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We examine a basic lattice model of interacting fermions that exhibits quadratic band crossing points (QBCPs)
in the noninteracting limit. In particular, we consider spinless fermions on the honeycomb lattice with nearest-
neighbor hopping t and third-nearest-neighbor hopping t ′′, which exhibits fine-tuned QBCPs at the corners of
the Brillouin zone for t ′′ = t/2. In this situation, the density of states remains finite at the Fermi level of the
half-filled band and repulsive nearest-neighbor interactions V lead to a charge-density-wave (CDW) instability
at infinitesimally small V in the random-phase approximation or mean-field theory. We examine the fragility of
the QBCPs against dispersion renormalizations in the t-t ′′-V model using perturbation theory and find that the
t ′′ value needed for the QBCPs increases with V due to the hopping renormalization. However, the instability
toward CDW formation always requires a nonzero threshold interaction strength; i.e., one cannot fine-tune t ′′ to
recover the QBCPs in the interacting system. These perturbative arguments are supported by quantum Monte
Carlo simulations for which we carefully compare the corresponding threshold scales at and beyond the QBCP
fine-tuning point. From this analysis, we thus gain a quantitative microscopic understanding of the fragility of
the QBCPs in this basic interacting fermion system.
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I. INTRODUCTION

The vast majority of itinerant fermion systems such as
normal metals, or sufficiently doped semiconductors, exhibit
extended Fermi surfaces. Compared to the noninteracting
reference limit interactions may deform such Fermi surfaces,
yet drastic, qualitative, or topological changes in the Fermi
surface are rare and usually require strong interactions. The
situation is remarkably different for systems with small Fermi
surfaces, in particular for pointlike Fermi surfaces in two
dimensions. Unless protected by the point group symme-
tries of the lattice, even weak interactions can split up band
crossing points and lead to qualitatively different low-energy
behavior, even without the breaking of the underlying sym-
metries. For a QBCP to be stable without fine-tuning, the
system must be time-reversal invariant and the QBCP must
have C4 or C6 rotational symmetry [1]. QBCPs on threefold
symmetric lattices such the honeycomb and relatives are,
however, unprotected and prone to such topological Lifshitz
transitions. In the (particular) focus of current research are
QBCPs on various tailored two-dimensional systems, such
as single layer graphene [2], Bernal-stacked bilayer graphene
[3–5] and twisted bilayer graphene [6–8], or more generally as
a playground for unconventional ordering instabilities [9–12].
In fact, basic models for such systems exhibit quadratic
band crossing points (QBCPs) at high-symmetry points in
the Brillouin zone (BZ). The introduction of interactions may
split these into one central and three satellite Dirac points in
symmetric directions away from the original QBCP.
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It was recently found [13] that in contrast to the previous
assessment [14], the rapid loss of antiferromagnetic (AF) or-
der in the Bernal-stacked bilayer honeycomb Hubbard model
for weaker interaction strengths in quantum Monte Carlo
(QMC) simulations may be caused by the split of the QBCPs
from the noninteracting limit. A perturbative calculation of
the self-energy effects for the lattice model [15] as well as
a renormalization group study for the continuum model [16]
confirmed the mechanism for the interaction-driven dispersion
deformation. Yet, the lattice study [15] suggested a much
lower threshold interaction strength for the destruction of
the ordered ground state than the numerical observations by
QMC, due to rather weak self-energy effects in the bilayer
honeycomb Hubbard model.

The reason for the diminished self-energy effects that
change the dispersion is that, for the Hubbard model,
they only occur in second order in the on-site interaction
strength U . This leads to a low Lifshitz energy scale εL

