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Weyl-Kondo semimetals in nonsymmorphic systems
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There is considerable current interest to explore electronic topology in strongly correlated metals, with heavy
fermion systems providing a promising setting. Recently, a Weyl-Kondo semimetal phase has been concurrently
discovered in theoretical and experimental studies. The theoretical work was carried out in a Kondo lattice
model that is time-reversal invariant but inversion-symmetry breaking. In this paper, we show in some detail
how nonsymmorphic space-group symmetry and strong correlations cooperate to form Weyl nodal excitations
with highly reduced velocity and pin the resulting Weyl nodes to the Fermi energy. A tilted variation of the
Weyl-Kondo solution is further analyzed here, following the recent consideration of such effect in the context of
understanding a large spontaneous Hall effect in Ce3Bi4Pd3 (Dzsaber et al., arXiv:1811.02819). We discuss the
implications of our results for the enrichment of the global phase diagram of heavy fermion metals, and for the
space-group symmetry enforcement of topological semimetals in other strongly correlated settings.
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I. INTRODUCTION

Strong correlations give rise to a plethora of ground states
and, correspondingly, a variety of quantum phase transitions.
Heavy fermion metals have provided a canonical setting to
study strong correlation physics, including quantum critical
points and emergent phases [1–3]. Typically, in these sys-
tems, 4 f electrons have a local Coulomb repulsion that is
large compared to their bandwidth [4]. Due to such strong
correlations, the 4 f electrons act as local moments, which
are Kondo-coupled to a band of background conduction
electrons. The local moments can form a Kondo singlet
with the spins of the conduction electrons by the Kondo
coupling, or they may condense into an antiferromagnetic
order through their Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [5]. Correspondingly, antiferromagnetic quantum
critical points often develop in heavy fermion metals, as
illustrated in Fig. 1(a). A global phase diagram has been
advanced [6–11] as shown in Fig. 1(b). It features quantum
phases that are distinct not only by the existence or absence of
antiferromagnetic order, but also by the Kondo entanglement
and its destruction [12–20].

An intriguing problem is how the overall quantum phase
diagram of heavy fermion metals is enriched by phases that
are topologically nontrivial, when the strong correlations
interplay with a large spin-orbit coupling [21]. This is an
outstanding issue at the intersection between strong correla-
tions and topology. From the vantage point of noninteracting
topological states of matter, the typical questions of interest
concern the effect of electron correlations on noninteract-
ing topological states, such as noninteracting topological
semimetals, or about the type of weakly interacting topo-
logical phases that can be produced by interaction-induced
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broken symmetries [22–24]. However, in the present context,
the question of interest is different: What type of topological
metallic states can be driven by strong correlations? We ad-
dress this issue in a setting where the time-reversal symmetry
is preserved.

Recently, a Weyl-Kondo semimetal (WKSM) phase has
been concurrently discovered in theoretical [25] and experi-
mental studies [26,27]. The theoretical work was carried out
in a Kondo lattice model that is time-reversal invariant but
inversion-symmetry breaking. The defining characteristics of
the Weyl-Kondo semimetal include linearly dispersing Weyl
nodal excitations with highly reduced velocity and Weyl
nodes being pinned to the Fermi energy.

In this paper, we show in some detail the role of nonsym-
morphic space-group symmetry in producing these properties.
We consider a periodic Anderson/Kondo model on a diamond
lattice, with inversion symmetry broken by a staggered po-
tential, at quarter filling [25]. Focusing on the limit of large
on-site Coulomb repulsion, the model is equivalent to a Kondo
lattice. In the absence of Kondo coupling, the nonsymmorphic
space-group symmetry generates Weyl nodes that are located
far away from the Fermi energy, and the ground state is topo-
logically trivial. Because of the Kondo effect, strongly renor-
malized quasiparticles are produced near the Fermi energy.
When this happens, the space-group symmetry in turn ensures
that the Weyl nodes develop precisely at the Fermi energy;
this makes the Weyl nodal excitations to be long lived and,
hence, well defined, even in the present strongly interacting
setting. In addition, the renormalized nodal velocity is smaller
than the usual noninteracting value by the ratio of the Kondo
temperature to the bare conduction-electron bandwidth, which
can be as large as three orders of magnitude. We will also
analyze further the effect of a tilting potential [27] to the Weyl-
Kondo solution itself and the Berry curvature distribution.
All these properties are important in giving rise to distinct
signatures of the Weyl-Kondo semimetal in thermodynamic
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FIG. 1. (a) Quantum phase transition of heavy fermion metals.
The vertical axis varies temperature T and thus the amount of
thermal fluctuations. The horizontal axis tunes a nonthermal control
parameter δ, which corresponds to the ratio of the Kondo to RKKY
interactions. The red point labeled δQCP marks a quantum critical
point where the ordered antiferromagnetic phase and the disordered
heavy Landau-Fermi liquid phases meet at T = 0, producing the
quantum critical non-Fermi-liquid regime at nonzero temperatures.
(b) Heavy fermion global phase diagram [6–11]. The parameter
G controls the amount of geometric frustration of local moments,
while JK modifies the magnitude of the Kondo coupling. AF labels
phases with antiferromagnetic ordering of local moments, and P
labels paramagnetic phases. Subscript L denotes large Fermi-surface
phases, and subscript S denotes small Fermi-surface phases. The
dashed lines, labeled “I,” “II,” and “III,” illustrate three trajectories
[corresponding to three cuts in the parameter space for the tuning
parameter δ shown in Fig. 1(a)] of quantum phase transitions. Near
the border of the AF phase boundaries, large magnetic fluctuations
may lead to emergent correlated topological phases in heavy fermion
systems when the SOC is large.

[25,26] and transport properties [27]. In addition, we will
discuss how these results enrich the global phase diagram
of heavy fermion metals. This enrichment captures the role
of spin-orbit coupling in the interplay between competing
phases, all of which develop out of the underlying spin
degrees of freedom of the 4 f electrons. Finally, we touch
upon the implications of the results for space-group symmetry
enforcement of topological semimetals in the general context
of strongly correlated systems.

To set the stage for our analysis about how the space-
group symmetry interplays with strong correlations, we start
by briefly outlining the role of space-group symmetry in the
noninteracting case.

