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Based on the combination of the variational polaron transformation and the Green-Kubo formalism, a method
toward the thermopower calculations in organic crystals is proposed, which covers a broad regime of electron-
phonon interaction strengths and successfully recovers the small-polaron theory in the narrow-band limit and
the modified Mott formula in the coherent limit, respectively. The application to a molecular chain reveals a
crossover of thermopower with respect to the chemical potential and exhibits abnormal regions where the sign
of thermopower is opposite to the sign of the carrier charge. This abnormal property may lead to a sign-inversion
phenomenon of thermopower in terms of the temperature. It is also found that the incomplete dressing of the
electron by the phonon cloud destroys the particle-hole symmetry and results in nonzero thermopower in a
half-filled band.

DOI: 10.1103/PhysRevB.101.075205

I. INTRODUCTION

In recent years, there has been growing interest in de-
veloping organic thermoelectric devices with high-energy
conversion efficiencies [1–6]. As compared with traditional
inorganic counterparts, organic thermoelectric materials have
advantages of low thermal conductivity, mild manufacturing
processes, soft mechanical properties, and good controllabil-
ity in electronic properties. Up to now, however, the highest
figure of merit ZT in organic materials [7] is only about 0.4
and the low ZT value severely limits their practical applica-
tions. Systematic and efficient improvements in ZT require
further investigations of molecular thermoelectric properties
both from experiment and from theory.

Theoretically, phenomenological models based on the hop-
ping transport theory, pioneered by the work of Bässler [8], are
commonly employed to investigate the thermoelectric effect
in disordered organic semiconductors [9,10]. In these models,
the carrier transport along the molecular chain is described
by hopping events. The hopping rate is usually given by the
Miller-Abrahams expression or the Marcus electron transfer
theory and the density of states is assumed to have a Gaussian
or exponential shape. Afterwards, the Mott formulas [11] are
used for the calculation of the electrical conductivity and
thermopower (i.e., Seebeck coefficient), either by deriving
analytical expressions under some approximations [12,13] or
by direct dynamical simulations via kinetic Monte Carlo tech-
niques [14–16] or master equations [17–19]. Excellent agree-
ment with experimental results has proven the validity of these
models, although they are short of predictability owing to var-
ious parameters that need to be fitted by experimental results.

Besides phenomenological models, various efforts toward
the first-principles description of the thermoelectric properties
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of organic crystals have been made recently. Some of them are
the direct applications of conventional theories to organic sys-
tems. For example, the well-established Landauer formalism,
which is generally used in calculating the coherent transport
properties of nanostructures, has been applied to conducting
polymers [20,21]. In this formalism, the electron motion is
treated ballistically and the scattering channel from phonons is
completely neglected. The other example is the application of
the Boltzmann transport equation to organic semiconductors,
traced back to Friedman’s original work [22]. In this approach,
the electron-phonon interaction is regarded as perturbation
and its influence on the electron transport is grouped into a pa-
rameter called the relaxation time. Recently, the combination
of the Boltzmann transport equation and first-principles cal-
culations has been realized for several organic crystals. Under
the rigid-band and constant-relaxation-time approximation,
Gao et al. [23] have calculated thermopower of polythiophene
and polyaminosquarine from electronic band structures. Uti-
lizing the deformation potential theory, Shuai and coworkers
[24–27] have explicitly calculated the relaxation time and in-
vestigated the thermoelectric properties of several conducting
polymers and small organic molecules at different doping
levels. Together with the thermal conductivity calculated from
the nonequilibrium molecular dynamics, they have predicted
a highest ZT value of 2.5 for α-form nickel phthalocyanine at
room temperature [24].

It is known that both the Landauer formalism and the
Boltzmann transport theory are only applicable to weak
electron-phonon interactions. As an electron-phonon interac-
tion is of the same magnitude as or much larger than the elec-
tronic coupling, a better way to describe the carrier transport
process should be the polaron picture. The first attempt to
calculate the thermoelectricity within the small-polaron model
starts from the work of Schotte [28], who has demonstrated
that the strong electron-phonon interaction only contributes
a constant shift to thermopower and all of the dynamical
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effects vanish. Since then, however, not much attention
[29,30] has been paid to the polaron description of ther-
mopower until recently. Using the mixed quantum-classical
approach together with the Langevin dynamics, de Oliveira
Neto et al. [31] have calculated the drift velocity of the polaron
in a polymer chain under a thermal gradient or an external
electric field. From these drift velocities, thermopower is
obtained. In this approach, quantum corrections to the final
results are inevitable because organic molecules often consist
of many high-frequency vibrational modes. Within Holstein’s
small-polaron model, Wang et al. [32] have proposed a the-
ory for the case of strong electron-phonon interactions by
applying the saddle-point approximation to the Green-Kubo
formalism and a ZT value of as high as 15.2 for a one-
dimensional molecular nanowire is predicted.

However, a general method is still missing for the calcu-
lation of thermopower in organic semiconductors suitable for
a broad regime of electron-phonon interactions. The central
difficulty for developing such an approach is that neither the
electronic coupling nor the electron-phonon interaction can be
considered as perturbation. In charge transport calculations,
a powerful technique to overcome such a difficulty is the
polaron transformation. For instance, by applying the full po-
laron transformation and the mean-field approximation to the
Holstein Hamiltonian, a carrier mobility expression has been
derived [33] which successfully bridges the coherent band
transport at low temperatures and the incoherent hopping-
type motion at high temperatures. The variational polaron
transformation, which extends the validity of the full one, has
also been introduced in the field of open quantum systems and
has been successfully utilized to calculate transport properties
[34–37], dynamical processes [38–41], thermal equilibrium
properties [42], and linear absorption spectra [43]. The merit
of the variational transformation lies in the fact that it de-
couples the electron and the phonon to a large extent via a
variational procedure such that the residual interaction term
may be considered as perturbation.

In this paper, we introduce the variational polaron trans-
formation and mean-field approximation to the Green-Kubo
formalism for the thermopower calculation. The pivotal pro-
cess is very similar to the one adopted in Ref. [33] for carrier
mobilities. We derive an analytical expression for the ther-
mopower calculation, which correctly recovers conventional
theories in both strong and weak electron-phonon interaction
limits. From the thermopower expression, some novel phe-
nomena are exhibited.