for the dispersion renormalization, which is quadratic in the
relevant hopping renormalization and hence scales only ≈U 4.
In contrast to this, the AF ground-state order is an effect that
is driven by U already in first order and is hence numer-
ically dominant. The loss of AF order upon decreasing U
is roughly determined by the crossing between the Lifshitz
energy εL ∼ U 4 and the energy scale ∼e−1/(Uρ∗ ) of the AF
order (here, ρ∗ is an effective density of states) [15]. For an
interlayer hopping of the order of t , as used in Ref. [13],
this crossing resides at a small value of U � t , involving low
energy scales ≈10−6t . It thus will be hard to see this effect in
a numerical simulation on a finite lattice or to associate any
stronger observable feature with it.
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As we will show in the following, this situation improves
if we instead consider the single-layer honeycomb t-t ′′-V
model. This system exhibits QBCPs at both Dirac points, K
and K ′, of the BZ, when the hopping between third-nearest
neighbors t ′′ = t/2 takes half of the value of the nearest-
neighbor hopping t [2]. In this case, already the first-order
Fock self-energy causes a renormalization of the nearest-
neighbor hopping t → t + δt , with δt ≈ 0.2V . This effect
disturbs the fine-tuning of t ′′ = t/2 and destroys the orig-
inal QBCPs. Moreover, the energy scale below which the
density of states drops to zero linearly is found to scale as
εL/t ∼ [t ′′/(t + δt ) − 1/2]2, i.e., quadratic in V . Therefore,
it can be a numerically much larger scale. This positions the
onset of charge-density-wave (CDW) order due to the nearest-
neighbor interaction toward higher threshold values Vc.

The emerging relevant energy scales in this specific system
enable us, for the first time, to perform reliable QMC simu-
lations and to provide a consistent statement on the nature of
the fragility of unprotected QBCPs from perturbation theory
and numerical simulations. In the remainder of this paper, we
quantify this scenario using low-order perturbation theory and
also provide supportive numerical evidence from unbiased
QMC simulations.

In the following Sec. II, we introduce the spinless fermion
t-t ′′-V model on the honeycomb lattice and discuss the po-
tential charge-density-wave (CDW) instability at the random-
phase approximation (RPA) level in Sec. III, accounting for
the lowest-order self-energy corrections in Sec. IV and per-
form self-consistent first-order perturbation theory in Sec. V.
Section VI provides supporting evidence to the perturbative
arguments from quantum Monte Carlo calculations and ana-
lyzes finite-size effects in comparison with mean-field results.

II. THE t-t ′′-V MODEL AND ITS QBCPS

We consider spinless fermions on the honeycomb lattice,
with a hopping kinetic energy

H0 = −t
∑
〈i j〉

c†
i c j − t ′′ ∑

〈〈i j〉〉
(c†

i c j + H.c.), (1)

where t is the hopping amplitude between nearest-neighbor
sites on the lattice, which belong to the two different sub-
lattices A, B, and the hopping amplitudes t ′′ is between
third-nearest neighbors on the honeycomb lattice, which are
second-nearest neighbors within the same sublattice, straight
across the hexagons of the honeycomb lattice. We note that
the vanishing second-nearest-neighbor hopping t ′ = 0 ensures
the bipartite lattice structure and is protected by particle-hole
symmetry. With the Bravais lattice vectors a1 = (

√
3, 0) and

a2 = (
√

3/2, 3/2) translated into momentum space, these two
hopping terms give rise to the 2 × 2 matrix Hamilton

H0 =
∑

k

(
ak
bk

)†(
0 h(k)

h∗(k) 0

)(
ak
bk

)
, (2)

with h(k) = t h1(k) + t ′′ h2(k), where

h1(k) = 1 + 2 cos

(√
3

2
kx

)
ei 3

2 ky and (3)

h2(k) = ei3ky + 2 cos(
√

3kx ) . (4)

FIG. 1. Contour plots of lines of constant positive band energy
(top panels) near the Dirac point at K ≈ (2.42, 0) and the corre-
sponding DOS (bottom panels) for the noninteracting model, at
t ′′ = 0.4t (left panels) and t ′′ = 0.5t (right panels). In the left lower
panel, the DOS drops to zero linearly below ε ≈ 0.025t . It does not
reach zero because of the finite numerical resolution. The right lower
plot shows the DOS for the QBCP condition.

In this setup, with the lattice constant set to unity, the
Dirac points are located at K = (2π/3, 2π/

√
3)/

√
3 and

K ′ = (4π/3, 0)/
√

3. Expanded around these points for small
momenta p, both hopping form factors h1(k) and h2(k) grow
linearly ∝ ± px + I py. For t ′′ = t/2, these two contributions
cancel exactly. In this situation, the remaining quadratic terms
in px/y dominate near K and K ′, leading to QBCPs. The
corresponding dispersions and densities of states (DOS) at
low energies for t ′′ = 0.5t and t ′′ = 0.4t are shown in Fig. 1.
In this paper, we restrict our study to half-band filling; i.e., the
chemical potential is zero.