A. Role of nonsymmorphic space-group symmetry and
protection of topological semimetal phases

We focus our discussion on three-dimensional (3D) crys-
tals. In topological semimetals, the bulk already has a gapless
excitation spectrum. This is to be contrasted with topological
insulators, in which the bulk excitations are fully gapped and
only the surface states are gapless. Both of these topological
phases must have band inversion, a reordering of conduction
and valence bands which allows the topological insulator
surface states to connect the conduction and valence bands.
In three dimensions, a quadratic Hamiltonian can be classified
into a topological equivalence class depending on its nonspa-
tial symmetries: time-reversal symmetry (TRS), particle-hole
symmetry, and chiral symmetry. This is commonly known
as the tenfold way, which can be applied to topological

insulators and topological semimetals, and can accommodate
spatial symmetries as well [28]. More specifically to Weyl
semimetals, these are characterized by energy levels that meet
in pairs of twofold degenerate points in momentum space as a
result of tuning Hamiltonian parameters. Without other sym-
metries in the system, this requires tuning three parameters to
achieve degeneracy, but space-group symmetries may protect
the degeneracies [29]. In the efforts to identify topological
materials, several studies have applied symmetry classifica-
tion criteria to space groups [30–32] and more specifically
to particular lattice realizations [33,34], as well as considered
the fillings at which nonsymmorphic symmetries will enforce
gapless phases [35].

To obtain such degeneracy, a mechanism of band inversion
is a necessary but insufficient ingredient. Band inversion can
occur by lattice strain, scalar relativistic effects, or spin-
orbit coupling (SOC) [36–38]. Given the crucial role of the
SOC, the search for topological materials tends to focus on
systems that are based on heavy elements with large SOC.
Conveniently, the lanthanides and actinides where the f -
orbital elements as well as the often-involved heavy elements
(e.g., Bi) associated with heavy fermion materials provide
substantial SOC.

We are interested in topological semimetals in 3D crys-
tals with SOC and additional space-group symmetries that
can protect nodal band crossings. It turns out that many
nonsymmorphic space groups can support four-dimensional
irreducible representations on the zone boundaries, which pro-
duce robust symmetry protected Dirac semimetal phases, pro-
vided they do not lie along threefold or sixfold rotation axes
[29,39]. A nonsymmorphic symmetry is a space group opera-
tion {O|t} which combines a spatial point-group operation (or
nonspatial operation) O with a partial (nonprimitive) lattice
translation vector t. Spatial symmetries are group operations
that rotate and reflect different lattice sites onto one another,
such as an n-fold rotation about the ith axis Cni, or a reflection
about the ab plane with normal vector ĉ, mc. Respectively,
the corresponding nonsymmorphic transformations are called
screw operations ({Cni|t} = rotation + fractional t) and glide
operations ({mc|t} = reflection + fractional t). Since multiple
fractional translations are needed to traverse the unit cell, it is
enlarged in real space, which causes the Brillouin zone (BZ)
to fold. This creates a new Brillouin-zone boundary (BZB)
where any bands that intersect it are sharply reflected back
into the BZ, causing a degeneracy at the BZB. For these
reasons, nonsymmorphic space groups with SOC generically
produce Dirac nodal band touching points or lines of degener-
acy. The glide symmetry is familiar to the strongly correlated
electron community of iron pnictides; there, the symmetry
implies that the eigenstates come in (glide even and odd)
pairs and, as a result, give rise to an extra degeneracy at the
boundary of the BZ associated with the physical two-iron unit
cell [40].

With the nonsymmorphic symmetry-enforced Dirac
semimetal as a starting point, a Weyl semimetal phase
can arise from breaking TRS or inversion symmetry (IS)
[29]. Without the protection of space-group symmetry, one
would have to resort to IS breaking (ISB) systems tuned
to within a band inversion transition between a trivial band
insulator and a topological insulator [31,41]. Bands that
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invert are allowed to cross because (1) the bands have
different irreducible representations, such as the odd-even
parity in s- f coupling; (2) bands of the same irreducible
representation may have wave functions that differ by a Berry
phase [28,42]. Otherwise, the noncrossing theorem requires
that the bands hybridize to open a topologically trivial gap
at a generic point in the BZ. Thus a robust procedure is to
search for space groups that anchor IS breaking or are also
noncentrosymmetric, and can realize an even filling factor
that is both gapless and has zero enclosed Fermi-surface
volume.

B. Topological states driven by strong correlations

Given all these considerations, a topological state driven
by the Kondo effect arises if one first realizes a topologically
trivial ground state without the Kondo effect and, when the
Kondo effect is turned on, produces a topologically nontrivial
phase. Our model has a solution that corresponds to such a
Kondo-driven phase. We will show that the result is robust
to changes in parameters. This is because our Hamiltonian
has the required crystal and local symmetries, and fulfills
group-theoretical filling constraints that achieve topological
semimetal phases in response to the Kondo effect. Therefore,
our model illustrates that strong correlations help hone in on
nontrivial topological phases in the vast multidimensional pa-
rameter space of the strong correlation global phase diagram
in the presence of a large SOC. In this sense, a design principle
follows from our work (as well as from experiments [26,27]),
namely to search for topological semimetals driven by strong
correlations by focusing on strongly correlated semimetals
with a nonsymmorphic space group and broken inversion
symmetry.

The remainder of the paper is organized as follows. In
Sec. II, we first explain our model and solution method.
In Sec. III, we show how the model obtains a correlations-
driven topological phase transition from specific symmetry
considerations (Sec. III A) and the pinning of the nodes
to the Fermi energy driven by the combined effect of the
space-group symmetry and strong correlations (Sec. III B). A
symmetry-allowed tilt term is added in the model and its role
is analyzed in some detail in Sec. IV. Then in Sec. V, we dis-
cuss strong correlations-suited transport and thermodynamic
signatures of WKSM phases. Finally, we close in Sec. VI
by discussing heavy fermion materials as a platform for
exploring topological phases, and consider the nature of topo-
logical phase transitions in the global phase diagram of heavy
fermion metals.

II. MODEL AND SOLUTION METHOD

To achieve the WKSM phase, we used the following model
[25] defined on the diamond lattice:

H = Hc + Hcd + Hd . (1)

This is an Anderson-lattice-type model which describes the
heavy fermion systems. The Hamiltonian is separated into
the part representing physical conduction spd electrons Hc, a
hybridization term Hcd which allows the formation of heavy

yet mobile quasiparticles, and a part representing the physical
highly localized 4 f electrons Hd .

The conduction electrons are described by

Hc = t
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) − μ

∑
i,σ

nc
iσ

+ iλ
∑
〈〈i j〉〉

[c†
iσ (σ · ei j )c jσ − H.c.]

+ m
∑
i,σ

(−1)ic†
iσ ciσ . (2)

This Hamiltonian is based on the Fu-Kane-Mele model
[41,43,44]. The nearest-neighbor (〈i j〉) hopping amplitude
sets the energy scale at t = 1; the chemical potential
parametrizes the electron density as μ and breaks particle-hole
symmetry; the second-nearest neighbor (〈〈i j〉〉) Dresselhaus-
type spin-orbit coupling has strength λ and acts upon spin
space in the Pauli matrix basis, in vector form σ; finally
a sublattice-dependent atomic potential difference is tuned
by m. In this last term, m > 0 tunes the degree of crystal
inversion symmetry breaking, serving to lift the degeneracies
between the two face-centered-cubic (fcc) sublattices of the
diamond lattice.