The paper is arranged as follows. In Sec. II, starting from
a model Hamiltonian and the Green-Kubo formalism, we
present the detailed derivation of formulas for the calculation
of thermopower. We then discuss the asymptotic behaviors of
these formulas in Sec. III and show an application in Sec. IV.
Concluding remarks are given in Sec. V.

II. METHODOLOGY

A. Model Hamiltonian

To describe thermopower of organic crystals, we start from
the following model Hamiltonian:

Ĥ = Ĥe + Ĥph + Ĥe-ph. (1)

Here, Ĥe is the electronic Hamiltonian

Ĥe =
∑

l

Vl

∑
n

ĉ†
n+l ĉn, (2)

where ĉ†
n and ĉn are the creation and annihilation operators,

respectively, of the electron at site n, Vl = V−l is the elec-
tronic coupling, and l = ±1,±2, . . . denotes the distance
and direction of electron transfer. For the sake of simplicity,
a one-dimensional molecular chain with repeated molecule
units is considered, but the derivation processes outlined in
the following can be easily extended to three-dimensional
cases to account for anisotropy of thermopower without extra
difficulty.

The phonon Hamiltonian Ĥph that describes molecular
vibrations is given by

Ĥph =
∑

n

∑
j

ω j

(
b̂†

n j b̂n j + 1

2

)
, (3)

where b̂†
n j and b̂n j are the creation and annihilation operators,

respectively, of the jth phonon mode at site n with fre-
quency ω j . In the present paper we only consider intramolec-
ular vibrational modes, which often reflect a high-frequency
character.

The electron-phonon interaction Ĥe-ph is assumed to be

Ĥe-ph =
∑

n

F̂n ⊗ ĉ†
nĉn, (4)

where the phonon operator reads

F̂n =
∑

j

ω jg j (b̂
†
n j + b̂n j ), (5)

and g j is the dimensionless coupling constant, which is fully
characterized by the spectral density defined as

JSD(w) = π
∑

j

ω2
j g

2
jδ(ω − ω j ). (6)

We adopt the same spectral density for each site. The periodic
boundary condition is assumed and atomic units where h̄ = 1
are adopted throughout this paper.

B. Green-Kubo formalism

Within the Green-Kubo formalism, the electrical conduc-
tivity σ and thermopower S are expressed by different kinds
of correlation functions [44]:

σ = 1

kBT
M11, (7)

S = 1

T

(
M12

M11
− μ

e

)
, (8)

with

M11 = 1

2L

∫ +∞

−∞
dt〈Ĵ (t )Ĵ (0)〉H , (9)

and

M12 = 1

2L

∫ +∞

−∞
dt〈ĴE (t )Ĵ (0)〉H . (10)
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Here, Ĵ and ĴE are the electrical and energy currents, re-
spectively. L is the total length of the molecular chain. e
is the electron charge (which is negative) and μ is the
chemical potential. The correlation functions are defined as
〈Â(t )B̂(0)〉H ≡ Tr{eiĤt Âe−iĤt B̂e−β(Ĥ−μN̂ )/Z}, where Â and B̂
are two arbitrary operators, β = 1/kBT is the inverse temper-
ature, N̂ = ∑

n ĉ†
nĉn is the total electron number operator, and

Z = Tre−β(Ĥ−μN̂ ) is the grand-canonical partition function.
The electrical and energy current operators are defined as

the time derivatives of the electron-density polarization op-
erator P̂ = ∑

n rnĉ†
nĉn and energy polarization operator R̂E =∑

n rnĥn, respectively [44], where rn = na, a is the distance
between two nearest-neighbor sites, and ĥn is the energy
density at site n:

ĥn = 1

2

∑
l

Vl (ĉ
†
n+l ĉn + ĉ†

nĉn+l ) +
∑

j

ω j b̂
†
n j b̂n j

+ F̂n ⊗ ĉ†
nĉn (11)

which satisfies Ĥ = ∑
n ĥn. Then, from Ĵ = ie[Ĥ, P̂] and

ĴE = i[Ĥ, R̂E ], one obtains

Ĵ = −iae
∑

l

lVl

∑
n

ĉ†
n+l ĉn (12)

and

ĴE = − ia

2

∑
ll ′

(l + l ′)VlVl ′
∑

n

ĉ†
n+l+l ′ ĉn

− ia

2

∑
l

lVl

∑
n

(F̂n + F̂n+l )ĉ
†
n+l ĉn. (13)

Different from Ĵ , which solely originates from the electron
kinetic energy, ĴE has two components. The first term in
Eq. (13) emerges from the kinetic energy of the electrons,
while the second term represents the flow of the electron-
phonon interaction energy. Both of them enter in the calcu-
lation of thermopower.

C. Variational polaron transformation

The difficulty of rigorously calculating the correlation
functions Eqs. (9) and (10) arises from the fact that the
electronic coupling and the electron-phonon interaction may
be of the same magnitude in organic crystals so that the
perturbation theory fails. The variational polaron transforma-
tion has been proved to be a powerful technique to partially
decouple the electronic and the vibrational degrees of freedom
to a large extent such that nonperturbative calculations be-
come possible. The unitary operator of this transformation is
defined as

Ĝ = e
∑

n, j f j (b̂
†
n j−b̂n j )⊗ĉ†

nĉn , (14)

where { f j} are parameters that need to be determined vari-
ationally and are implicit functions of the temperature and
the chemical potential. In the special case when f j = g j , the
variational polaron transformation recovers the full polaron
transformation or the Lang-Firsov transformation [45], which
completely diagonalizes the Hamiltonian in the atomic limit
(Vl = 0).