As an interaction, we consider the nearest-neighbor repul-
sion V

HV = V
∑
〈i j〉

c†
i c†

j c j ci = 1

N

∑
q

V (q) nA
q nB

−q , (5)

with sublattice resolved density operators nA/B
q . Here, N is the

number of unit cells and the form factor V (q) is

V (q) = V

[
1 + 2 cos

(√
3

2
qx

)
ei 3

2 qy

]
, (6)

with V (q) → 3V for q → 0 in the long-wavelength limit.
A detuning of t ′′ from the value of t ′′ = t/2 causes the

QBCPs to split up into four Dirac points. In the detuned case
(Fig. 1, right panels), the dispersion is found to go through
a maximum between the central Dirac point and each of
the outer ones at an energy εL ∼ c(t ′′/t − 1/2)2, where the
prefactor c ≈ 2t . This is also the energy scale at which a
peak resides in the density of states, and below which the
dispersion becomes linear and the DOS therefore decreases
linearly to zero.
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III. CDW INSTABILITY

The nearest-neighbor repulsion V eventually induces CDW
order in the half-filled system. We first consider the suscepti-
bility of the free case toward CDW order. For this purpose, we
calculate the 2 × 2 bare susceptibility matrix χ (q, ν) for the
different sublattice combinations with o, o′ ∈ {A, B},

χ
(0)
oo′ (q, ν) =

∫ β

0
dτ eIντ

〈
no

q(τ ) no′
−q(0)

〉
. (7)

In the random phase approximation (RPA) for the interaction
introduced in Eq. (6), the interacting susceptibility becomes

χ (q, ν) = χ (0)(q, ν)[1 − V (q)χ (0)(q, ν)]−1 , (8)

with the interaction matrix

V (q) =
(

0 V (q)
V ∗(q) 0

)
. (9)

The CDW order occurs at q = 0 and ν = 0. For systems with
the free Hamiltonian as in Eq. (2), one can show that

χ
(0)
AB (0, 0) = χ

(0)
BA (0, 0) = −χ

(0)
AA (0, 0) = −χ

(0)
BB (0, 0) . (10)

Then the inverse of the matrix D = [1 − V (q) χ (0)(q, ν)] in
Eq. (8) becomes singular when the Stoner criterion

1

V
= 6 χ

(0)
AB (0, 0) (11)

is satisfied. The eigenvalue of D that approaches zero for
V → Vc belongs to an eigenvector that changes sign be-
tween the two sublattices. This clearly identifies the CDW
as the emerging ordering tendency, since the susceptibility
with respect to a staggered density field becomes singular.
The factor of 6 in Eq. (11) is a consequence of the two
sublattices (providing a factor of 3) and the interaction in
Eq. (6) for q → 0 (providing the other factor of 2). At t ′′ = 0,
the susceptibility approaches χ

(0)
AB (0, 0) ≈ 0.226/t , which re-

sults in the RPA threshold value Vc,0 ≈ 0.74t for the CDW
ordering transition. In comparison, for the spinfull Hubbard
model, with an on-site interaction U and thus without a factor
of 3 from the nearest neighbors, the threshold interaction
strength in RPA for the AF order is Uc ≈ 2.21t , in accordance
with earlier literature [17]. In fact, the above RPA results
for the critical interaction strength agree exactly with the
results from Hartree-Fock mean-field theory for the onset of
the corresponding ordering. Quantum corrections that extend
beyond mean-field theory (i.e., channel coupling, dispersion
renormalization, and quasiparticle degradation) increase these
threshold values, to Vc ≈ 1.36t for CDW order in the spinless
fermion t-V model [18–20] and to Uc ≈ 3.8t for the AF
transition in the Hubbard model [17,21], as reported from
QMC simulations.

