + ph , p = mh pe − me ph

mh + me
, (6)

with vanishing center-of-mass momentum P = 0. The mate-
rial parameters for Cu2O are given in Table I.

TABLE I. Material parameters of Cu2O used in the calculations.

Energy gap Eg = 2.17208 eV [2]
Spin-orbit coupling � = 0.131 eV [22]
Effective electron mass me = 0.99 m0 [23]
Effective hole mass mh = 0.58 m0 [23]
Dielectric constant ε = 7.5 [24]
Valence band parameters γ1 = 1.76 [22]

γ2 = 0.7532 [22]
γ3 = −0.3668 [22]
η1 = −0.020 [22]
η2 = −0.0037 [22]
η3 = −0.0337 [22]

The yellow exciton series in cuprous oxide can now be
investigated as in our previous work [4,13] by diagonalizing
the resulting Hamiltonian (1). States lying above the band-gap
energy Eg = 2.17208 eV, on the other hand, are resonances
not accessible by this method. For their study, in this paper
we augment the approach by the complex-coordinate rotation
[16–18], allowing for the calculation of the complex energies
of the green exciton states. The wave functions ψ associated
with resonances are not normalizable and thus are not part of
the Hilbert space. They fulfill the Schrödinger equation

Hψ = Eψ (7)

with a complex energy E . We introduce the complex scaling
operation Sθ with

Sθψ (r) = ψ (reiθ ) . (8)

Note that formally the operator Sθ can be applied to a state
|ψ〉 in arbitrary representation; however, Eq. (8) is only valid
in coordinate representation as used throughout this paper. For
sufficiently large θ , Sθψ becomes square integrable [18]. The
rotated Schrödinger equation is given by

SθHS−1
θ Sθψ = ESθψ . (9)

We thus want to find eigenvalues and normalizable eigenfunc-
tions of the rotated Hamiltonian

H ′ = SθHS−1
θ . (10)

The energies of the bound states are unaffected by the rotation,
whereas the continuum is rotated into the lower complex plane
by the angle 2θ and the positions of the quasibound resonance
states are revealed. For sufficiently large angles, these are
independent of the value of θ . Expressing Sθψ in a basis {φi},
we obtain

Sθ |ψ〉 =
∑

i

ci|φi〉 (11)

and ∑
i

〈S−1
θ φ j |H |S−1

θ φi〉ci = E
∑

i

〈S−1
θ φ j |S−1

θ φi〉ci . (12)

The solution can thus be obtained by using the rotated basis
set {S−1

θ |φi〉} with the unchanged Hamiltonian H .

B. Non-Hermitian generalized eigenvalue problem

We now express the wave function in an appropriate basis.
Our approach is identical to the one in Ref. [8]; i.e., for the
radial part, we use the complete basis of Coulomb-Sturmian
functions

UNL(ρ) = NNL(2ρ)Le−ρL2L+1
N (2ρ) , (13)

with ρ = r/α and N being the radial quantum number. Here,
α is a free parameter. For the angular part, we use the spherical
harmonics for L with an additional set of appropriate spin
quantum numbers. First, the quasispin I and the hole spin
Sh are coupled to the effective hole spin J . At the � point,
J is a good quantum number and distinguishes between the
yellow (J = 1/2) and green series (J = 3/2). Then L and J
are coupled to the angular momentum F . Finally, we take
the electron spin into account by introducing Ft = F + Se
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with the component MFt along the quantization axis, which
is chosen to be the [001] axis. Our basis states thus are given
by

|〉 = |N, L; (I, Sh ), J; F, Se; Ft, MFt 〉 . (14)

Using this basis set, we can transform the Schrödinger equa-
tion into the generalized eigenvalue problem (12), which can
be solved using the Lapack routine ZGGEV [25]. The complex-
coordinate rotation is here achieved by rotating the free
parameter α → α = |α|eiθ . Since the Coulomb-Sturmian
functions are not orthogonal, the overlap matrix in Eq. (12)
is nontrivial [4]. To properly orthonormalize the eigenvectors,
we apply a modified Gram-Schmidt procedure.

C. Oscillator strengths

Using the eigenfunctions obtained from the solution of the
generalized eigenvalue problem (12), we are able to simulate
absorption spectra for the yellow and green series. The ab-
sorption coefficients are calculated with the formula [8]

f (E ) = − 1

π
Im

∑
j

f ( j)
rel

E − Ej
, (15)

where Ej are the complex energies of the resonance states and

frel ∼
(

lim
r→0

∂

∂r
〈σ±

z |�(r)〉
)2

(16)

is the complex generalization of the relative oscillator
strength. The overlaps with the states

|σ+
z 〉 = |2,−1〉D, |σ−

z 〉 = −|2, 1〉D (17)

determine the spectrum for σ+ and σ− polarized light. Here,
we use the abbreviation

|Ft, MFt 〉D = |(Se, Sh ) S, I; I + S, L; Ft, MFt 〉
= |(1/2, 1/2) 0, 1; 1, 1; Ft, MFt 〉 (18)

to denote the states with a coupling scheme differing from the
one in the basis states.