The term that allows the two species to hybridize is simply

Hcd = V
∑
i,σ

(d†
iσ ciσ + H.c.), (3)

which has strength V , and in the strong-coupling limit that we
consider, tracks the strength of the Kondo effect.

To represent the localized 4 f electrons, the d-operator
Hamiltonian is

Hd = Ed

∑
i,σ

d†
iσ diσ + U

∑
i

nd
i↑nd

i↓. (4)

The first term has a flat bare atomic energy level Ed which
lies far below the conduction electron bands. The second term
is the Coulomb interaction with repulsion energy U , which
penalizes the double occupation of a site.

Finally, we will primarily focus on the case of quarter
filling, which corresponds to total electron count of 1 per site:

nd + nc = 1, (5)

where

nd = 1

Nsite

∑
i,σ

d†
iσ diσ , (6)

nc = 1

Nsite

∑
i,σ

c†
iσ ciσ , (7)

with Nsite counting the total number of sites in the lattice.
The interaction U term is, of course, an obstruction to

obtaining the eigenstates. However, in the strong-coupling
limit of U → ∞, one can use the auxiliary boson method [4]
to treat the Coulomb term by considering its large limit
consequence, which is to only allow density configurations
of single particle-per-site occupation and empty occupancy.
Thus the localized species acquires a boson as d†

iσ = bi f †
iσ ,

which is, at the saddle-point level, averaged over the unit cell
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as bi → 〈bi〉 = r, where 0 < r < 1. This necessitates includ-
ing a Lagrange multiplier � which parametrizes a constraint
equation term introduced into the large U Hamiltonian as
Hs = H + H�,

H� = �

(∑
i,σ

f †
iσ fiσ + r2 − 1

)
, (8)

and renormalizing the hybridization as V → Ṽ = rV . Put
together, this gives the strong-coupling Hamiltonian Hs.

The parameters x = (μ, r, �) are obtained by solving the
set of saddle-point equations δHs

δxi
= 0 self-consistently. The

parameter � renormalizes the localized electron’s energy level
to Ed → Ẽd = Ed + �, which in practice is close to EF (we
define EF = 0).

We eliminated the need to numerically solve for μ by
finding the analytical solutions to nodal points in the Brillouin
zone (see Appendix A). The key step to solving for the
eigenenergies is to find a suitable basis that renders the Hamil-
tonian separable. In Ref. [25], we performed the canonical
(unitary) transformation on Eq. (2), �̆k = S†

σ�k, that leads to

Hc =
∑

k

�̆
†
k

(
hk+ 0
0 hk−

)
�̆k, (9)

hk± = u1(k)τx + u2(k)τy + [m ± λD(k)]τz, (10)

where u1(k), u2(k), D(k) are defined for the diamond lattice
in Appendix A, and the τi are Pauli matrices acting in the
fcc sublattice space. We have used a pseudospin basis [44],
defined by the eigenstates |±D〉 with eigenvalues

D(k) · σ

D(k)
|±D〉 = ±|±D〉, (11)

D(k) ≡ |D(k)| =
√

Dx(k)2 + Dy(k)2 + Dz(k)2. (12)

Based on previous studies [25,44] we know that the Weyl
nodes only emerge in the |−D〉 sector corresponding to hk−.
The term D(k) arises from the Fourier transform of the SOC
term. Since the bands have a definite ordering in terms of en-
ergy (see Appendix A), we find that the nodal band touchings
occur only between particular bands (see Sec. III B).

With the number of particles per site per spin (or simply
fractional filling) of all fermions being nc + nd = 1 and since
the localized electrons’ filling was fixed at n f = 1 − r2, this
implies that the conduction electron density is nc = r2 and
thus small.

III. WEYL-KONDO SEMIMETAL

In Ref. [25] we established that our model captures a Weyl
Kondo semimetal featuring Kondo renormalization-narrowed
bulk and surface bandwidths, exhibiting bulk Weyl nodes and
surface states with Fermi arcs. An example of the surface
states and their band narrowing can be seen in Fig. 2, in which
the bandwidth of the pure surface states is renormalized by the
Kondo effect.

The configuration of Weyl monopoles is tuned along the
Brillouin-zone boundaries with a quarter of the bands filled
(two of eight total), which is consistent with our choice
of nonsymmorphic lattice and Hamiltonian [31,39,45]. The

FIG. 2. Eigenenergy of the surface states of the [001] plane, with
parameters (Ed , �, r,V ) = (−7, 7.28, 0.22, 7.5). Blue and red points
show the position of the Weyl and anti-Weyl nodes of the Brillouin-
zone boundary, and thick black lines show the Fermi arcs connecting
nodes to their opposite chirality partner on the four neighboring
Brillouin-zone boundaries.

Weyl-Kondo quasiparticles form exactly at the Fermi energy,
for reasons at two levels of sophistication

(i) the Weyl nodes appear within the Kondo resonances,
which lie near the Fermi energy within a small energy window
set by the Kondo temperature and

(ii) the space group symmetry combined with the commen-
surate filling puts the nodes even closer to the Fermi energy –
for the exact commensurate filling, the nodes are precisely at
the Fermi energy.

In other words, the combination of the Kondo effect and
space-group symmetry pin the Weyl nodes to the Fermi
energy.

Here, we analyze the mechanism that underlies this salient
feature of the Weyl-Kondo semimetal phase.

A. Realization of the Weyl-Kondo semimetal through symmetry

In Sec. I A, we presented some considerations for seeking
Weyl semimetals in 3D crystal lattices. We now turn to the
specific case of the diamond lattice.

The diamond lattice has space group no. 227 (Fd 3̄m),
which is centrosymmetric, nonsymmorphic, and bipartite,
consisting of two fcc lattices displaced by t = a{ 1

4
1
4

1
4 } (a is the

cubic lattice constant). First, consider the Hamiltonian without
Kondo coupling (V = 0) implemented on the diamond lattice,
which involve four bands associated with two sublattices and
two spin states, with localized Ed levels completely decoupled
from them. We consider the symmetry change as particular
terms are successively added. In Fig. 3, the cases without
Kondo coupling are shown, where the flat, trivial f bands are
well separated in energy below the dispersive c bands. For the
quarter-filling case we consider, the localized d electrons are
at half filling, forming a Mott insulator, and the conduction
c-electron bands are left completely empty, implying a topo-
logically trivial insulator phase. If only the nearest-neighbor
hopping and chemical potential terms [the first line of Eq. (2)]
are included, one has line nodes along X -W as shown in the
upper set of bands in Fig. 3(a). These fourfold degenerate line
nodes crisscross the square BZB, due to a combination of the
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FIG. 3. Model in the absence of the Kondo effect, V = 0. Dispersion along a high-symmetry path in the fcc Brillouin zone. The localized
electrons’ energy level is at the Fermi energy EF . (a) Fourfold-degenerate line nodes along X -W when SOC λ = 0 and inversion symmetry
is preserved, m = 0. (b) Dirac node develops at X from (a) when SOC is present, λ > 0. (c) Weyl nodes emerge from (b) when inversion
symmetry is broken and 0 < m

4λ
< 1. D ∼ 8t denotes the unrenormalized conduction electron bandwidth.

nonsymmorphic symmetry, two of the mirror planes, and the
C4 and C2 rotations.