It is easy to prove the following properties, Ĝb̂†
n jĜ

† =
b̂†

n j − f j ĉ†
nĉn, Ĝb̂n jĜ† = b̂n j − f j ĉ†

nĉn, Ĝĉ†
nĜ† = ĉ†

nX̂ †
n , and

ĜĉnĜ† = ĉnX̂n, where X̂n is the phonon displacement operator
at site n:

X̂n = e− ∑
j f j (b̂

†
n j−b̂n j ). (15)

After the transformation, the total Hamiltonian in the polaron
representation is expressed as

H̃ = ĜĤĜ† = − Ep

∑
n

ĉ†
nĉn +

∑
l

Vl

∑
n

X̂ †
n+l X̂nĉ†

n+l ĉn

+ Ĥph +
∑

n j

ω j (g j − f j )(b̂
†
n j + b̂n j )ĉ

†
nĉn,

(16)

where Ep = ∑
j ω j (2g j f j − f 2

j ) is the polaron self-energy.
The parameters { f j} are determined through a variational

procedure suggested by Yarkony and Silbey [46]. For a gen-
eral Hamiltonian that is divided into two parts, H̃ = H̃0 + H̃ ′,
Bogoliubov’s theorem states that the upper bound on the free
energy is given by

AB = −β−1 ln Tre−β(H̃0−μN̂ ) + 〈H̃ ′〉H̃0
, (17)

where 〈H̃ ′〉H̃0
= Tr{H̃ ′e−β(H̃0−μN̂ )}/Tre−β(H̃0−μN̂ ). The varia-

tional parameters should be chosen so that they minimize AB.
To utilize this theorem, we adopt the mean-field approxima-
tion to X̂ †

n+l X̂n in Eq. (16):

〈X̂ †
n+l X̂n〉ph = e−2�, (18)

where 〈Â〉ph ≡ Tr{Âe−βĤph/Zph} with Zph = Tre−βĤph , e−2� =
exp{−∑

j f 2
j (2n j + 1)} is the Debye-Waller factor, and nj =

1/(eβω j − 1) is the Bose distribution function. Then, we de-
fine H̃0 as

H̃0 = −Ep

∑
n

ĉ†
nĉn +

∑
l

Ṽl

∑
n

ĉ†
n+l ĉn + Ĥph (19)

with the residual interaction H̃ ′:

H̃ ′ =
∑

l

Vl

∑
n

(X̂ †
n+l X̂n − e−2� )ĉ†

n+l ĉn

+
∑

n j

ωn j (g j − f j )(b̂
†
n j + b̂n j )ĉ

†
nĉn, (20)

where Ṽl = Vle−2� is the phonon-dressed electronic coupling
or the polaronic coupling, which may be much smaller than
the bare electronic coupling.

By construction, 〈H̃ ′〉H̃0
= 0, therefore we have

AB = −β−1 ln Tre−β(H̃0−μN̂ ). (21)

To obtain the analytical form of AB, we rewrite H̃0 in the
reciprocal space:

H̃0 = H̃e + Ĥph, (22)

where H̃e = ∑
k ε̃k ĉ†

k ĉk , k = 2πm
Na (m = 1, . . . , N ) is the

crystal momentum, N is the total number of sites,
ε̃k = −Ep + ∑

l Ṽl e−ikrl is the polaron band energy, and
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ĉk = 1√
N

∑
n e−ikrn ĉn is the corresponding annihilation oper-

ator of the polaron. Then, we get

AB = −β−1
∑

k

ln(1 + e−β(ε̃k−μ) )

− β−1 ln Tre−βĤph . (23)

Taking the partial derivative of AB and let ∂AB
∂ f j

= 0, we arrive
at a self-consistent equation for { f j}:

f j = w jg j

w j − (2n j + 1)
∑

k (ε̃k + Ep)Pk
, (24)

where Pk = n̄k/
∑

k′ n̄k′ and n̄k = 1/(eβ(ε̃k−μ) + 1) is the
Fermi-Dirac distribution function. In practice, one should
make an initial guess for each f j and then solve this equation
self-consistently. Different initial guesses may give different
convergent results of Eq. (24) and therefore one should try
various initial guesses in order to find the optimal set of
variational parameters.

After the variational procedure, the residual interaction
becomes small and therefore one can set H̃ ≈ H̃0. There are
two underlying assumptions to make this mean-field approx-
imation valid. The first one is that the vibrational motion is
faster than the electron transfer, i.e., the vibrational frequency
is larger than the electronic coupling [47] (which is often satis-
fied in organic crystals). The second one is that the fluctuation
of the polaronic coupling induced by the vibrational motion is
smaller than its thermal average [48]. A similar approximation
has been adopted in the mobility calculations [33].

The expressions for the electrical and energy current oper-
ators in the polaron representation are

J̃ = −iae
∑

l

lVl

∑
n

X̂ †
n+l X̂nĉ†

n+l ĉn (25)

and

J̃E = − ia

2

∑
ll ′

(l + l ′)VlVl ′
∑

n

X̂ †
n+l+l ′ X̂nĉ†

n+l+l ′ ĉn

− ia

2

∑
l

lVl

∑
n

(F̂n + F̂n+l )X̂
†
n+l X̂nĉ†

n+l ĉn − �E

e
J̃,

(26)

respectively, where �E = ∑
j ω jg j f j . In the case of the full

polaron transformation, Ep and �E coincide with each other,
but in general cases Ep > �E . This discrepancy is ascribed to
the incomplete dressing of the electron by the phonon cloud,
due to the nonzero electron kinetic energy. In Sec. IV, it
is demonstrated that this discrepancy leads to nonvanishing
thermopower in a half-filled band.

We transform the electrical and energy current operators to
the reciprocal space ulteriorly and obtain

J̃ = − iae

N

∑
l

lVl

∑
n

∑
k1k2

e−ik1rn+l +ik2rn

× X̂ †
n+l X̂nĉ†

k1
ĉk2 (27)

and

J̃E = − ia

2N

∑
ll ′

(l + l ′)VlVl ′
∑

n

X̂ †
n+l+l ′ X̂n

×
∑
k1k2

e−ik1rn+l+l′+ik2rn ĉ†
k1

ĉk2

− ia

2N

∑
l

lVl

∑
n

(F̂n + F̂n+l )X̂
†
n+l X̂n

×
∑
k1k2

e−ik1rn+l +ik2rn ĉ†
k1

ĉk2 − �E

e
J̃, (28)

respectively. Substituting Eqs. (22), (27), and (28) into
the integrands in Eqs. (9) and (10) and using the proper-
ties eiH̃t ĉke−iH̃t = e−iε̃kt ĉk and eiH̃t b̂n je−iH̃t = e−iω j t b̂n j , one
obtains