III. RESULTS AND DISCUSSION

The results for both the yellow and green exciton series are
presented in Fig. 1. In the computations, we have used the
basis set (14) with N + L < 50, |α| = 63, and θ = 0.14 and
restricted ourselves to the odd states, as only those contribute
to the absorption coefficient of one-photon transitions. In the
lower part of Fig. 1, we show the resonance positions of the
yellow and green exciton series in the complex energy plane.
Clearly visible are the bound states of the yellow exciton
series at energies below the gap energy Eg and the resonances
of the green exciton series at energies below the band edge
Eg + �. Above the band edges, energies are bundled along
straight lines and rotated into the complex plane. The rotation
angle is approximately given by 2θ as is expected for complex
rotated continuum states [16–18]. Note that the numerical
resonance positions are already rotated into the lower complex
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FIG. 1. Spectrum and resonance positions in the complex plane for the yellow and green exciton series of Cu2O. Note that only the
odd-parity states are included. The color bar shows the absolute value of the relative oscillator strength | frel|. As coupling with phonons is not
considered here, the linewidths of the yellow exciton states in the upper panel were put in by hand, as explained in the text. The vertical lines
mark the respective band gaps. Because of the finite basis, the numerical resonance positions are already rotated into the lower complex plane
at slightly lower energies. The absorption coefficient is given in arbitrary units and with an arbitrary shift of the base line.
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energy plane at energies slightly below the band edges. This
is a numerical artifact due to the finite size of the basis set.

The upper part of Fig. 1 presents the corresponding ab-
sorption spectrum obtained with Eq. (15). Since we do not
include the effects of phonons in our model, the yellow
exciton states here are bound states with infinite lifetimes. To
avoid δ-function-type absorption peaks, we have simulated the
interaction with phonons by manually introducing the finite
linewidths

γn = 9 meV(n2 − 1)/n5 (19)

with an effective principal quantum number

n = √
ERyd/(Eg − E ) + δP (20)

derived from the approximate Rydberg formula [2,6] with
ERyd = 92 meV and δP = 0.23.

The green exciton states, however, are true resonances even
apart from phonons, since they are coupled to the yellow
continuum by the valence band structure. The linewidths
visible in the upper part of Fig. 1 are solely due to this effect.
The continuum states of both the yellow and green excitons
provide for a square root function-shaped background starting
at energies above the respective band edges.

We now want to discuss the classification and symmetries
of resonances of the green exciton series. The green excitons
are defined by the condition J = 3/2. Additionally, we have
to consider the angular momentum L. The electron spin plays
no role for the odd states and remains a good quantum
number. Thus, for the P states we have F = 1/2, 3/2, and
5/2. Reducing the symmetry to the octahedral group Oh,
the irreducible representations are �−

6 , �−
8 , and �−

7 ⊕ �−
8 ,

respectively [26]. We have to take into account, however, that
the quasispin I transforms according to �+

5 instead of �+
4 .

Since �+
5 = �+

4 ⊗ �+
2 , this can be done by performing the

coupling of angular momenta as usual, but multiplying by �+
2

in the end. For the P states, we thus have the representations
�−

7 , �−
8 , and �−

6 ⊕ �−
8 . Note that the degeneracy of these

states is doubled due to the electron spin. Since half-integer
angular momenta only have the above mentioned irreducible
representations in Oh [26], all states considered in this work
can be classified according to them. Of those, only �−

6 and
�−

8 states are dipole active, because only those contain �−
4

when multiplied with the electron spin symmetry �+
6 [26].

Additional consideration of the degree of degeneracy then
allows for the unique assignment of irreducible representa-
tions to the odd exciton states as given in the Supplemental
Material [27].

In Table II and Fig. 2, the resonance positions of the domi-
nant P states are presented. We extract the band gap, Rydberg
constant, and quantum defect using a fit of the form E (n) =
Eg − R/(n − δ)2. As expected, the fitted continuum threshold
Efit

g,green = 2.30302 eV shows excellent agreement with the
band gap of the green excitons Eg + � = 2.30308 eV. For
the Rydberg constant, we obtain R = 150.4 meV, which is
in good agreement with literature [10,12,19,28]. In previous
theoretical work by Schöne et al. [19], the quantum defect
of the green exciton series was investigated using a simpli-
fied treatment of the valence band dispersion neglecting the
coupling of the green resonances to the yellow continuum,
yielding negative quantum defects, which for the P states

TABLE II. Numerically determined resonance positions and rel-
ative oscillator strengths (in arbitrary units) of some of the lowest P
states belonging to the irreducible representation �−

6 . The selected
states produce the dominant peak of each n-manifold in the absorp-
tion spectrum.

