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The edge of the electronic fractional quantum Hall (FQH) system obeys the law of the chiral Luttinger liquid
theory due to its intrinsic topological properties and the relation of bulk-edge correspondence. However, in a real-
istic experimental system, such as the usual Hall bar setup, the softening of the background confinement potential
can induce the reconstruction of the edge spectrum, which breaks the chirality and universality of the FQH edge.
The entanglement spectrum (ES) of the FQH ground state has the same counting structure as that of the energy
spectrum indicating the topological characters of the quantum state. In this work, we report that the ES can also
have an edge reconstruction while sweeping the area of the subsystem in real space cut. Moreover, we found
that the critical area of the subsystem matches accurately with the intrinsic building block of the FQH liquids,
namely the correlation hole of the FQH liquids. The above results seem to be universal after our study of a series
of typical FQH states, such as two Laughlin states at ν = 1/3 and 1/5, and the Moore-Read state for ν = 5/2.
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I. INTRODUCTION

Topological states of matter have been a major theme in the
recent developments in understanding novel quantum effects.
The inherent fractional quantum Hall (FQH) effect [1,2] in
high-mobility two-dimensional electron gases (2DEGs) under
a strong magnetic field is a significant field to explore the
topological phases. In these cases, the bulk of a FQH liquid is
gapped, which results in the incompressibility of the topolog-
ical quantum ground state [3,4]. However, low-lying gapless
excitations exist at the boundary of the liquid, which provide
a unique arena to study electron correlations in one dimension
and topological properties in the bulk due to the bulk-edge
correspondence in topological phases. It is known that
topological states characteristically have protected edge states
at the boundary between trivial and nontrivial regions. On the
quantum Hall edge, the Fermi liquid theory breaks down and
the edge electrons have been argued [5] to form the chiral
Luttinger liquid (CLL). The CLL theory predicted that the
current-voltage dependence in the tunneling between a Fermi
liquid and a quantum Hall edge follows a universal power
law I ∼ V α , where α = m for the ν = 1

m FQH states [6,7].
Such universality, however, has long been controversial since
it has not been conclusively observed in semiconductor-based
2DEGs in spite of the fact that graphene-based 2DEGs have
the potential to realize this universality [8,9]. One possible
reason for this discrepancy is edge reconstruction [6,7],
which induces additional nonchiral edge modes that are not
tied to the bulk topology. Edge reconstruction is a conse-
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quence of the competition between the confinement potential
that holds the electrons in the interior of the sample, and
the Coulomb repulsion that tends to spread out the electron
density. In numerical studies [10–14], the knob of the edge
reconstruction was the distance between the 2DEGs and the
background potential, or the strength of the confinement
potential.

Another aspect to explore the edge excitation of the FQH
state is the entanglement spectrum (ES) [15] of the ground-
state wave function. The ES is the “energy spectrum” of the
bipartite reduced density matrix of the ground state. It has a
deep connection to the topological properties embedded in the
ground state and its low-lying excitations. This connection
is based on the conformal field theory (CFT) description
of the FQH model wave functions, such as the Abelian
Laughlin states at filling ν = 1/m and the non-Abelian Read-
Rezayi states [16] with order-k clustering at filling ν = k

kM+2 .
Mostly, the ES reveals the bulk topology via counting the
low-energy excited states, which are regarded as the virtual
edge excitation at the boundary of the bipartition. In analogy
to the electron energy spectrum of an open boundary sys-
tem, the counting numbers of the ES for the Laughlin state
are “1, 1, 2, 3, 5, . . . ” and “1, 1, 3, 5, 10, . . . ” for the Moore-
Read state, which can be predicted by CFT or CLL theory.
However, except for the counting numbers, there are few
studies on the quantitative properties of the ES, for example
its edge velocities or edge reconstruction, and their relation
to the bulk topology. This is because these properties are
mostly believed to be nonuniversal and unrelated to the bulk
topology.