Next, we include the SOC (which preserves TRS and
IS), which is shown in Fig. 3(b). The fourfold degeneracy
at W is split, while a linearly dispersing degenerate Dirac
point remains at X . The Dresselhaus SOC term which allows
the pseudospin |±D〉 decomposition also allows the band
inversion by introducing a linear-in-k coupling term based
on the pseudospin eigenvalue D(k), which is linear near the
X point,

D[kX = (k0, 0, 2π )] = 4

√
sin2

(
k0

2

)
∼ 2|k0| (13)

for some k0 ∼ 0, and similarly for the other X points. The
bands are twofold degenerate everywhere in the BZ except
at the Dirac points, and in Fig. 3 this is indicated with solid
red lines for the |−D〉 sector, and dashed blue lines for the
|+D〉 sector. Since the SOC preserves TRS, the Kramers
degeneracy at the time-reversal invariant momentum X is
preserved, while the SOC splits them at W since it is not
a time-reversal invariant momentum point. The space-group
analysis of how the nonsymmorphic symmetry of the diamond
lattice produces such Dirac nodes at the X points has been
established previously in a noninteracting model without a
localized species; on the BZB, a projective representation with
point group D4h has a four-dimensional irreducible represen-
tation, which realizes a Dirac semimetal generically [39].

We now include the ISB term parametrized by m, shown
in Fig. 3(c). The |±D〉 degeneracy is split along the BZB,
and doubly degenerate Weyl nodes of the |−D〉 sector emerge
along all X -W lines. This degeneracy produced by the inter-
nal sublattice degree of freedom is lifted, but since TRS is
preserved, the Kramer’s pairs remain with their TRS partners
at X . This allows one to tune k between the X and W points
to find a Weyl node degeneracy.

Put a different way, one can track the X -W degeneracies
as a function of the IS breaking. The Weyl semimetal phase
region is 0 < m < 4λ, with the Dirac node at X (m = 0)
splitting and spawning the Weyl nodes as m is increased. The
four nodes move outward toward each of the four W , and
undergo a quadratic band touching at the critical value m = 4λ,
before annihilating with the nodes of opposite chirality from

the four neighboring BZs, which opens a trivial gap when
m > 4λ [41,44].

It is also pertinent to consider the space-group symmetry
when identifying which pairs of bands can form band touching
points, that is, to find what filling factor realizes a topological
semimetal for a given space group. The filling factor ν counts
the number of electrons per primitive unit cell; in our model
[Eq. (1)], there are two types of fermions, two spins per
fermion, and two sites per unit cell, so the total allowed filling
factor is ν = 8. At ν = 2 corresponding to quarter filling,
the nonsymmorphic symmetry enforces that both the Fermi
surface must be finite, and yet the Luttinger volume must
vanish [35]. The only way to satisfy these conditions is to
produce a zero-dimensional nodal point Fermi surface, so
nonsymmorphic space groups are a natural place to search
for topological systems. When the space-group symmetry is
changed via ISB, this restores the ability of the system to
connect adiabatically to a band insulator phase, when m > 4λ.

B. Kondo-driven node formation and pinning

We now wish to consider our model when the hybridization
is nonzero, so that the conduction c and strongly correlated f
electrons are coupled with each other. The choice of chemical
potential and energy level Ed = EF before turning on hy-
bridization is arbitrary, and was made to adiabatically connect
the trivial insulator phase shown in Fig. 3 to the Kondo
regime.

In the course of solving the saddle-point equations self-
consistently, the starting value for Ed is far below EF , and
μ is determined analytically from the eigenenergies as μ =
− (rV )2

Ed +�
(see Appendix A). A properly “strong”-coupling solu-

tion usually means that r is small but nonzero, which arises
for a range of V larger than some critical value. The small
bosonic field measures a small but nonzero hole fluctuation
r2 away from nd = n f = 1, which is only coupled to V . A
valid self-consistency solution always finds an r, � that fixes
the densities to the values specified. The solutions at this
filling fix the Fermi energy such that of eight total bands,
two Kondo-driven bands are filled, which corresponds to the
ν = 2n filling enforcement condition.

A solution of this type was shown in Ref. [25]. To demon-
strate its robustness, we solve the case with a different set
of parameters. The result is plotted in Fig. 4, which shows
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FIG. 4. Kondo effect-driven Weyl nodes. Dispersion along
a high-symmetry path in the fcc Brillouin zone. Weyl-Kondo
semimetal with V = 7.5 and nodes pinned at EF . This develops
from Fig. 3(c) when the strong coupling is renormalized, Ṽ →
rV > 0. The bandwidth of the upper quartet of bands is approxi-
mately that of the conduction electron bandwidth ∼D, whereas the
strongly renormalized lower quartet of heavy bands corresponds
to the kBTK energy scale. The parameters are (Ed , �, r,V, λ, m) 

(−7, 7.279, 0.220, 7.5, 0.5, 1).

the conduction electron bands with bandwidth D unoccupied,
well separated by a gap of ∼6t from the renormalized narrow
f bands with heavy Weyl-Kondo quasiparticle excitations
around nodes fixed precisely at EF . This demonstrates that
the nodal states develop out of the Kondo effect. The Kondo
effect correlations produce this topological phase transition
from trivial band insulator to WKSM, and pin the nodes to
the Fermi energy as a fundamental property.

The role of the localized species near the Fermi energy can
also be demonstrated by calculating the projected density of
states. This is provided in Fig. 5, which corresponds to the
hybridized parameters generating Fig. 4. The contributions
of the c and f fermions are represented in shades of blue
and red, respectively. The main panel of Fig. 5 shows that
at the Fermi energy, the proportion of localized f fermions
is large compared to that of the conduction c electrons, using
an energy interval of dE = t/10. The inset of Fig. 5 shows
a zoomed-in view of the projected density of states with
a smaller energy interval of dE = 0.005t to accommodate
the reduced bandwidth. In the energies closest to EF , the
f fermions prominently characterize the states compared to
the c’s. The hybridization has allowed a tiny amount of c
electrons to mix (see inset) through the hole fluctuations of the
r-bosonic condensate via nc = r2. This demonstrates that the
localized f electrons are directly responsible for producing
the Weyl-Kondo semimetal.