〈Ĵ (t )Ĵ (0)〉H = −a2e2

N2

∑
ll ′

ll ′VlVl ′
∑
nn′

〈X̂ †
n+l (t )X̂n(t )X̂ †

n′+l ′ X̂n′ 〉ph

×
∑

k1k2k3k4

e−i(k1rn+l −k2rn+k3rn′+l′−k4rn′ )ei(ε̃k1 −ε̃k2 )t 〈ĉ†
k1

ĉk2 ĉ†
k3

ĉk4

〉
H̃e

, (29)

〈ĴE (t )Ĵ (0)〉H = − a2e

2N2

∑
ll ′l ′′

(l + l ′)l ′′VlVl ′Vl ′′
∑
nn′

〈X̂ †
n+l+l ′ (t )X̂n(t )X̂ †

n′+l ′′ X̂n′ 〉ph

×
∑

k1k2k3k4

e−i(k1rn+l+l′−k2rn+k3rn′+l′′−k4rn′ )ei(ε̃k1 −ε̃k2 )t 〈ĉ†
k1

ĉk2 ĉ†
k3

ĉk4

〉
H̃e

− a2e

2N2

∑
ll ′

ll ′VlVl ′
∑
nn′

〈[F̂n(t ) + F̂n+l (t )]X̂ †
n+l (t )X̂n(t )X̂ †

n′+l ′ X̂n′ 〉ph

×
∑

k1k2k3k4

e−i(k1rn+l −k2rn+k3rn′+l′−k4rn′ )ei(ε̃k1 −ε̃k2 )t 〈ĉ†
k1

ĉk2 ĉ†
k3

ĉk4

〉
H̃e

− �E

e
〈Ĵ (t )Ĵ (0)〉H . (30)
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Here, a new notation 〈Â〉H̃e
≡ Tr{Âe−β(H̃e−μN̂ )/Z̃e} with Z̃e =

Tr{e−β(H̃e−μN̂ )} is introduced, and

F̂n(t ) =
∑

j

ω jg j (e
iω j t b̂†

n j + e−iω j t b̂n j ), (31)

X̂n(t ) = e− ∑
j f j (e

iω j t b̂†
n j−e−iω j t b̂n j ). (32)

At this point, Eqs. (29) and (30) seem quite cumbersome. The
simplification can be made by replacing thermal averages in
these equations by the corresponding analytical expressions.
These expressions are given in the next subsection.

D. Thermal average

The polaronic thermal average is easily obtained by the
direct application of Wick’s theorem:〈

ĉ†
k1

ĉk2 ĉ†
k3

ĉk4

〉
H̃e

= δk1k2δk3k4 n̄k1 n̄k3

+ δk1k4δk2k3 n̄k1

(
1 − n̄k2

)
. (33)

The first term in Eq. (33) represents the density correlations
and usually has negligible contribution to transport properties
(see the discussion in Appendix A). Hence, this term is
omitted hereafter.

The derivation of the phononic thermal averages appearing
in Eqs. (29) and (30) is straightforward but tedious. Here, we
only display the final results and leave the detailed derivation
process to Appendix B:〈

X̂ †
n1

(t )X̂n2 (t )X̂ †
n3

X̂n4

〉
ph

= exp
{ − 2

(
2 − δn1n2 − δn3n4

)
� − In3,n4

n1,n2
L(t )

}
(34)

and 〈
F̂n0 (t )X̂ †

n1
(t )X̂n2 (t )X̂ †

n3
X̂n4

〉
ph

= [(
δn0n1 − δn0n2

)
�E + i

(
δn0n3 − δn0n4

)
L(1)(t )

]
× 〈

X̂ †
n1

(t )X̂n2 (t )X̂ †
n3

X̂n4

〉
H̃
. (35)

Here, In3,n4
n1,n2

= δn1n3 − δn1n4 − δn2n3 + δn2n4 is an integer, the
value of which may be 0, ±1, or ±2. It also satisfies In3,n4

n1,n2
=

In3+n,n4+n
n1+n,n2+n , where n is an arbitrary integer. L(t ) and L(1)(t ) have

the following expressions:

L(t ) =
∑

j

f 2
j [(2n j + 1) cos ω jt − i sin ω jt] (36)

and

L(1)(t ) = −
∑

j

ω jg j f j[(2n j + 1) sin ω jt + i cos ω jt], (37)

respectively. Note that L(0) = 2�.

E. Thermopower expressions

Substituting Eq. (34) into Eqs. (9) and (29), one obtains

M11 = − a2e2

2LN2

∑
ll ′

ll ′VlVl ′
∑
k1k2

n̄k1

(
1 − n̄k2

)

×
∑
nn′

e−ik1rn−n′+l +ik2rn−n′−l′

×
∫ +∞

−∞
dtei(ε̃k1 −ε̃k2 )t−4�−In′+l′ ,n′

n+l,n L(t ). (38)

Using the fact that In′+l ′,n′
n+l,n = I l ′,0

n−n′+l,n−n′ , it is easy to figure
out that the summation in Eq. (38) is only relevant to n − n′.
Therefore, one of the dummy indices can be eliminated and
Eq. (38) is simplified to

M11 = − a2e2

2LN

∑
ll ′

ll ′VlVl ′
∑
k1k2

n̄k1

(
1 − n̄k2

)

×
N∑

n=1

e−ik1rn+l +ik2rn−l′

×
∫ +∞

−∞
dtei(ε̃k1 −ε̃k2 )t−4�−I l′ ,0

n+l,nL(t ), (39)

where the periodic boundary condition is used. Following the
same procedure, the final expression for M12 is given by

M12 = −�E

e
M11 + M(I)

12 + M(II)
12 , (40)

where

M(I)
12 = − a2e

4LN

∑
ll ′l ′′

(l + l ′)l ′′VlVl ′Vl ′′
∑
k1k2

n̄k1

(
1 − n̄k2

)

×
N∑

n=1

e−ik1rn+l+l′+ik2rn−l′′

×
∫ +∞

−∞
dtei(ε̃k1 −ε̃k2 )t−4�−I l′′ ,0

n+l+l′ ,nL(t ) (41)

and

M(II)
12 = − ia2e

4LN

∑
l 
=−l ′

ll ′VlVl ′
∑
k1k2

n̄k1

(
1 − n̄k2

)
× (e−ik1rl+l′ − e−ik2rl+l′ )

×
∫ +∞

−∞
dtL(1)(t )ei(ε̃k1 −ε̃k2 )t−4�+L(t ),

(42)

respectively. Substituting Eq. (40) into Eq. (8), thermopower
is finally expressed as

S = 1

T

(
M(I)

12 + M(II)
12

M11
− μ + �E

e

)
. (43)

Equations (39), (41), (42), and (43) are the main results of this
paper.