The real-space bipartite cut [17–19] has the advantage
of unambiguously determining the boundary between two
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subsystems, which is helpful for quantification of the bound-
ary length and subsystem area. Therefore, the real-space
bipartition is the best way to fit the “area law” of the entan-
glement entropy and extrapolate the topological entanglement
entropy [20–22]. In this paper, we systematically study the
properties of the real-space ES of the FQH states in disk
geometry. We find that the reconstruction of the ES can be
realized by continuously tuning the position of the cut, namely
the area of the subsystem with a fixed number of electrons in
the subsystem. Interestingly, the critical area of the subsystem
exactly matches the elementary unit of the fractional quantum
Hall liquids. For example, the essential unit of the 1/3 Laugh-
lin state is the electron bound to a correlation hole correspond-
ing to “units of flux,” or three of the available single-particle
states that are exclusively occupied by the particle to which
they are attached. In general, the elementary unit of the FQH
liquid is a “composite boson” of p particles with q attached
quanta, which is an analog of a unit cell in a solid. This
conclusion is supported by our series of verifications, such as
the model wave functions for the Laughlin state at ν = 1/3
and 1/5 and the Moore-Read state [24] at ν = 5/2 and their
counterparts for Coulomb interaction.

The rest of the paper is organized as follows: In Sec. II,
the model and the edge reconstruction are reviewed. The ES
spectrum, its reconstruction, edge velocity, and subsystem
entanglement entropy for the 1/3 Laughlin state are studied in
Sec. III. The verifications for the realistic Coulomb interaction
and other FQH states are considered in Sec. IV, and Sec. V
gives the conclusions and discussions.

II. REVIEW OF THE MODEL AND EDGE
RECONSTRUCTION IN THE ENERGY SPECTRUM

We consider a semirealistic microscopic model for FQH
liquids in GaAl/GaAlAs heterostructure, which contains the
2DEGs layer located at the interface between GaAs and
GaAlAs, and a uniform distributed positive background at-
tributed to the dopants at a distance d in units of the magnetic
length lB = √

h̄c/eB. The background confinement competes
with the electron-electron interaction, which is the driving
force of the edge reconstruction. The density of the back-
ground charge is equal to the filling factor σ = ν, and its
overall charge cancels the charge of the electrons due to the
charge-neutrality condition. Therefore, the background poten-
tial is a single body potential in the FQH problem. Without
taking into account Landau level (LL) mixing and the spin
degree of freedom for simplicity (the ground state is supposed
to be spin-polarized), the Hamiltonian can be written as

H = 1

2

∑
{mi}

V1234c†
m1

c†
m2

cm4 cm3 +
∑

m

Umc†
mcm, (1)

where c†
m is the electron creation operator for the lowest Lan-

dau level (LLL) single-electron state φm = |m〉 with angular
momentum m. The matrix element of two-body interaction
and the background potential are

V1234 = 〈m1, m2|V (r1 − r2)|m3, m4〉 (2)

and

Um = eσ
∫

r2<R
d2r2〈m| 1√

d2 + | �r1 − �r2|2
|m〉. (3)

The advantage of this model is that, by tuning the pa-
rameters d , the FQH phases and their reconstructed edge
states emerge naturally as the global ground state of the
microscopic Hamiltonian without any explicit assumptions
[10–12], e.g., on the value of the ground-state angular mo-
mentum. Thus we can study the stability of the phases
and their competitions. Another advantage of the model is
that we can analyze the edge excitations of the semireal-
istic system and identify them in a one-to-one correspon-
dence with CLL edge theory or CFT [5,23]. For example,
the low-lying excitations of the ν = 1/3 Laughlin state can
be described by a branch of single-boson edge states in
CFT. Being edge excitations, such states can be indepen-
dently verified by calculating the tunneling spectral weights
and comparing them with the predictions of the CLL [11].
In addition to confirming the bulk topological order, we can
use the microscopic calculation to extract energetic quantities,
such as edge velocities, which are crucial for quantitative
comparisons with experiments. The distance d between the
2DEGs and the uniform background potential is the parameter
that tunes the relative strength between electron-electron re-
pulsion and the attraction from the positive background. When
d is small, the confinement is strong and electrons tend to
stay in the interior of the sample, however the confinement
becomes weaker while increasing d and thus the electrons,
especially the ones near the edge, can spread out. This is the
main mechanism of the edge reconstruction.