We close this subsection with two remarks. First, other
quantities can also be calculated. For example, the surface
states that correspond to the same parameter choice has al-
ready been shown in Fig. 2.

Second, going beyond the saddle-point level, the renor-
malized quasiparticles will acquire a finite lifetime due to
the residual interactions. However, because the Kondo-driven
Weyl nodes are pinned at the Fermi energy, the strongly
renormalized nodal excitations will be long lived, with the

FIG. 5. Projected density of states, showing full energy range
corresponding to Fig. 4. Inset: zoomed-in to localized set of
bands near the nodes at EF . Shades of red indicate contribu-
tions from f fermions, and shades of blue indicate contribu-
tions from c electrons. The parameters are (Ed , �, r,V, λ, m) 

(−7, 7.279, 0.220, 7.5, 0.5, 1).

lifetime reaching infinity when the node is approached. This
makes the Kondo-driven Weyl nodal excitations well defined
even though it is a strongly interacting many-body system.

IV. TILTED WEYL-KONDO SEMIMETAL

In the process of understanding a large spontaneous Hall
effect observed in Ce3Bi4Pd3 [27], a tilted variation of the
Weyl-Kondo solution was introduced there. Here, we further
investigate this effect. This allows us to analyze the details
of the Berry curvature distribution near a small Fermi pocket
centered around the Weyl nodes, and how this distribution
can be made extremely asymmetric with respect to a Weyl or
an anti-Weyl node by the tilting potential. Our results further
support the analysis presented in Ref. [27].

A. Tilted Weyl dispersion

The tilting term in our diamond-lattice model [27] of the
WKSM can locally adjust the anisotropy of the linear part of
the dispersion. We specify it as

Ht = C
∑
k,σ

[
1 − 1

2
D(k)

]
nc

kσ , (14)

which preserves the lattice symmetry and is added to the
conduction electron Hamiltonian Eq. (2). Here, C sets the
tilting potential, and we continue to consider the specific
parameters of m = 1 and λ = 1/2. We have solved the saddle-
point equations in the presence of the tilting term.
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FIG. 6. High-symmetry dispersion of the tilted WKSM model.
(a) High-symmetry contour in green along the k = (kx, ky, 2π )
Brillouin-zone boundary plane, through (anti)nodes marked in (red)
blue. The square marks the small region of the Brillouin zone over
which the Berry-curvature distribution is shown in Fig. 7(a). (b) Bulk
dispersion along the contour of the tilted model with C = 0.8, other
parameters are found self-consistently to be (Ed , �, r,V, λ, m) 

(−7, 7.282, 0.222, 7.5, 0.5, 1). (c) Bulk dispersion with C = 0, and
the same parameters Fig. 4.

The resulting dispersion is contrasted to that of the untilted
model, as shown in Fig. 6. The Weyl nodes remain pinned
at the Fermi energy in the tilted case. This further illustrates
the robustness of the mechanism discussed in the previous
section for the formation and pinning of the Kondo-driven
Weyl nodes.

To see the reason that the C term tilts the dispersion
near the nodes, note that near the Weyl node, Eq. (10) is a
2 × 2 Hamiltonian matrix and can be linearized to obtain a
k · τ form. The Hamiltonian Ht is proportional to the matrix
τ0 ⊗ σ0, which commutes with the canonical transformation,
and after the transformation it contributes a term C[1 −
1
2 D(k)]τ0 to hk−. Linearizing the full hk− near the nodes
gives a linear dispersion which adds velocity components that
depend on the tilting direction t̂ as vt = Ct̂ . Now the effective
Hamiltonian is

Heff = vt · kτ0 + vk · τ. (15)

Using the velocity ratio, the effective Hamiltonian has the
regimes |C

v
| < 1 (type I), and |C

v
| > 1 (type II) [46]. The type-

I behavior makes the dispersion anisotropic, and causes the
Fermi surface to change shape within the BZ. A type-II Weyl
semimetal arises when the tilt has become extreme enough to
cause a Lifshitz transition of the Fermi surface.

In Fig. 6 we illustrate the tilting of the linear bands around
the node when C �= 0; we plot the eigenenergies along the
green high-symmetry k-contour in Fig. 6(a) that intersects
with the Weyl nodes. Figure 6(b) shows the dispersion of a
strong-coupling limit solution when C = 0.8, where there are

anisotropic slow and fast bands along X -W±. There also ap-
pears to be two Lifshitz transitions ready to happen: the type-I
to type-II tilting transition, and the Fermi pocket lowering
itself to the Fermi energy around U and U ′. This is in contrast
to the nontilted C = 0 dispersion shown in Fig. 6(c), where
the linear part of the dispersion appears isotropic along X -W±
for energies sufficiently close to EF .

B. Berry curvature distribution

The physical quantity that lies at the heart of an electronic
topological phase’s “topologicalness” is the Berry phase, and
we show in Fig. 7 the Berry curvature distribution for a tiny
portion of the BZ that surrounds one of the Weyl nodes of
Fig. 6(a) [denoted by the small square surrounding the right
red node of Fig. 6(a)]. The Berry phase is the condensed-
matter manifestation of the geometric phase acquired when
a wave system explores the landscape of its parameter space
as a result of a cyclic adiabatic process. In condensed-matter
systems, a particle in state n acquires a Berry phase γn as the
Hamiltonian parameters are varied around a closed path S
without eigenstate transitions away from n (i.e., adiabaticity
is preserved). The Berry phase and the related Berry flux
quantity is expressed in terms of the Berry vector potential
An(k) and corresponding Berry curvature �n(k) as

�n(S ) =
∮
S

dk · An(k) (16)

= 1

2π

∫
∂S

dS · �n(k) (17)

= 1

4π

∫
d3k

(2π )3
∇k · �n(k), (18)

where

�n(k) = ∇k × An(k) (19)

= (
yz

n (k),zx
n (k),xy

n (k)
)
, (20)

ab
n (k) =

∑
n �=n′

Im
〈nk|∂ka Hk|n′k〉〈n′k|∂kbHk|nk〉

(En − En′ )2
. (21)

One immediately sees that at a Weyl node degeneracy, the
denominator of Eq. (21) is zero, causing a singularity in
the Berry curvature field in the momentum space [Eq. (20)].
Due to their singular structure, the positive and negative
Berry curvature singularities corresponding to Weyl nodes
and antinodes possess a local topological invariant that can
distinguish between nodal signs, and is just the Berry flux of
Eq. (18) computed around a single node. For a single Weyl
node, the Berry flux density is ∇ · � = ±4πδ3(k) and the
Berry flux is

�(S ) = ± 1

4π

∫
d3k

(2π )3
4πδ3(k) = ±1.