The susceptibility χ
(0)
AB (0, 0) can be computed numerically

for all values of t ′′. For the QBCP condition at t ′′ = t/2, it
diverges logarithmically at low T , due to the perfect nesting
(for q = 0) and the finite density of states. Data for different
temperatures T are shown in Fig. 2(a). One can clearly
observe a sharpening peak at t ′′ = t/2, but one also sees
that rather low values of T are needed in order to resolve
the singularity of the bubble. Figure 2(b) shows the critical
interaction strength Vc as computed from the Stoner criterion

FIG. 2. (a) Static noninteracting CDW susceptibility as a func-
tion of t ′′ for different temperatures. (b) The corresponding results
for the threshold value Vc, according to the Stoner criterion.

in Eq. (11). At low T and for t ′′ → t/2, the threshold value
Vc dives toward zero to eventually become infinitesimally
small for perfect fine-tuning toward the QBCP condition at
t ′′ = t/2.

IV. FOCK SELF-ENERGY

The lowest-order self-energy of the spinless fermion model
is given by the Fock diagram. For general interactions of the
form in Eq. (5), it is frequency independent and reads


oo′ (k) = −T

N

∑
k′,iω′

Voo′ (k − k′) Goo′ (k′, iω′) . (12)

The Matsubara sum can be performed analytically, and since
the interaction is only between different sublattices, we only
need to evaluate


AB(k) = − 1

N

∑
k′,�

V (k′ − k) uA�(k′) uB�(k′) nF [ε�(k′)],

(13)

where the sum extends over the two bands � = 1, 2. The
numerical evaluation of this expression gives a k dependence
that almost perfectly follows the form factor h1(k) of the
nearest-neighbor hopping in Eq. (3) for all t ′′, as shown in
Fig. 3(a). This is not surprising, as the self-energy expressed
in real space merely collects the Green’s functions to nearest
neighbors, multiplied by the value of the corresponding in-
teraction strength. Hence, we can straightforwardly read off
a nearest-neighbor hopping renormalization t → t + δt . We
note that in accord with the particle-hole symmetry of H0, no
second-nearest-neighbor hopping contribution is generated in
our perturbation calculation.

The sign of the correction δt is such as to enhance the
bare hopping amplitude; i.e., the Dirac cones become more
acute angled as one accounts for self-energy corrections. The
same trend is, of course, well known from the long-ranged
Coulomb interaction where the renormalization of the velocity
vk becomes very strong near the Dirac point [22,23]. Here,
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FIG. 3. (a) Real and imaginary part of the (non-self-consistent)
momentum-dependent Fock self-energy along the edge of the ir-
reducible Brillouin zone for V = t . The underlying lines show the
real and imaginary parts of the nearest-neighbor hopping form factor
h1(k) in Eq. (3). (b) Hopping renormalization δt from the first-order
self-energy contribution for V = t , calculated using different values
of T .

with short-range interactions, we obtain a global finite renor-
malization of t .

In Fig. 3(b), we show δt as a function of t ′′ for an inter-
action strength of V = t (due to the first-order nature of this
correction, δt just scales linearly with V ). The effect is most
pronounced at t ′′ = 0, and the corresponding increase of the
velocity by about 26% compares remarkably well to the Fermi
velocity renormalization reported in Ref. [24] in the low-V
region of the t-V model from QMC simulations. There is a
reduction of δt in Fig. 3(b) for the larger values of t ′′, but quite
roughly, we find δt ∼ 0.2V for all relevant parameters. In
Ref. [24], the velocity renormalization for the t-V model was
found to increase to about 35% near the critical interaction
strength Vc, and thus the above-first-order result should be
considered a lower bound for the hopping renormalization.

Note that a similar velocity increase δv > 0 is found
from the second- and higher-order self-energy in the spinful
Hubbard model on the honeycomb lattice, where the first-
order correction to the hopping is zero (cf. Ref. [15]). In
this case, the renormalized velocity is not necessarily in-
creased. Because of the higher-order nature of the hopping
renormalization in the spinful Hubbard case, the quasiparticle
renormalization expressed by a Z factor � 1 becomes of the
same order and the renormalized velocity Z (vk + δv) may
actually come out smaller than the bare value vk .