It is noted that in Eq. (40) the first term corresponds to
the static contributions of the electron-phonon interaction to S
because its effect is only to shift − μ

eT to −μ+�E

eT , the third term
is the dynamical contributions, and the second term accounts
for the polaron kinetic energy.

III. ASYMPTOTIC LIMITS

A. Narrow-band limit

When the electron-phonon interaction is strong, the Debye-
Waller factor rapidly decreases as the temperature rises. As a
result, the dispersion of the polaron band fades away. Under
this circumstance, it is appropriate to perform the narrow-band
approximation and substitute ε̃k and n̄k in Eq. (39) by −Ep and
c, respectively, where c = 1/(e−β(Ep+μ) + 1) measures the
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carrier concentration. Then, invoking the fact that
∑

k eikrn =
Nδn,0, almost all of the terms in Eq. (39) vanish after the
summation over k1 and k2 except those with n = l ′ = −l .
Consequently, one finds that the electrical conductivity is fully
characterized by electron hopping events:

MNB
11 = 1

2
ae2c(1 − c)

∑
l

l2kl , (44)

where

kl = ∣∣V 2
l

∣∣ ∫ +∞

−∞
dte−4�+2L(t ) (45)

is the electron transfer rate constant. Similarly, we have

MNB
12 = 〈V 3〉

2e〈V 2〉MNB
11 , (46)

where 〈V 2〉 ≡ ∑
l |lVl |2 and 〈V 3〉 ≡ ∑

ll ′ |l + l ′|2VlVl ′V−(l+l ′ ).
Therefore, a very simple formula for thermopower under the
narrow-band approximation is obtained:

SNB = 1

eT

( 〈V 3〉
2〈V 2〉 − μ − �E

)
. (47)

It is worth noting that when only nearest-neighbor elec-
tronic coupling is taken into account one has 〈V 3〉 = 0 and
S = −(μ + �E )/eT , which are just the results obtained by
Schotte [28].

B. High-temperature approximation

At high temperatures, the Debye-Waller factor becomes
small and it may be compensated by L(0) to a large extent
if the prefactor In3n4

n1n2
in Eqs. (39) and (41) is smaller than zero

because L(0) = 2�. In this situation, the leading terms of the
correlation functions are those which minimize In3n4

n1n2
. For M11,

these terms correspond to n = l ′ = −l . Therefore, we have

M11 ≈ a2e

2LN
〈V 2〉

∑
k1k2

n̄k1

(
1 − n̄k2

)

×
∫ +∞

−∞
dtei(ε̃k1 −ε̃k2 )t−4�+2L(t ). (48)

To analytically solve the time integral in Eq. (48), we use a
short-time approximation for L(t ):

L(t ) ≈ 2� − �

2

(
t2

β
+ it

)
, (49)

where � = 2
∑

j f 2
j ω j plays a role similar to the reorganiza-

tion energy in the Marcus theory of electron transfer. Then,
Eq. (48) becomes

MHT
11 = a2e〈V 2〉

2LN

√
π

kBT �

∑
k1k2

n̄k1

(
1 − n̄k2

)
e− (ε̃k1

−ε̃k2
−�)2

4kBT � .

(50)
This equation has a similar form as the Marcus formula for
electron transfer.

Considering only the leading term with n = l ′′ = −(l + l ′)
in M(I)

12 , it is easy to find that M(I),HT
12 = 〈V 3〉

2e〈V 2〉MHT
11 . However,

when only nearest-neighbor electronic coupling is considered,

this term vanishes, and one must consider the next-leading
terms with n = l ′′ 
= −(l + l ′) or n = −(l + l ′) 
= l ′′. That is,

M(I)
12 ≈ − a2e

4LN

∑
ll ′

∑
l ′′ 
=−(l+l ′ )

(l + l ′)l ′′VlVl ′Vl ′′

×
∑
k1k2

n̄k1

(
1 − n̄k2

)
(e−ik1rl+l′+l′′ + e−ik2rl+l′+l′′ )

×
∫ +∞

−∞
dtei(ε̃k1 −ε̃k2 )t−4�+L(t ). (51)

The application of the high-temperature and short-time ap-
proximations to Eq. (51) results in

M(I),HT
12 = − a2e

4LN

√
2π

kBT �

∑
ll ′

∑
l ′′ 
=−l−l ′

(l + l ′)l ′′VlVl ′Vl ′′

×
∑
k1k2

n̄k1

(
1 − n̄k2

)
(e−ik1rl+l′+l′′ + e−ik2rl+l′+l′′ )

× e−2�− (ε̃k1
−ε̃k2

−�/2)2

2kBT � . (52)

Furthermore, under the same approximations, we have

L(1)(t ) ≈ −�′
(

t

β
+ i

2

)
, (53)

where �′ = 2
∑

j ω jg j f j . Substituting Eqs. (49) and (53) into
Eq. (42) and solving the integral analytically, we finally get

M(II),HT
12 = − a2e�′

4LN�

√
2π

kBT �

∑
l 
=−l ′

ll ′VlVl ′

×
∑
k1k2

n̄k1

(
1 − n̄k2

)
(e−ik1rl+l′ − e−ik2rl+l′ )

× (
ε̃k1 − ε̃k2

)
e−2�− (ε̃k1

−ε̃k2
−�/2)2

2kBT � . (54)

Equations (50), (52), and (54) are the results suitable
for high temperatures and are very similar to the formulas
derived by Wang et al. [32], although their work is based
on the application of the full polaron transformation and the
saddle-point approximation to the Green-Kubo formulas. It is
noted that in their work the contribution of M(II)

12 is neglected,
which may be of the same magnitude as the next-leading
term of M(I)

12 .

C. Coherent limit

On the basis of the physical picture, we can further sep-
arate Eqs. (39), (41), and (42) into coherent and incoherent
contributions, as suggested in Ref. [33]. The coherent one
dominates at low temperatures or weak electron-phonon in-
teractions.