State Re E [eV] Im E [meV] Re frel Im frel

2P 2.26887 −3.01965 4.2998 5.8604
3P 2.28765 −0.90691 1.1603 1.8982
4P 2.29423 −0.38575 0.5028 0.8270
5P 2.29731 −0.19095 0.2571 0.4496
6P 2.29901 −0.10700 0.1337 0.2630
7P 2.30005 −0.06821 0.1416 0.1579
8P 2.30072 −0.04328 0.0519 0.1085
9P 2.30120 −0.03314 0.0438 0.0730
10P 2.30154 −0.02334 0.0302 0.0550
11P 2.30180 −0.01733 0.0268 0.0387
12P 2.30199 −0.01459 0.0198 0.0322
13P 2.30215 −0.01012 0.0168 0.0223
14P 2.30227 −0.00903 0.0118 0.0212
15P 2.30237 −0.00742 0.0105 0.0165

are in reasonable agreement with our result of δ = −0.112.
In Fig. 2, we also present a fit without using a quantum
defect. Detailed comparison shows that this fit is slightly
less accurate, especially for low principal quantum numbers.
This motivates the validity of the quantum-defect-corrected
Rydberg formula also for the dominant P states of the green
exciton series. A more complete version of Table II is given in
the Supplemental Material [27].

The green exciton series has already been experimentally
investigated in Ref. [1]. At temperature T = 4.2 K, Gross
found E2P = 2.266 eV, E3P = 2.287 eV, E4P = 2.294 eV, and
E5P = 2.298 eV, which agrees with the numerical energies
given in Table II to within approximately 1–2 meV.

The behavior of the linewidths of the green excitons in-
duced by the coupling to the yellow continuum as a function
of the principal quantum number is shown in Fig. 3. A
function of the form γn = γ0n−3 provides a good fit to the
numerically determined values. We obtain γ0 = 47.7 meV,
which means that the yellow-continuum-induced linewidths
of the dominant green P states are large compared to the
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Determined by fitting: 
Eg,green = 2.30302 ± 0.00001 eV
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δ = -0.112 ± 0.016
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FIG. 2. Numerically determined energies of the lowest dominant
P states. The band gap energy Eg,green, Rydberg constant R, and
quantum defect δ are determined by a fit (green solid line). For
comparison, the dashed yellow line shows a fit without quantum
defect (see text).
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FIG. 3. The numerically determined yellow-continuum-induced
linewidths of the dominant green P states. A fit using the function
γn = γ0n−3 is in good agreement with the numerical data.

phonon-coupling-induced linewidths of the yellow excitons
given in Eq. (19). Assuming that the phonon-coupling leads
to similar linewidths for both the yellow and green excitons,
the widths of the green excitons shown in Fig. 1 would only
slightly increase when taking phonon coupling into account;
however, a more detailed theory of the phonons or precise
state-of-the-art experimental data are necessary to clarify this
point.

IV. CONCLUSION AND OUTLOOK

We have computed the resonance positions, linewidths,
and relative oscillator strengths of the green exciton series of
cuprous oxide, thereby taking into account the valence band
structure of the crystal and the coupling of the green excitons
to the yellow continuum. For the computations, we have used
a complete basis set with Coulomb-Sturmian functions for the

radial part of the wave function and the complex-coordinate
rotation method. For the dominant P states in the absorption
spectrum, we have confirmed their hydrogen-like behavior
and extracted the Rydberg energy and quantum defect, which
are in good agreement with literature [19]. The linewidths of
the green P states decrease ∼n−3 with increasing principal
quantum number.

In Sec. III, we have compared some resonance positions
to the experimental work of Gross [1]. In the meantime,
experimental techniques have made substantial progress. A
comparison with new data would thus be desirable. The
interesting question is whether giant Rydberg states of the
green exciton series with quantum numbers up to n ≈ 25 and
the computed fine structure splitting can be experimentally
observed, similar to the yellow series [2,3].

In this paper, we have focused on the odd states. The 1S
state of the even green series is bound and has been computed,
including the central-cell corrections, in Ref. [13]. In the
future, we can also investigate the even resonance states of
the green exciton series.

Interseries transitions are currently investigated [15]. Start-
ing from the present investigations, we can now go on to
calculate the interseries transition amplitudes between the
yellow and green series, taking the valence band structure into
account.
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