V. SELF-CONSISTENT FIRST-ORDER
PERTURBATION THEORY

The next step is to perform self-consistent first-order per-
turbation theory. At t ′′ = 0, one finds from Eq. (13), using
the fact that the matrix elements uA� and uB� at t ′′ = 0 are
the same for any t �= 0, that the self-energy is independent
of δt . Hence, the first-order result is already self-consistent
in this case. For t ′′ �= 0, we obtain self-consistency either by
iteration or by computing the output δt from the self-energy
as a function of an input δt inserted into the Hamiltonian
and requiring equality between the input δt and the output
δt . The results are not far away from and slightly larger than
the bare (non-self-consistent) values. In all cases studied for

FIG. 4. (a) Comparison of the bare (Vc,0) and hopping-
renormalized (using self-consistent first-order perturbation theory,
Vc,1st) critical interaction strengths as functions of t ′′, for T = 10−5t .
Also indicated by the dashed line is the position of the QBCP con-
dition (VQBCP) within self-consistent first-order perturbation theory.
The panel (b) focuses on the region near t ′′ = 0.5t .

0 � t ′′ � 0.6t , δt was found to be positive; i.e., the Dirac cone
steepness is enhanced by the self-energy.

The self-energy-related shift δt disturbs the fine-tuning
that is needed to obtain the QBCPs. Without self-energy
corrections, the QBCPs were found for t ′′ = t/2. However,
interactions renormalize t to t + δt (V ). The QBCP is then
shifted to occur for t ′′

QBCP(V ) = [t + δt (V )]/2, i.e., at values
of t ′′ > t/2. In Fig. 4, we plot a line VQBCP as a function of
t ′′, which is defined as the interaction strength required to
obtain a QBCP in the renormalized bands for a given value
of t ′′. We find that VQBCP rises approximately linear from
the noninteracting (V = 0) QBCP case, t ′′ = t/2, in quan-
titative agreement with the mentioned self-energy strength
δt ≈ 0.2V . Hence, for any weak, nonzero interaction V , the
renormalized band structure maintains two QBCPs at K and
K ′, but located at somewhat higher and V -dependent values of
t ′′ > t/2.

This leads to the interesting question whether, as QBCPs
are found for any V in this regime, there is still a CDW insta-
bility at infinitesimally small V . The data in Fig. 4 for rather
low T = 10−6t suggest that this is not the case. Here, we com-
pute the CDW susceptibility χAB(0, 0) using the renormalized
dispersion and determine the threshold interaction strength Vc

from the Stoner criterion V −1
c = 6χAB(0, 0). Compared to the

curve for the critical Vc,0 based on χ
(0)
AB (0, 0), i.e., without self-

energy corrections, the curve for the first-order δt-corrected
Vc,1st is shifted to larger values of t ′′. This in accordance with
the arguments above that the QBCPs shifts to larger t ′′ when
the hopping correction δt is taken into account. Of course, one
could ask if the dip in Vc,1st at t ′′ ≈ 0.51t would actually go to
V = 0 for even lower T → 0. However, this cannot happen,
since for V → 0 there is no quadratic dispersion at t ′′ �= t/2,
and the logarithmic divergence of the CDW susceptibility is
thus cut off.

Note that for most of the range t ′′ > t/2, the value for
Vc,1st lies below VQBCP. Only very close to the minimal value
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FIG. 5. (a) The static CDW susceptibility as a function of the
detuning 
 = t ′′/t − 1/2. Also indicated is a fit of the low-T data
to a logarithmic dependence. (b) The critical interaction values Vc

according to the generalized Stoner criterium for different, fixed
values of b.

is a slightly larger interaction than VQBCP required; i.e., the
situation with a DOS at the Fermi level is still stable. This nu-
merical finding is most likely due to the nonzero temperature
used in the computation of the susceptibility.