This tells us that the Berry flux is a quantized number that
counts the number and sign of Berry charges (monopoles)
in a given system. This is the reason for the “monopole”
terminology: the Berry flux acts like the total charge of the
Weyl point, and their associated Berry curvature (magnetic)
field has a monopole or antimonopole configuration. When
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FIG. 7. Berry curvature strength captured by Fermi surfaces. The
Berry curvature component yz [Eq. (21)] of the WKSM phase
in the [001] plane of the Weyl node located at the center of the
plot, k = ( π

3 , 0, 2π ) (black dot), which corresponds to the right
red point of Fig. 6(a), and Fermi surfaces from a slightly metallic
filling nd + nc = 1 + 10−5, sharing the parameters (Ed ,V, λ, m) 

(−7, 7.5, 0.5, 1). (a) The solid contour is the intersection of the 3D
Fermi surface of the model with the BZ-boundary plane (i.e., for kz =
2π ) without tilting, and self-consistently determined parameters
(C, μ, r, �) 
 (0,−9.748, 0.220, 7.279). The dashed contour is the
counterpart for the Fermi surface of the tilted model, with parameters
(C, μ, r, �) 
 (0.9,−9.811, 0.222, 7.281). (b) Same as (a), but with
an even smaller plot range in k space. The full range of the Berry
curvature is truncated, and the deep blue and red regions near the
node represent values that extend beyond the legend. Note that, in the
3D BZ, the Fermi pockets in the two cases have the same volume.

the Weyl (anti)nodes are pinned to the immediate vicinity of
the Fermi energy, as happens in our Weyl-Kondo semimetal
solution, the monopoles and associated Berry curvature singu-
larities appear very close to the Fermi surface. In other words,
the Fermi surface comprises tiny Fermi pockets that surround
the Weyl (anti)nodes, and states on the Fermi surface have a
very large Berry curvature.

An intriguing question is how to tune the singular nature
of the Berry curvature. Tilting the Weyl cone dispersion is
one means of doing so. An example of the tilt behavior of
the model is seen in Fig. 7. The color scale indicates the
magnitude of the yz component of the Berry curvature,
which is highly concentrated around the node and discon-
tinuous at the node, located in the center of each plot. The
solid and dashed contours show the Fermi surface produced
with C = 0 and C = 0.9, respectively, from a slightly metallic
filling nd + nc = 1 + 10−5. For both cases, but especially for
the tilted case, the Berry curvature is very large on the Fermi
surface, reflecting the proximity of the Fermi surface to a Weyl
monopole.

In Fig. 7(a), the area in the momentum space shown
corresponds to the small square surrounding the right red node
of Fig. 6(a). This conveys how tiny the Fermi surfaces are
compared to the extent of the BZ. In Fig. 7(b), we zoom in
further from Fig. 7(a) to the vicinity of the node. Here, it is
apparent that the C = 0.9 tilted Fermi surface (dashed line)
still encloses the node, but it is much closer to the node as
compared to the C = 0 Fermi surface (solid line). The tilting
term is seen to make the Fermi pocket and the associated
Berry curvature be distributed around the Weyl node in a
highly asymmetrical way, in which highly singular Berry cur-
vature fields strongly influence the heavy Weyl quasiparticles
pinned at the Fermi surface.

In particular, Figs. 7(a) and 7(b) illustrate that the asymme-
try induced by the tilting term has made one side of the Fermi
pocket much closer to the node than the other. This makes
an external electric field readily able to drive the system to
a highly out-of-equilibrium response in the Berry-curvature-
induced transverse conductance, a theoretical framework that
was advanced for the spontaneous Hall effect in Ref. [27]. As
such, our result concretely demonstrates the ready realization
of the giant spontaneous Hall effect put forward there.

V. SIGNATURES OF CORRELATED
TOPOLOGICAL SEMIMETALS

Some of the conventional signatures of Weyl semimetals
are quantum oscillation experiments, negative longitudinal
magnetoresistance indicative of the chiral anomaly, and angle-
resolved photoemission spectroscopy (ARPES) imaging of
both the bulk and surface states, which probes the linear
nodal dispersion in the bulk and verifies topology due to the
bulk-boundary correspondence. These experiments elegantly
illustrate the signatures of weakly correlated Weyl semimetal
material candidates.

As has been pointed out recently [27], the strongly corre-
lated Weyl-Kondo semimetal phase offers several obstacles
to characterization by conventional experimental probes. For
example, imaging the surface states would have to use an
ARPES setup that could resolve features within a bandwidth
of approximately D∗ ∼ kBTK , with for example, in Ce3Bi4Pd3,
TK ≈ 13 K, which would require an ultrahigh resolution much
below D∗ ∼ 1 meV.

On the other hand, the WKSM displays unique physics
that offers more suitable probes. The WKSM phase exhibits
node pinning that is contingent on the development of the
Kondo effect, a slow effective Weyl fermion velocity, and,
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correspondingly, a narrowed bandwidth. In Refs. [25,26], it
was shown that the specific heat has the following form:

Cp = � T 3. (22)

The prefactor of the T -cubic dependence from the contribu-
tion of each node is

� = 7π2

30
kB

(
kB

h̄v∗

)3

. (23)

This means that � is enhanced relative to the typical non-
interacting value by a factor of (v/v∗)3, the ratio of the
typical Fermi velocity of a noninteracting electron band to
the renormalized velocity of the Kondo-driven Weyl nodal
excitations; this enhancement is robust against the residual
interactions between the Weyl fermions. The v∗ value ex-
tracted for Ce3Bi4Pd3 is ∼886 m/s, three orders of magnitude
smaller compared to a normal metal’s Fermi velocity [26].

The Kondo-driven node pinning also implies that a large
Berry curvature singularity at the Fermi energy develops
at T < TK . This provides a means of using the Berry-
curvature-induced anomalous velocity to probe the topolog-
ical characteristics of the Kondo-driven Weyl nodes in the
WKSM (that is time-reversal invariant in equilibrium), at
zero magnetic field and in a nonlinear response to an ap-
plied electric field, as has recently been demonstrated in
Ref. [27].