After projecting onto the LLL, the effective interaction of
a two-body interaction can be expanded by a set of Haldane’s
pseudopotentials {Vm} [25]. It is known that the Laughlin state
at ν = 1/3,

�3
L ({zi}) =

∏
i< j

(zi − z j )
3e− 1

4

∑
i |zi|2 , (4)

is the exact zero-energy eigenstate for the V1 model Hamil-
tonian. Another way of obtaining the model wave function
is to use the Jack polynomials. It is known [26–28] that the
FQH wave functions can be calculated recursively by Jack
polynomials with a negative parameter α and a root config-
uration. The root configuration satisfies (k, r) admissibility,
which means there can be at most k particles in r consecutive
orbitals. For example, the root for the 1/3 Laughlin state is
“1001001 · · · ” which has at most one electron in each of three
consecutive orbitals. For electrons with Coulomb interaction
at 1/3 filling, the edge reconstruction happens at d ∼ 1.5lB
[10,11], which is signaled by a sudden change of the total
angular momentum for the ground state as shown in Fig. 1.
Previous numerical studies [10–12] show that the spectrum
can be perfectly fitted by CLL theory for U(1) bosonic charge
mode excitation [11]. The dispersion relations of the edge
modes before and after reconstruction for systems containing
from 6 to 10 electrons are shown in Figs. 1(c) and 1(d).
The data for different systems are on one curve [12,29] and
the extra edge modes are introduced at δk �= 0, which leads
to the nonuniversality of the FQH edge in the tunneling
measurements.
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FIG. 1. The Coulomb energy spectrum for 10 electrons in 30
orbitals before (a) and after (b) edge reconstruction in disk geometry
while tuning the background potential parametrized by d . The total
angular momentum for the global ground state has an abrupt change
from the Laughlin-like state with Mtot = M0 = 3N (N − 1)/2 = 135
to Mtot = 143 at the critical value of dc ∼ 1.5lB. Here we plot the
spectrum with �E = E − E0 and �M = Mtot − M0 in which E0 is
the ground-state energy in M0 subspace. Parts (c) and (d) depict the
dispersion relations of the edge mode in (a) and (b) for different
system sizes.

III. EDGE RECONSTRUCTION IN THE REAL-SPACE ES

In this section, we move to the truncated space of the many-
body quantum ground state. To obtain a bipartite system, a
finite disk is divided into two parts as depicted in Fig. 2. A
natural way of splitting the system is the orbital cut since the
Hilbert space of the Hamiltonian in Eq. (1) is written in the
basis of the Landau orbitals. However, the orbital cut appears
as a fuzzy cut and not a sharp cut in real space. Several works
[17–19] have addressed the sharp real-space partition. In this
case, the electron operator can be written as

cm = αmAm + βmBm, (5)

where Am and Bm are the operators in the A and B subsystem,
respectively. α2

m (β2
m) is the electron distribution probability of

FIG. 2. The sketch map of a bipartite finite disk. The real space
cut at the radius RA conserves the rotational symmetry in perpendic-
ular direction.

the Landau wave function |m〉 in part A (B). In particular,

α2
m =

∫ RA

0

∫ 2π

0
|φm(r, θ )|2r dr dθ = 1 − �

(
1 + m,

R2
A

2

)
�(1 + m)

,

(6)

and α2
m + β2

m = 1, where �(n, x) is the incomplete gamma
function. The von Neumann entanglement entropy is defined
as SA = −Tr[ρA log ρA], where ρA = TrBρ is the reduced den-
sity matrix of the subsystem after tracing out the degrees
of freedom in part B. If ρA is finite-dimensional and has
eigenvalues λ1, . . . , λn, then SA = −∑

i λilogλi. An alterna-
tive way of deriving the entanglement entropy is to perform
a Schmidt decomposition of the many-body wave function
|�〉 = ∑