The situation can be examined analytically based on a
generalized Stoner criterion, which takes into account the
interaction-generated δt . The main ingredient for this analysis
is the CDW susceptibility and how it depends on the detuning

 = t ′′/t − 1/2 from the QBCP situation. The self-energy
effect can then be included by t → t + δt . As shown in the left
part of Fig. 5, at low temperatures the susceptibility χAB(0, 0)
depends logarithmically on the detuning,

χAB(0, 0) ≈ −0.2 ln

∣∣∣∣0.625

(
t ′′

t
− 1

2

)∣∣∣∣ . (14)

This qualitative behavior is obvious, as the density of states
starts to vanish linearly below the Lifshitz energy scale
εL ∼ (t ′′/t − 1

2 )2, which acts as a cutoff in the logarithm. The
energies with a linear DOS below this scale provide a finite
contribution to the susceptibility. With the hopping renor-
malization δt = bV in first-order perturbation theory (where
b ≈ 0.2) and replacing t → t + δt in Eq. (14), we arrive at
the generalized (renormalized) Stoner criterion for the CDW
instability,

1

V
= −0.2 ln

∣∣∣∣0.625

(
t ′′

t + bV
− 1

2

)∣∣∣∣ . (15)

The qualitative behavior of Eq. (15) can be found by consid-
ering a plot of the left- and the right-hand side as functions of
V for a given value of t ′′. For large values of V , the left-hand
side vanishes, while the right-hand side approaches a nonzero
constant provided that b > 0, which we indeed found above.
Therefore, the right-hand side resides above the left-hand side
for large values of V . Let us now consider the behavior of
both sides of Eq. (15) upon lowering V . The logarithm on
the right-hand side rises more slowly than any negative power
for small arguments and hence than 1/V . Thus, eventually,

upon decreasing V → 0, the steeply rising left-hand side cuts
through from below. Its crossing point with the right-hand side
defines the critical interaction strength Vc for the considered
value of t ′′. As becomes clear from this argument, for any
b > 0, Vc is always nonzero. It is smaller for t ′′ > t/2, since
then the logarithm on the right-hand side can still diverge and
the crossing point is reached only at smaller values of V . For
t ′′ < t/2, on the other hand, the logarithm remains finite, and
the crossing point is located at a larger value of V . A crossing
point at V → 0 requires the argument of the logarithm to go
to zero exponentially in V . This is not the case in any finite
order of perturbation theory for δt . Even upon approaching the
CDW instability, the infinite-order effective interaction only
diverges like a power law. In principle, for b = 0 there would
still be an isolated solution of Eq. (15) at exactly V = 0, but
this is physically irrelevant for any interacting system. Hence,
for any V > 0 and t ′′ in the model considered, we can rule out
a CDW instability at infinitesimally small interaction strength.

The numerical solution of Eq. (15) is shown in Fig. 5(b),
considering three different, fixed values of b. This plot
confirms the qualitative arguments given above: The curve
for b = 0, i.e., without self-energy corrections, approaches
Vc = 0 at t ′′ = t/2, while all curves with a finite value of
b > 0 exhibit a nonzero minimal interaction strength for the
instability to occur according to Eq. (15).

VI. QMC ANALYSIS

We finally turn to a QMC analysis of the spinless fermion
t-t ′′-V model, for which we focus in particular on the identi-
fication of the critical interaction strength Vc for the onset of
CDW order upon varying the hopping parameter t ′′. For this
purpose, we use a projective QMC approach in continuous
time [24,25] to perform sign-problem-free simulations of the
half-filled system on finite honeycomb lattices with N = 2L2

lattice sites and periodic boundary conditions, with linear
system sizes up to L = 21. We measure the CDW structure
factor

SCDW(q) = 1

N

〈
N∑

i, j=1

εiε j

(
ni − 1

2

)(
n j − 1

2

)
eiq·(ri−r j )

〉
,

where ni denotes the local density operator on lattice site i, ri

the spatial position of the unit cell center to which the lattice
site i belongs, and εi = ±1, depending on which sublattice (A
or B) the site i belongs to. In the thermodynamic limit, the
transition to a CDW ordered state is signaled by a diverging
peak in the structure factor at q = 0. In addition, we can
exclude the existence of an extended phase with dominant
quantum anomalous Hall correlations [1] from tracking the
opening of the single-particle excitation gap, which we find to
coincide with the onset of CDW order (not shown). To extract
the threshold value Vc using a finite-size analysis of the QMC
data, we follow Ref. [13] and analyze consecutive crossing
points in the correlation ratio

RCDW = 1 − SCDW(qmin)

SCDW(0)
, (16)

where qmin, with |qmin| ∝ 1/L, denotes the minimum nonzero
lattice momentum next the CDW ordering momentum q = 0.
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FIG. 6. QMC results for the correlation ratio RCDW as a function
of V for different systems sizes at t ′′/t = 1/2. Error bars are smaller
than the symbol size.