VI. CONCLUSIONS AND OUTLOOK

We have expanded on several theoretical aspects of
the Weyl-Kondo semimetal state in a noncentrosymmetric
Kondo/Anderson lattice model with both strong correlations
and large spin-orbit coupling. This state was advanced con-
currently in theoretical [25] and experimental [26,27] studies.
It preserves the time-reversal invariance. The Weyl nodes are
driven by the Kondo effect and, thus, must appear within the
narrow energy range near the Fermi energy for the Kondo
resonance; at the same time, their existence can be traced to
the degeneracy of electronic states enforced by nonsymmor-
phic space-group symmetry. These two features combine to
pin the Weyl nodes to the immediate vicinity of the Fermi
energy. Moreover, the Kondo-driven nature makes the linearly
dispersing Weyl nodal excitations have an energy scale kBTK ,
which is smaller than the bare conduction-electron bandwidth
D by orders of magnitude (cf. Fig. 4). Correspondingly, the
velocity v∗ is reduced from typical values of noninteract-
ing electrons by several orders of magnitude. An immediate
consequence of such a reduced velocity is that the specific
heat cV = � T 3, with the T -cubic prefactor � enhanced from
the typical noninteracting value by a huge factor of (v/v∗)3.
The pinning of the Weyl nodes to the immediate vicinity
of the Fermi energy also implies that the Berry curvature
singularities of the Weyl nodes appear near the Fermi energy.
This gives rise to a large anomalous velocity for the states on
a small Fermi surface pocket surrounding the Weyl nodes. As
such, this pinning of the Berry curvature singularities near the
Fermi energy presents a means of probing topological charac-
teristics of Weyl nodal excitations through a spontaneous Hall
effect, which is a nonlinear response to an applied electric

field, even though the system under equilibrium preserves
time-reversal symmetry.

The experimental developments have taken place in the
Kondo-driven semimetal Ce3Bi4Pd3, a cubic system for which
the space group is nonsymmorphic (no. 220), the inver-
sion symmetry is broken, but the time-reversal symmetry is
preserved [27]. This heavy fermion semimetal shows a T 3

specific heat with a huge prefactor �, so much so that it
surpasses the phonon contribution [26], and a giant sponta-
neous (zero magnetic field) Hall effect and an accompanying
even-in-magnetic-field component [27]. The results provide
direct evidence for ultraslow Weyl nodal excitations and its
topological nature.

We close with a look into future directions. First, the
developments along this direction point to the search for
further Weyl-Kondo semimetals in heavy fermion systems
with nonsymmorphic space groups, as already exemplified by
the case of Ce3Bi4Pd3 [26,27,47]. Because the majority of the
230 space groups in three dimensions are nonsymmorphic,
this suggests the prevalence of Weyl-Kondo semimetal phases
in such systems. Of potential interest in this context include
nonsymmorphic heavy fermion semimetals with broken in-
version symmetry such as CeRu4Sn6 [48–52] and CeNiSn
[53–55] and those that are inversion symmetric but with
time-reversal symmetry broken by an external magnetic field
or magnetic ordering, such as YbBiPt [56–59] and CeSbTe
[60–62].

Second, we have stressed that the Weyl-Kondo semimetal
solution is robust because of the cooperation of the Kondo
effect with the space-group symmetry. It will be instructive
to explore the role of space-group symmetry on Kondo-driven
bulk nodal excitations near the Fermi energy in related models
[63–69].

Third, the considerations of symmetry open up different
ways to think of accessing nearby topological phases, by
reducing or restoring point-group or space-group symmetries.
One path that has been explored is anisotropically tuning
the hopping amplitudes ti j of the lattice bonds [41,43]. Such
a symmetry-reducing tuning could be approximated through
uniaxial stress, which, in Kondo systems, also tunes the
strength of the Kondo effect. Another avenue is to explore
nonspatial symmetries, such as time-reversal symmetry break-
ing [47]. In a one fermion flavor model [70], we have estab-
lished that a tunable TRSB term can coexist with the Weyl
semimetal phase described in Sec. III A, but that when the
TRSB term is larger than the ISB term, a topologically distinct
Weyl semimetal phase can emerge with nodes in the Brillouin-
zone interior. It is an exciting next step to incorporate TRSB to
the full Kondo-driven model. Finally, doping studies represent
a promising way of tuning [26,71].

Fourth, the theoretical and experimental results on the
Weyl-Kondo semimetal sets the stage to address how the over-
all quantum phase diagram of heavy fermion metals, Fig. 1(b),
is enriched by topologically nontrivial metallic phases driven
by the combined effects of strong correlations and spin-orbit
coupling. A recurring theme of heavy fermion metals is that
novel phases develop in the quantum critical regime, at the
border of electronic orders. This reflects the accumulation of
entropy in the quantum critical regime [72–75], as a result of
which the electronic matter is soft and prone to developing
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novel phases. A canonical example of such emergent phases
is unconventional superconductivity [7,76], but it could also
be nematic or other forms of secondary electronic orders [77].
An intriguing possibility is that, when the spin-orbit cou-
pling and correlations are both strong, topologically nontrivial
metallic states appear as emergent phases at the border of
electronic order, albeit on the nonordered [i.e., disordered; cf.
Fig. 1(a)] side.

Finally, the approach taken here represents a general means
of treating the space-group symmetry enforcement of topolog-
ical semimetals in strongly correlated settings. In the theoret-
ical model, the Weyl nodes of the bare conduction electrons
enforced by the space-group symmetry are located far away
from the Fermi energy. When the Kondo effect takes place,
the Weyl nodes are transmitted to those of the Kondo-driven
quasiparticles. The combination of strong correlations and
space-group symmetry enforcement pins the Kondo-driven
Weyl nodes to the immediate vicinity of the Fermi energy.
This makes the strongly correlated Weyl-nodal excitations
well defined, even for an underlying many-body system that
is strongly interacting. Equally important, it allows the the-
ory to connect with the striking experiments in Ce3Bi4Pd3

[26,27,47]. This type of interplay between the space-group
symmetry constraint and strong correlations is likely to be
important in other settings of strongly correlated topological
matter as well.
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APPENDIX A: EXISTENCE OF THE WEYL-KONDO
SEMIMETAL NODES

Here we show that, in our model, the eigenenergies have
Weyl nodes at the Fermi energy. First, the method for ob-
taining the eigenenergies was detailed in Ref. [25], and the
eigenenergies are

E (τ,α)
±D (k) = 1

2

[
Es + ε̃τ

±D + α

√(
Es − ε̃τ

±D

)2 + 4V 2
s

]
, (A1)

ε̃τ
±D = ετ

±D − μ, (A2)

ετ
±D = τ

√
u2

1(k) + u2
2(k) + [m ± λD(k)]2, (A3)

u1(k) = t

(
1 +

3∑
n=1

cos(k · an)

)
, (A4)

u2(k) = t
3∑

n=1

sin(k · an), (A5)

D(k) = 2

{
sin2

(
kx

2

)[
cos

(
ky

2

)
− cos

(
kz

2

)]2

+ sin2

(
ky

2

)[
cos

(
kx

2

)
− cos

(
kz

2

)]2

+ sin2

(
kz

2

)[
cos

(
kx

2

)
− cos

(
ky

2

)]2
}1/2

, (A6)

where the index which labels τ = ±1, α = ±1, ±D = ±D(k)
distinguishes the eight bands of the system, and the an are the
primitive lattice vectors of the diamond lattice. The Hamilto-
nian is only separable in terms of the |±D〉 pseudospin basis,
and α distinguishes between the upper and lower quartet of
bands; within each quartet, τ distinguishes the upper two from
the lower two bands, and one can write

ε̃τ
±D = τε±D − μ,

ε±D =
√

u2
1(k) + u2

2(k) + [m ± λD(k)]2. (A7)

Without loss of generality, we take the parameters t, r,V � 0.
There are line or Dirac nodal touchings in the case of m = 0,
depending on whether λ = 0 or nonzero. Here, we are only
interested in Weyl node touchings, and thus we consider only
the case with both λ, m being nonzero; for definiteness, we
focus on λ, m > 0.