To extract the coherent part of the electrical conductivity
and thermopower, we further apply the mean-field approxima-
tion to the electrical and energy current operators. Replacing
X̂ †

n+l X̂n in Eq. (25) by e−2� , one obtains the phonon-cloud-
dressed electrical current operator:

J̃coh = −iae
∑

n

∑
l

lṼl ĉ
†
n+l ĉn = e

∑
k

ṽk ĉ†
k ĉk, (55)
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where ṽk = ∂ε̃
∂k = −ia

∑
l lṼl e−ikrl is the group velocity of the

polaron and the subscript “coh” indicates that no dissipative
channel is presented under the full mean-field treatment so
that the transport is completely coherent. Similarly, using the
property

〈(F̂n + F̂n+l )X̂
†
n+l X̂n〉ph = 0, (56)

which is easily proved by the technique shown in
Appendix B, we have

J̃E,coh = − ia

2

∑
ll ′

(l + l ′)VlVl ′e
−2�

∑
n

ĉ†
n+l+l ′ ĉn − �E

e
J̃coh

=
∑

k

(εk − �E )ṽk ĉ†
k ĉk . (57)

Here, εk = ∑
l Vleikrl is the bare electronic band energy in-

stead of the polaron band energy. Equation (57) implies
that the electron-phonon interaction only reduces the polaron
velocity but it does not change the relative energy carried by
polarons during the transport.

It is easily shown that J̃coh and J̃E,coh are conserved quan-
tities, [H̃ , J̃coh] = [H̃, J̃E,coh] = 0, because the full mean-field
treatment completely decouples the polaron from the phonon
bath. Therefore, we have

〈J̃coh(t )J̃coh(0)〉H̃ = e2
∑
kk′

ṽk ṽk′ 〈ĉ†
k ĉk ĉ†

k′ ĉk′ 〉H̃

= e2

(∑
k

ṽkn̄k

)2

+ e2
∑

k

ṽ2
k n̄k (1 − n̄k ),

(58)

where the second equality is obtained by using Eq. (33). Due
to the symmetry of the first Brillouin zone, ε̃k = ε̃−k , ṽk =
−ṽ−k , the first term in Eq. (58) (corresponds to the density
correlations) vanishes.

Similarly, we have

〈J̃E,coh(t )J̃coh(0)〉H̃ = e
∑

k

(εk − �E )ṽ2
k n̄k (1 − n̄k ). (59)

Substituting Eqs. (58) and (59) into Eqs. (9) and (10), respec-
tively, we obtain

Mcoh
11 = 1

2L

∫ +∞

−∞
dt〈J̃coh(t )J̃coh(0)〉H̃

= πe2

L

∑
k

ṽ2
k n̄k (1 − n̄k )δ(ε̃k − ε̃k )

(60)

and

Mcoh
12 = 1

2L

∫ +∞

−∞
dt〈J̃E,coh(t )J̃coh(0)〉H̃

= πe

L

∑
k

(εk − �E )ṽ2
k n̄k (1 − n̄k )δ(ε̃k − ε̃k ). (61)

One may further replace the summation over k by
the integration over the polaron energy,

∑
k → ∫

dẼ g̃(Ẽ ),
where g̃(Ẽ ) = ∑

k δ(Ẽ − ε̃k ), and substitute n̄k by the Fermi-
Dirac distribution function f (Ẽ ) = 1/(1 + eβ(Ẽ−μ) ) to rewrite

Eqs. (60) and (61) as

Mcoh
11 = πe2kBT

L

∫
dẼ g̃(Ẽ )ṽ2(Ẽ )δ(Ẽ − Ẽ )

(
− ∂ f

∂Ẽ

)
(62)

and

Mcoh
12 = πekBT

2L

∫
dẼ (E − �E )ṽ2(Ẽ )δ(Ẽ − Ẽ )

(
− ∂ f

∂Ẽ

)
,

(63)
where the property −∂ f /∂Ẽ = f (Ẽ )[1 − f (Ẽ )]/kBT is in-
voked. Finally, by defining the energy-dependent conductivity

σ (Ẽ ) = πe2

L
g̃(Ẽ )ṽ2(Ẽ )δ(Ẽ − Ẽ ), (64)

we obtain

σcoh =
∫

dẼσ (Ẽ )

(
− ∂ f

∂Ẽ

)
(65)

and

Scoh = 1

eT

∫
dẼ (E − �E − μ)

σ (Ẽ )

σ

(
− ∂ f

∂Ẽ

)
, (66)

where E = (Ẽ + Ep)e2� . It may be appropriate to call
Eqs. (65) and (66) the modified Mott formulas since they have
very similar forms as the conventional Mott formulas [11] but
they are suitable for the polaron transport.

It should be noted that in Eq. (66) Ep 
= �E and E 
= Ẽ .
The inconsistency between Ep and �E is ascribed to the
incomplete dressing of the electron to the phonon cloud and
leads to a small shift of the energy carried by the polaron.
As a result, the particle-hole symmetry is broken and ther-
mopower is nonzero in a half-filled band where μ = −Ep.
It is noted that several investigations demonstrate zero ther-
mopower for the Hubbard [49] and lattice-gas models [50] in a
half-filled band without the consideration of electron-phonon
interactions. A similar conclusion has also been obtained for
the small-polaron model [29]. However, the present analysis
shows that the above conclusion is not generally true as the
carrier is partially dressed by the phonon cloud.

The inconsistency between E and Ẽ is equivalent to an
enlarged effect on the polaron energy by a factor of e2� if
the polaron band energy is regarded as a reference. It will
be shown in Sec. IV that this enlarged effect may result in
a crossover behavior of thermopower in terms of the chemical
potential and cause an abnormal sign-inversion phenomenon
with respect to the temperature.

IV. RESULTS AND DISCUSSION

In numerical demonstrations, we mainly demonstrate the
effects of the electron-phonon interaction strength, chemical
potential, and temperature on thermopower. For this purpose,
we use a model of a one-dimensional molecular chain with
only nearest-neighbor electronic coupling (V = 100 cm−1).
The electron-phonon interaction is described by a super-
Ohmic spectral density function:

JSD(ω) = πE0
p

2

(
ω

ωc

)3

e−ω/ωc . (67)
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V
/K
)

FIG. 1. Plot of M12/(T M11) vs the chemical potential. The tem-
perature is 300 K.