For the noninteracting QBCP case of t ′′/t = 1/2, a plot of the
QMC results for RCDW as a function of V is shown in Fig. 6.
The values of the crossing points in RCDW for the considered
consecutive system sizes and several values of t ′′/t are shown
in Fig. 7. For sufficiently large system sizes, the crossing
points eventually converge to the threshold value Vc. Such
a convergence is indeed seen in Fig. 7 for t ′′/t = 0.35, for
which the available system sizes extend beyond the relevant
length scale. For most other values of t ′′/t , the crossing
points exhibit a monotonous finite-size behavior, allowing for
a linear extrapolation of the low-1/L behavior to obtain a
lower bound on the value of Vc. The data at t ′′/t = 0.4 exhibit
more peculiar finite-size effects, so that in this case we restrict
the extrapolation to the thermodynamic limit to the largest
two system sizes. Along with the estimate for Vc from the
crossing point in RCDW for the largest simulated systems, we

FIG. 7. QMC results for the crossing points in the correlation
ratio RCDW of consecutive system sizes L and L + 3 for various
values of t ′′/t . Dashed lines indicate linear extrapolations in the
low-1/L regime to extract the thermodynamic limit value of the
CDW threshold interaction Vc.

FIG. 8. Result for the phase diagram of the t-t ′′-V model from
QMC simulations in terms of the extrapolated CDW threshold inter-
action Vc as a function of t ′′. The lower tick of the uncertainty region
(error bar) results from the linear extrapolation, while the upper tick
indicates the estimate for Vc from the crossing point in RCDW for the
largest simulated systems.

then obtain a conservative error bar for the threshold value of
the interaction.

Based on the QMC data, we then obtain the corresponding
phase diagram in Fig. 8, which summarizes our QMC results
for Vc as a function of t ′′. For the case t ′′ = 0, our estimate
for Vc agrees well with the previously cited result Vc/t ≈ 1.36
from previous QMC studies [18,20]. Note that this value is
about a factor of 2 larger than the RPA estimate. The self-
consistent perturbation theory also still underestimates the
actual value of Vc by a factor of about 1.5. For finite values
of t ′′ > 0, the CDW threshold value Vc is seen to reduce
initially. In accordance with the first-order self-consistent per-
turbation theory, we also extract from the QMC simulations
a finite critical value at the noninteracting QBCP condition of
t ′′/t = 1/2. Compared to the first-order self-consistent pertur-
bation theory, the QMC estimate for Vc ≈ 0.27t is larger by a
factor of about 2, which is not unexpected in view of a similar
underestimation of Vc by the perturbative approach for t ′′ = 0.
This provides the first evidence from QMC simulations of a
finite interaction transition of a system with QBCPs in the
free limit, at an energy scale that agrees with estimates from
low-order self-consistent perturbation theory.

However, Fig. 8 also exhibits a qualitative difference with
respect to the first-order self-consistent perturbation theory
result: The dip in the t ′′ dependence of Vc in Fig. 8 is located to
the left of t ′′/t = 1/2, at approximately t ′′/t ≈ 0.4. In pertur-
bation theory, the renormalization of the hopping parameter t
in Fig. 4 was instead found to lead to a shift of the dip in Vc to
the right of t ′′/t = 1/2. We trace this difference to restrictions
in the available system sizes for the QMC simulations, which
limit the ability to resolve the details of the fermion dispersion
relation around the split-up QBCPs on the accessible lattice
sizes.