The periodic Anderson model also has a few additional
specifications. In the Kondo regime, we have

Es = Ed + �,

Vs = rV, (A8)

and V > Vc for some critical value, beyond which the
bosonic field r is small but nonzero. It is taken that the
bare localized fermions representing the 4 f electrons should
have an energy level Ed that has a bare value well below
the conduction-electron bands, Ed � ετ

±D. We chose to define
EF = 0 and Ed < 0; we will determine the signs of μ, � near
the end, and in Appendix B.

With these pieces in place, it is simple to observe the
following. Since all parameters and eigenenergies are real,
and each term in the summation within each square root is
squared (nonnegative), the square root quantities are also non-
negative [Eqs. (A1), (A6), (A7), and (12)]. In turn, Eq. (A7)
implies that

ε+D � ε−D � 0, (A9)

given that m, λ, D(k) > 0, since the differentiating term in-
volving D(k) yields

|m + λD(k))| � m � |m − λD(k)| � 0. (A10)

It then follows from Eq. (A7) that

−ε+D � −ε−D � 0 � +ε−D � +ε+D. (A11)

In the diamond lattice space group, a nontrivial filling
enforced semimetal [35] occurs at filling factor ν = 2n, n �= 2.
For a quarter of the bands to be full, ν = 2(nc + nd ) = 2 of
the eight bands must be full, so the gapless band touching
point should occur between the third (hole) E3(k) band, and
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the second (filled) E2(k) band. We label the bands according to
ascending order in energy. Then, the condition that determines
when Weyl nodes kW are present at quarter filling is

lim
k→kW

�32(k) = lim
k→kW

[E3(k) − E2(k)] = 0. (A12)

It is clear from the form of Eqs. (A1) and (A7) that
only the ε±D terms are k dependent, so they shall determine
where nodes may appear in momentum space. Because of
this model’s underlying nonsymmorphic symmetry, we know
that the nodes should appear on the BZB, and that they
generically avoid three- and sixfold symmetry axes when
TRS is preserved [39], so we search on the [001] face of
the BZ (the other faces are related by symmetry). We seek
solutions to ε±D = 0 [Eq. (A7)]. Considering just the expres-

sion
√

u2
1(k) + u2

2(k) = 0, this has line degeneracy solutions
along the X -W lines. Therefore, the solutions to ε±D = 0
will be realized for nonzero m, λ when

√
[m ± λD(k)]2 = 0

also, since the |m ± D(k)| term determines the gap in the ε±D

expressions. Along an X -W line such as kXW = (kx, 0, 2π ),
we already know from Eq. (A10) that |m + λD(k)| is bounded
below by m, which we insist is nonzero. Thus we can elim-
inate the |+D〉 sector from consideration for the solution,
and ask whether the |−D〉 sector has a solution. Along
kXW ,

ε−D(kXW ) =
√

(m − λD(kXW ))2 (A13)

=
∣∣∣∣m − 4λ

∣∣∣∣sin

(
kx

2

)∣∣∣∣
∣∣∣∣ = 0, (A14)

↔
∣∣∣∣ sin

(
kx

2

)∣∣∣∣ = m

4λ
, (A15)

so the Weyl nodes occur at

kW = (k0, 0, 2π ), (A16)

k0 = 2 arcsin
( m

4λ

)
, mod π, (A17)

where the modulo π node is the opposite chirality partner
in the neighboring BZ; within the first BZ, there are six
inequivalent pairs total. Therefore we conclude that Weyl-
Kondo nodes develop only for bands in the |−D〉 sector.

Now it is pertinent to apply these results to the full eigenen-
ergy expression of Eq. (A1). Since the sign of α picks out
whether the band is in the upper four or lower four, we
consider α = −1 to analyze quarter filling. Having shown
that a Weyl node is permitted for the |−D〉 sector, τ must be
opposite in sign for each band.

Therefore, the Weyl nodes should exist between the bands
E (−,−)

−D and E (+,−)
−D . To gain some more insight, we solve

E (−,−)
−D (kW ) = 0, and express μ in terms of other parameters.

From Eq. (A1), we get

Es − μ −
√

(Es + μ)2 + 4V 2
s = 0,

which implies

−Esμ = V 2
s .

Therefore,

μ = − (rV )2

Ed + �
, (A18)

so we find that the sign of μ depends on the sign of (Ed + �).
In our numerical calculations for the Kondo regime at

quarter filling, the solutions always follow (Ed + �) > 0; for
a given Ed < 0, we find � > 0 and |Ed | < �. For example, in
our parameter choice for Figs. 4 and 5, we had Ed =,−7,
� = 7.279, and such results are consistent for other val-
ues of Ed ,V : (Ed + �) > 0. Thus μ is negative. We reiter-
ate that μ can be determined analytically if the filling is
integer.

APPENDIX B: METHODS OF SOLVING THE
SADDLE-POINT EQUATIONS

Here we comment on the self-consistency procedure used
to obtain the parameters μ, r, � in Ref. [25] and this work.
Since the WKSM system was separable into pseudospin sec-
tors, the Bloch Hamiltonian matrix was decomposed from one
8 × 8 to two 4 × 4 matrices. A matrix size of 4 × 4 yields a
characteristic equation with an eigenvalue polynomial degree
of 4, which is the upper limit to an exactly solvable eigenvalue
problem. When the calculation is exactly at quarter filling,
the chemical potential does not have to be numerically deter-
mined, as shown in Appendix A. However, for the calculations
with a finite Fermi surface (e.g., Fig. 7), we can determine the
chemical potential μ numerically.

The remaining two saddle-point equations are solved using
the Newton-Raphson method [78]. This method can solve
nonlinear systems of equations, given an initial guess that
is close enough to the eventual solution. Whenever r, � are
changed, μ is updated. If the filling is specified precisely at
the nodes (integer), μ is defined in Eq. (A18). If the filling
is noninteger, i.e., metallic, it may be solved for by using
the bisection method on the density n(μ) of particles per site
per spin.
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