Here, E0
p is the polaron self-energy under the full polaron

transformation and it determines the electron-phonon inter-
action strength. Generally, E0

p � Ep � �E . Due to the po-
laron self-trapping effect, a half-filled band corresponds to
μ = −Ep ≈ −E0

p , while n- and p-type doping correspond to
μ + E0

p < 0 and μ + E0
p > 0, respectively. ωc is the cutoff

frequency that characterizes the relaxation time of the phonon
bath and it is set to be ωc = 300 cm−1, corresponding to an
effective vibrational frequency [51] of about 1040 cm−1, to
resemble the high-frequency nature of intramolecular vibra-
tions in organic crystals. To facilitate the calculations, we add
a damping factor e−λt2

in the integrands of Eqs. (39), (41), and
(42), where λ may come from the homogeneous broadening
of the energy levels. As λ is small enough, the calculated
thermopower is independent of its value.

Figure 1 displays a thermopower component versus the
chemical potential at room temperature for two differ-
ent electron-phonon interaction strengths. It is seen that
M12/(T M11) monotonously decreases with the increase of
the chemical potential and it switches its sign from n-type
to p-type doping. At a strong electron-phonon interaction
strength, the magnitude of M12/(T M11) becomes quite small,
which is consistent with the conclusion drawn in Sec. III A
that in the narrow-band limit M12 completely vanishes when
only nearest-neighbor electronic coupling is considered.

As discussed in Sec. III, the electron-phonon interaction
may cause fruitful behaviors of thermopower, especially at
very low temperature. Figure 2 shows thermopower in terms
of the chemical potential at 10 K for several different electron-
phonon interaction strengths. At a zero electron-phonon
interaction, thermopower monotonously increases with re-
spect to the chemical potential and has an inversion sym-
metry about μ = 0. Consequently, it vanishes in a half-filled
band. However, as the electron-phonon interaction is turned
on, thermopower is no longer monotonous but exhibits a
crossover behavior along with a downward shift by an amount

FIG. 2. Plot of thermopower vs the chemical potential. Solid and
dashed color lines are S and S − (Ep − �E )/eT , respectively. The
temperature is 10 K.

of −(Ep − �E )/eT . The crossover behavior originates from
the enlarged effect on the polaron energy, while the shift
comes from the discrepancy between Ep and �E . Due to
this shift, thermopower is nonzero in a half-filled band. It
should be noted that both Ep and �E are functions of the
temperature and the chemical potential. As a result, the shift is
μ dependent and a smaller μ generally corresponds to a larger
shift.

The joint action of the thermopower shift and the en-
larged effect on the polaron energy gives rise to an ab-
normal p-type doping region where thermopower is nega-
tive, inconsistent with the sign of the carrier charge. With
the increase of the electron-phonon interaction strength,
this phenomenon is strengthened and even an abnormal
n-type doping region with a positive thermopower oc-
curs, as shown in Fig. 3(a) at E0

p = 1000 cm−1. Nev-
ertheless, this novel phenomenon only exists at ex-
tremely low temperatures and it quickly disappears as the
temperature rises. The inset figure in Fig. 3(a) shows
the results at 300 K and it can be seen that ther-
mopower behaves normally in terms of the chemical
potential.

To reveal the turning-over temperatures for these abnor-
mal properties, we calculate the temperature dependence of
thermopower in the four different doping regions partitioned
in Fig. 3(a). The results are shown in Figs. 3(b)–3(e). In
the normal regions I and IV [Figs. 3(b) and 3(e)], the ab-
solute value of thermopower monotonously decreases with
the increase of temperature, and no sign inversion occurs.
However, in the abnormal regions II and III [Figs. 3(c) and
3(d)], the absolute value of thermopower rapidly vanishes as
the temperature increases, followed up with a sign inversion,
then rises again until it arrives at a maximum value, and finally
ends with a slow decline. For the parameters adopted here, the
turning-over temperatures are about 20 K for n-type doping
and 40 K for p-type doping, respectively.

It should be emphasized that the abnormal behavior of ther-
mopower caused by the electron-phonon interaction has not
been reported yet to our best knowledge. However, a similar
sign-inversion phenomenon caused by the intrasite Coulomb
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FIG. 3. (a) Plot of thermopower vs the chemical potential, E 0
p =

1000 cm−1, and the temperature is 10 K. The graph is divided into
four regions according to the sign of thermopower. The inset shows
the result at 300 K. (b)–(e) Plots of thermopower vs the temperature
at different chemical potentials.

repulsion has been found in the single-band Hubbard model
[30]. The model considered in this paper does not include the
static disorder, which may have dominant effects on transport
properties at low temperatures as the thermal fluctuations in-
duced by electron-phonon interactions are weak. The presence
of static disorders may also mask the phenomena shown here
and make them hard to be detected by experiments. Therefore,
to find these phenomena in experiments, it may be crucial
to delicately prepare the sample to reduce static disorders as
much as possible.

V. CONCLUSIONS

A variational polaron transformation approach is proposed
to calculate thermopower in organic crystals. The method
is applicable to a broad range of electron-phonon interac-
tion strengths and temperatures. Detailed analysis illustrates

that the present method naturally recovers several available
methods in the narrow-band limit, the low-temperature
or weak electron-phonon interaction limit, and the high-
temperature limit. In numerical demonstrations with a one-
dimensional molecular chain, it is found that at very low
temperatures the electron-phonon interaction may lead to
abnormal regions of the doping level where the sign of ther-
mopower is opposite to the sign of the carrier charge. These
abnormal properties are explained with the polaron transport
energy enhancement by the reciprocal of the Debye-Waller
factor. In addition, the incomplete dressing of the electron
by the phonon cloud destroys the particle-hole symmetry and
results in a nonzero value of thermopower in a half-filled band.