We can demonstrate such a finite-size effect more ex-
plicitly within the Hartree-Fock mean-field approach for
the CDW instability on finite systems, which allows us
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FIG. 9. The CDW order parameter mCDW as a function of in the
interaction V within finite-size Hartree-Fock mean-field theory for
(a) different values of detuning t ′′/t and (b) different linear system
sizes L in the vicinity of the dip of Vc in Fig. 8 at t ′′/t = 0.34, which
exhibits significant nonmonotonous finite-size behavior.

to monitor the finite-size effects over a much wider range
of system sizes than accessible to the QMC approach: In
Fig. 9(a), we show the normalized CDW order parameter
mCDW = 〈∑i εi(ni − 1

2 )〉/N as a function of the interaction for
different values of detuning t ′′/t and a large linear system size
L = 480 for which finite size effects are small. The onset of
order traces the behavior of Vc in Fig. 2(b). At t ′′/t = 1/2 (red,
dotted line) the behavior of the order parameter qualitatively
changes with respect to other values of t ′′/t . The exponential
behavior reflects the instability at the perfectly fine-tuned
QBCP.

In contrast to the results in the previous sections, where
optimized momentum resolution has been employed, here
we rely on the momenta available on finite-size lattices.
Figure 9(b) illustrates the effects of this reduced momentum
resolution at t ′′/t = 0.34 (red, dashed line), i.e., in the vicinity
of the dip of Vc in Fig. 8, for the mean-field results. The
finite-size behavior is distinctively nonmonotonous for small
system sizes and we anticipate that this also affects the QMC
calculations, since the main issue is to resolve the subtle fine
structure of the dispersion relation in the close vicinity of the
QBCPs split.

It is also instructive to examine the evolution of the non-
interacting dispersion with t ′′ in terms of the positions of the
Dirac cones. This is shown in Fig. 10, which exhibits that the
QBCPs, which carry Berry flux ±2π , are split into four Dirac
cones with Berry flux ±π each. While one Dirac cone remains
at the K (K ′) point, the three satellite cones move toward the
adjacent M points upon reducing t ′′/t , where they eventually
annihilate with their counterparts carrying the opposite Berry
flux at t ′′/t = 1/3. This leads to a semi-Dirac dispersion at the
M points with zero flux. The annihilation coincides with the
kink of Vc(t ′′) visible in Figs. 2(b), 4, and 9(a). The grid lines
in Fig. 10(b) indicate the momentum resolution of an L = 18
lattice and show that the simulations should be able to resolve
the Lifshitz energy scale, albeit very sparsely, which can lead
to the observed finite-size effects and fairly large error bars in
Fig. 8. Let us note that while the momentum resolution in the
QMC simulations is limited, they do encode the topological

FIG. 10. The evolution of the noninteracting dispersion as a
function of t ′′/t shows that the QBCPs are split into four Dirac cones.
Arrows indicate the shift of the satellite cones upon decreasing t ′′/t .
While one Dirac cone remains at the K (K ′) point, the satellite cones
move toward the M point where they eventually annihilate with their
counterpart carrying the opposite Berry flux. The size and the color
of the circles encode the Berry phase, as indicated in the second panel
(from the top) and the bottom panel.

structure, i.e., the ±2π Berry flux of the QBCPs in the free
single-particle Green’s function, independent of the lattice
size.

We finally note that a similar shift of the Vc dip away from
t ′′/t = 1/2 toward t ′′/t ≈ 0.4 can also result from considering
finite temperatures. As shown in Fig. 2(b), in this case, thermal
broadening leads to the reduced resolution, i.e., an effective
smearing of the details of the dispersion.

VII. CONCLUSIONS

We have investigated the t-t ′′-V as a minimal lattice model
with QBCPs, where the interaction introduces first-order Fock
self-energy effects that cause a renormalization of the nearest-
neighbor hopping. At weak coupling, this renormalization
induces a Lifshitz transition which splits the QBCPs into
multiple Dirac cones. The destruction of the QBCPs cannot
be compensated for by fine-tuning of the hopping in order
to recover the quadratic band touching in an interacting sys-
tem. Self-consistent first-order perturbation theory yields an
emerging Lifshitz energy scale that is sufficiently large to be
properly accounted for in QMC simulations. While subject
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to finite-size effects due to the limited momentum resolution
available, this allowed us to identify the critical values for the
onset of CDW order from QMC simulations at scales compa-
rable to perturbation theory estimates. The finite-size effects,
which can be qualitatively reproduced already at the mean-
field level, might be overcome by approaches that optimize
the momentum resolution of the low-energy spectrum [26,27].
This could be assessed in future investigations.
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