i e− 1
2 ξi |ψ i

A〉⊗ |ψ i
B〉 giving exp(− 1

2ξi ) = √
λi as the

singular values. Thus the entanglement entropy can be ex-
pressed as SA = ∑

i ξi exp(−ξi ). It is known [15] that the
full structure of the “entanglement spectrum” (ES), which
is the logarithmic Schmidt spectrum of level ξi, contains
much more information about the entanglement between
two halves than that from SA only. It plays a key role in
analyzing the topological order of the FQH state. The struc-
ture of the dominant terms in the Schmidt expansion is
analogous to the low-energy excitations of a many-body
Hamiltonian. Especially, for a model wave function such as
Eq. (4), the counting per momentum sector of the ES is
identical to the energy spectrum of the edge excitations, being
due to the bulk-edge correspondence. Beyond the counting,
one could ask whether the entanglement energies of the ES
mimic the dispersion of the edge excitation and also have
reconstruction. And if the edge reconstruction happens, what
does that tell us about the bulk of the FQH liquid?

We consider the Laughlin wave function for a finite number
of electrons on a disk, which can be obtained either from
diagonalizing a V1 model Hamiltonian or from the Jack poly-
nomials. Because the cut we chose conserves the rotational
symmetry, in analogy to the energy spectrum in Fig. 1, the
ES for a given number of electrons in subsystem NA and
the radius of the circular cut RA are shown in Fig. 3. Here
we consider a Laughlin state for 10 electrons, and the sub-
system contains half of the particles. Then the radius of the
subsystem RA is a parameter that we tuned. After subtract-
ing the ground-state quantum number for subsystem �M =
MA − 3NA(NA−1)

2 in the horizontal axis and its entanglement
energy �ξi = ξi − ξ0 in the vertical axis, as expected, the
counting number for each momentum subspace is identical
to that in the energy spectrum. In a finite system, we can
then define the edge velocity [12,23,30] through the excitation
energy �ξ (�M = 1) of the smallest momentum mode with
edge momentum k = �M/RA = 1/RA, i.e., vE = (RA/h̄)�ξ

(�M = 1), where RA = √
2NA/ν is the radius of the subsys-

tem. As indicated by the arrows in Fig. 3, the entanglement
edge velocity vE , which is proportional to the slope of the
arrows, is likely nonmonotonic as the radius RA increases.

If we plot vE as a function of RA for each subsystem
with fixed NA, as shown in Fig. 4(a) for the 10-electron
Laughlin state, there is a minimum for each subsystem labeled
by arrows. Interestingly, while vE takes the value of the
minimum, the ES seems to have an edge reconstruction. This
is shown in Fig. 3(b) for a subsystem with NA = 5 electrons.
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FIG. 3. The real-space ES for the 10-electron Laughlin state with
NA = 5 electrons in part A at different cuts. All the entanglement
energies and angular momentum are subtracted by that of the ground
state at M = 30. The edge reconstruction occurs near RA ∼ 5.5lB,
where the energy of the first excited state is almost the same as that
of the ground state. The lowest edge states are plotted in red.

When RA ∼ 5.5, which is the minimum point as shown in
Fig. 4(a), the lowest entanglement energy at �M = NA = 5 is
roughly the same as that for the Laughlin state at �M = 0. In
Fig. 4(b), we pick out the minima values vmin in Fig. 4(a) and
collect all the data from different systems ranging from 6 to
10 electrons. This shows us that the finite-size effect becomes
small for large systems and especially in small subsystems.
Therefore, in the thermodynamic limit, we believe that vmin

saturates to a fixed value for each subsystem. According to
the literature, another way of defining the edge velocity is
by averaging the entanglement energy per angular momentum
sector and extrapolating to the thermodynamic limit N → ∞.
It was shown that in this limit, the ES dispersion was compat-
ible with a rescaling of the ν = 1 edge mode velocity with a
factor 1/

√
3 [31].