In this paper, only the local electron-phonon interaction is
considered and attentions are mainly made on thermoelectric
phenomena of organic crystals. Nevertheless, as suggested in
Ref. [37], it is straightforward to incorporate static disorder
as well as nonlocal electron-phonon interactions into the
Hamiltonian and treat them in the spirit of the self-consistent
Born approximation. Following this scheme, the extension
of our approach is now underway. Connecting our method to
phenomenological models for disordered organic semicon-
ductors is an attractive subject and will be left as a future work.
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APPENDIX A: CONTRIBUTIONS OF THE DENSITY
CORRELATIONS

In this Appendix, we discuss the contributions of the
density correlations to the correlation function. The density
correlation part of the polaronic thermal average is

〈ĉ†
k1

ĉk2 ĉ†
k3

ĉk4〉DC
H̃ = δk1k2δk3k4 n̄k1 n̄k3 . (A1)

Substituting it into Eqs. (29) and (30) and simplifying the
expressions by the same procedure used in Sec. II, one can
get the following extra terms to the correlation function:

MDC
11 = − a2e2

2LN

∑
ll ′

ll ′VlVl ′

⎛
⎝∑

k1k2

n̄k1 n̄k2 e−ik1rl −ik2rl′

⎞
⎠

×
N∑

n=1

∫ +∞

−∞
dte−4�−I l′ ,0

n+l,nL(t ), (A2)

MDC
12 = − a2e

4LN

∑
ll ′l ′′

(l + l ′)l ′′VlVl ′Vl ′′

×
⎛
⎝∑

k1k2

n̄k1 n̄k2 e−ik1rl+l′ −ik2rl′′

⎞
⎠

×
N∑

n=1

∫ +∞

−∞
dte−4�−I l′′ ,0

n+l+l′ ,nL(t )
. (A3)
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It is obvious that in both expressions the reciprocal indices
k1 and k2 are decoupled from the site index n such that k1

and k2 enter in these expressions on an almost equal footing,
completely different from the expressions given in Sec. II E.
As a result, most of the terms in the summation cancel out with
each other. In numerical calculations, it is found that MDC

11 and
MDC

12 are always several orders of magnitudes smaller than the
results from Eqs. (39), (41), and (42) in broad regimes of the
temperature and the concentration of the charge carrier.

APPENDIX B: PHONONIC THERMAL AVERAGE

To derive the analytical expressions of the two phononic
thermal averages, we first introduce a set of displacement
operators:

D̂n j (α) = eαb̂†
n j−α∗b̂n j , (B1)

where α is a complex number. Then, the phonon displacement
operator [Eq. (32)] can be expressed as

X̂n(t ) =
∏

j

D̂n j (− f je
iω j t ). (B2)

Considering the generality of the following derivation, we
expand the variational parameters { f j} to a larger set { f (n)

m j }
and let f (n)

m j = δnm f j . Thereby, X̂n(t ) is reexpressed as

X̂n(t ) =
∏

m

∏
j

D̂m j
( − f (n)

m j eiω j t
)
. (B3)

Using this expression, the first kind of the phononic thermal
average is written as〈

X̂ †
n1

(t )X̂n2 (t )X̂ †
n3

X̂n4

〉
ph

=
∏

m

∏
j

〈
D̂m j

(
f (n1 )
m j eiω j t

)
D̂m j

( − f (n2 )
m j eiω j t

)

× D̂m j
(

f (n3 )
m j

)
D̂m j

( − f (n4 )
m j

)〉
ph. (B4)

To go further, two properties of the displacement operator are
invoked:

D̂m j (α1) · · · D̂m j (αM ) = ei
∑

i1<i2
Im(αi1 α∗

i2
)D̂m j

(∑
i

αi

)
(B5)

and

〈D̂m j (α)〉ph = e−|α|2(n j+ 1
2 ). (B6)

The first property is easily proved by Glauber’s formula and
mathematical induction and the second property is just the

Bloch identity [52]. From these two properties, we have

〈D̂m j (α1) · · · D̂m j (αM )〉ph

= exp

{
i
∑
i1<i2

Im
(
αi1α

∗
i2

) −
(

n j + 1

2

) ∑
i

|αi|2

−(2n j + 1)
∑
i1<i2

Re
(
αi1α

∗
i2

)}
, (B7)

where Re and Im represent taking the real and the imaginary
part, respectively. Applying Eq. (B7) to Eq. (B4), one readily
obtains〈

X̂ †
n1

(t )X̂n2 (t )X̂ †
n3

X̂n4

〉
ph

=
∏

m

∏
j

exp
{
−(

f (n1 )
m j − f (n2 )

m j

)(
f (n3 )
m j − f (n4 )

m j

)
× [(2n j + 1) cos ω jt − i sin ω jt]

−
(

n j + 1

2

)[(
f (n1 )
m j − f (n2 )

m j

)2 + (
f (n3 )
m j − f (n4 )

m j

)2]}
.

(B8)

Finally, substituting f (n)
m j = δnm f j into Eq. (B8), the compact

expression Eq. (34) is obtained.
For the second kind of the phononic thermal average, two

extra properties are needed:

〈b̂†
m jD̂m j (α)〉ph = −α∗n j〈D̂m j (α)〉ph (B9)

and

〈b̂m jD̂m j (α)〉ph = α(n j + 1)〈D̂m j (α)〉ph. (B10)

Combining the above four properties of the displacement
operator, we have

〈(γ b̂†
m j + γ ∗b̂m j )D̂m j (α1) · · · D̂m j (αM )〉ph

=
{

−iIm

[
γ

(∑
i

α∗
i

)]
(2n j + 1) + Re

[
γ

(∑
i

α∗
i

)]}

×〈D̂m j (α1) · · · D̂m j (αM )〉ph, (B11)

where γ is a complex number. To utilize this result, the
electron-phonon coupling constants are expanded to a larger
set, g(n)

m j = δnmg j , as is done for { f j}. Rewriting Eq. (31) as

F̂n(t ) =
∑
m j

ω jg
(n)
m j (e

iωn j t b̂†
n j + e−iωn j t b̂n j ), (B12)

and using Eqs. (B3) and (B11), we obtain the following
expression:

〈
F̂n0 (t )X̂ †

n1
(t )X̂n2 (t )X̂ †

n3
X̂n4

〉
ph =

∑
m j

{−iω jg
(n0 )
m j

(
f (n3 )
m j − f (n4 )

m j

)[
(2n j + 1) sin ω jt + i cos ω jt

] + w jg
(n0 )
m j

(
f (n1 )
m j − f (n2 )

m j

)}

× 〈
X̂ †

n1
(t )X̂n2 (t )X̂ †

n3
X̂n4

〉
ph. (B13)

Finally, replacing g(n)
m j by δmng j , we obtain Eq. (35) from the above expression.
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