In Fig. 5(a), we plot the average velocities in the thermody-
namic limit for several subsystems NA. Here the extrapolation
is done with data from 6 to 10 electrons. This is reminiscent
of Fig. 4(a), in which each subsystem still has a minimum
that is more or less the same as that from the lowest two
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FIG. 4. (a) The edge velocities for a given subsystem as a func-
tion of RA. The arrows and numbers label the minimum of the vE

for each subsystem. The number in the square brackets is NA in the
subsystem. (b) The minimum value of vE vs RA for systems ranging
from 6 to 10 electrons.
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FIG. 5. (a) The average edge velocities for each subsystem as a
function of RA. The number in the square brackets labels the NA. Each
data point is determined by the extrapolation from the wave functions
for 6–10 electrons. (b) Comparison of the edge velocities between
using the lowest two states and the average value in each momentum
sector. This shows that the results from both methods satisfy Eq. (7).

states in the ES. Similarly, the extrapolation can also be done
from Fig. 4(b) for each subsystem. In Fig. 5(b), we plot these
extrapolated critical edge velocities from the two methods. As
expected, they are very close to each other and can be fitted
very well by

Rmin
A =

√
2NA/ν. (7)

This is because in the ν = 1/3 Laughlin state, each electron
sits in a correlation hole with an area containing three flux
quanta. Thus for NA electrons, there should be 3NA flux quanta
to form a correlation hole, which corresponds to a circular area
with radius

√
6NA.

According to the above analysis, in the real-space ES, in
addition to the counting numbers per momentum subspace,
the quantities of the edge spectrum still have significant
physical meanings. For a fixed number of electrons, tuning
the radius RA, namely the area of the subsystem, can be the
engine of the edge reconstruction in the ES. The critical area
of the subsystem corresponds to the size of the correlation
hole for NA electrons. Now the nonmonotonic edge velocity
vE in Fig. 4 can be explained as follows: When RA = Rmin

A ,
the electrons in both subsystems are balanced because the
electron densities are equally distributed in the two regions.
In this case, the low-energy excitation near the edge (the cut
in the bipartition) should have the lowest energy cost. To gain
more insight into the correlation hole, in the following we will
try to obtain the critical radius of the subsystem from another
aspect.

Subsystem entanglement entropy

Since the ES and the reconstruction we discussed above
are restricted in a subsystem with a given NA, we are naturally
reminded that the subsystem entanglement entropy, which is
the summation of all the energy levels in the ES for a given NA,
may have similar critical behaviors near Rmin

A . The subsystem
entanglement entropy is defined as the entropy in a system
with a given NA,

SA,sub(NA, RA) =
∑

i

ξi,NA exp(−ξi,NA ). (8)
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SA,sub(NA, RA) as a function of RA is depicted in Fig. 6(a).
It shows that the subsystem entanglement entropy displays
a Gaussian-like distribution as a function of RA that has a
maximum point Rmax

A for each subsystem. Figure 6(b) presents
a comparison of these maxima and the edge velocity mini-
mum Rmin

A . It can be seen that the subsystem entanglement
entropy only has a nonzero contribution near the edge of the
correlation hole and is maximized exactly at the edge, or
the correlation hole only has correlation (or entanglement)
near its boundary. We remind the reader that the subsystem
entanglement entropy is a partial entanglement entropy that
cannot be used to apply the “area law” or extrapolate the
topological entanglement entropy. The entanglement entropy
should be the summation of SA,sub(NA, RA) for all subsystems
NA ∈ [0, Ne].

IV. COULOMB INTERACTION AND OTHER FQH STATES

A. Coulomb interaction

The analysis in the previous section is for the model wave
function. Here we double-check the validity of the conclu-
sions in the case of a realistic Coulomb interaction. We fix
the background confinement at d = 1.0lB and calculate the
real-space ES for each subsystem because the background
potential has insignificant effects on the wave function of a
gapped topological ground state. Recalling the model wave
function, the entanglement velocity for the Coulomb inter-
action still has a minimum while increasing the radius of
the circular cut RA as depicted in Fig. 7(a). In Fig. 7(b), we

FIG. 7. The entanglement edge velocities as a function of RA for
Coulomb interaction (a) and its minimum values compared with that
of the model wave function labeled by V1 (b). Again, both are fitted
very well by Eq. (7).

FIG. 8. By calculating the entanglement edge velocities and
locating its minimum, the scaling of Rmin

A for the 1/5 Laughlin
state (a) and the Moore-Read state (b) still satisfies Eq. (7). The
Moore-Read state has a strong even-odd effect in the edge velocity,
which demonstrates the pairing properties of this non-Abelian state.

compare these extreme points with those from the model wave
function via diagonalizing the V1 Hamiltonian. It is shown
that the Coulomb interaction is consistent with the model
Hamiltonian and again obeys the relation Rmin

A = √
2NA/ν.

B. Other FQH states

In the following, we consider the other two typical FQH
states, namely the Laughlin state at ν = 1/5 and the non-
Abelian Moore-Read state, which is the candidate wave func-
tion for the ν = 5/2 FQH state [24]

�5
L ({zi}) =

∏
i< j

(zi − z j )
5e− 1

4

∑
i |zi|2 , (9)

�MR({zi}) = Pf

(
1

zi − z j

)∏
i< j

(zi − z j )
2e− 1

4

∑
i |zi|2 . (10)

The 1/5 Laughlin wave function is the model wave function
for the two-body {V1,V3} model Hamiltonian, and the Moore-
Read Pfaffian wave function is the model wave function for
the three-body V3 model Hamiltonian. Of course, both of them
can also be obtained from the Jack polynomials. In Fig. 8, we
present the minimal edge velocity for different subsystems in
two FQH states. Recalling the 1/3 Laughlin state, the results
for the 1/5 Laughlin state scale very well with the relation
Rmin

A = √
10NA, which demonstrates that the correlation hole

of the 1/5 Laughlin state contains five flux quanta. The results
for the Moore-Read state are shown in Fig. 8(b). Interestingly,
from the macroscopic level, the equation Rmin

A = √
4NA is

satisfied, which means there are two flux quanta for each
correlation hole in the Pfaffian state. Especially, the data for
the even number of NA exactly match this relation. However,
the data for the subsystem with an odd number of electrons
have obvious deviations. This definitely shows us the pairing
mechanism of the Pfaffian state, i.e., the correlation hole of the
Moore-Read state should be four flux quanta occupied by two
electrons. This is the fundamental unit of the Pfaffian state,
which is labeled by “1100” in the root of the Jack polynomial.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we systematically studied the properties of
the real-space entanglement spectrum, especially the entan-
glement velocity in the case in which we treat the ES as
the edge excitation near the bipartite cut. On a finite disk,
similarly to the edge reconstruction of the energy spectrum
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while softening the background confinement, the ES for a
given subsystem with a fixed number of electrons NA can
also have edge reconstruction while increasing the area of
the subsystem. The ES edge reconstruction corresponds to
the minimum of the edge velocity. In the case of a circular
cut that conserves the rotational symmetry, the corresponding
radius of the subsystem satisfies the relation Rmin

A = √
2NA/ν,

which demonstrates the size of the fundamental correlation
hole in FQH states. Besides the 1/3 Laughlin wave function,
this conclusion is also supported by the realistic Coulomb
interaction and other FQH model wave functions, such as the
1/5 Laughlin state and the Moore-Read Pfaffian state. We thus
conclude that the ES can tell us not only the counting number
of the CFT edge states, but also much more about the physical
properties of the FQH liquids, such as the edge reconstruction
and the size of the fundamental correlation hole. Especially,
the strong even-odd effects of Rmin

A for the Moore-Read wave
function are consistent with the pairing property of the state.

Here we should note that our study of the real-space ES
is based on the circular cut in the bulk. This is because
we are studying the isotropic FQH states that conserve the
rotational symmetry in disk geometry. For the generalized

isotropic FQH states that do not conserve the rotational
symmetry [32], we believe the real-space cut should follow
the geometric shape of the Landau orbitals. Moreover, for a
general anisotropic FQH state that breaks both the rotational
and translational symmetries [33], in spite of the fact that
we cannot plot the ES in the momentum sector and explore
the edge reconstruction without rotational symmetry, it is
worthwhile to explore relation of the subsystem entanglement
entropy and the intrinsic metric in the correlation hole in
future work [34].
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