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The point of zero gradient of the electronic band structure, the critical point, generally induces the singularity
in the density of states (DOS), but no isolated critical point yields strict divergence of the DOS in three
dimensions, differently from the lower-dimensional cases. In view of the band structure as a smooth hypersurface
on the reciprocal space, we discuss the minimal deformation of the band structure that yields nondivergent but
large sharp DOS peaks in three dimensions. By “pushing down” the energy level at the second-order saddle point
(maximum), a continuous closed loop of saddle points (sphere of maxima) encircling the original position of the
saddle point (maximum) emerges, with which the DOS peak is formed. Being high-dimensional features, the
saddle loop and extremum shell thus formed are difficult to locate with standard band structure analysis on linear
k-point paths. The Lifshitz transition occurring over a linear or planar manifold is discussed as an indicator of
such features. We also find that the celebrated DOS peak in the recently discovered superconducting hydride
H3S originates from the saddle loop. On this basis, we successfully extract the minimal model that explains
how the DOS peak is formed. Our theory characterizes a large class of DOS peaks sometimes found in the
three-dimensional electronic structures, building a basis for profound understanding of their origins.
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I. INTRODUCTION

The diversity of the electronic property of condensed mat-
ter wholly originates from the ionic configuration. One of its
most striking consequences is anomalous concentration of the
electronic one-particle states characterized by the peaks in the
spectrum of the density of states (DOS) D(E ). The concen-
tration of the DOS near the Fermi level indicates that many
electrons contribute to the low-energy phenomena, as well as
implies that effects of the electron-electron and electron-ion
interactions become significant.

How to make the DOS concentrate in tiny energy ranges
has therefore been of continuous interest in the field of the
band theory. An extreme example is the flat band [1–8], where
the electronic one-particle energy eigenvalues ε(k) with k be-
ing the Bloch wave number is constant in the entire Brillouin
zone. Theoretically, the flat bands emerge from tight-binding
models with specially designed features such as decoration
of the unit cell and carefully tuned model hopping parameters
between the orbitals. A recent interesting realization of almost
flat band is seen in the twisted bilayer graphene [9–11]. Band
structures with flat dispersions within partial regions of the
k space and the resulting divergence (or peak) in D(E ) are
often reported; we list a few which have been understood as
a consequence of the special configurations of the hopping
parameters [12–14].

A theory from a contrasted viewpoint, where we only
assume differentiability of ε(k) in the k space, has been
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established by Van Hove [15]. He has pointed out that the
critical points defined by |∇ε(k)| = 0 always yield singular
points in the DOS (Van Hove singularity; VHS) and the
minimum number of critical points is nonzero due to the
topology of the k space. Remarkably, in the one- and two-
dimensional cases, divergent singularities in D(E ) related to
the isolated critical points always emerge. The saddle point
in (quasi-)two-dimensional systems has therefore been of
recurrent interest in different contexts; in cuprates [16,17],
topological surface states [18,19], and the monolayer and
multilayer graphene [20–24], etc. However, such divergence
is not generally assured to be present in the three-dimensional
case. The isolated critical point with the quadratic k depen-
dence induces the divergence of the derivative of the DOS,
but not of the DOS value. The peaks in the DOS are never-
theless observable in various three-dimensional systems with
the model and first-principle electronic structure calculations,
even if dimensional reduction is not apparent from the crystal
structure of the systems. This fact motivates us to seek for
commonplace deformations to ε(k) that can yield divergent
DOS singularities in three dimensions.

In this paper, we characterize a general but unrecognized
mechanism of forming divergent singularities in D(E ) in three
dimensions. Energetically degenerate continuous extension of
the critical points generally enhances the degree of singularity
by reducing the effective dimension [17]. We point out that,
by “pushing” the isolated critical point on the hypersurface
ε(k), nearly degenerate loop or shell structure of new critical
points are formed around it, giving rise to the DOS peaks.
We discuss the archetype of this mechanism and how it
appears in reality with a simple model. Also, we show that our
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theory successfully describes how the DOS peak forms in the
recently discovered pressure-induced high-Tc superconductor
H3S [25], which boosts its Tc up to 200 K by incorporating a
large number of electrons into the pair condensation.

II. THEORY

A. Critical points and the Van Hove singularities

Let us first start from the review on the relation between the
critical points and VHSs in the electronic DOS. The critical
point is defined as the points k which satisfy |∇ε(k)| = 0. The
band dispersion near the critical point is therefore generally
approximated to the following bilinear form:
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where (k1, k2, k3)T ≡ M3D(kx, ky, kz )T [(k1, k2)T ≡
M2D(kx, ky)T ] with M3D (M2D) being an orthogonal matrix.
The structure in the DOS corresponding to the VHS is
classified by the relations between the values of the effective
mass mi. Let us define the types of the critical points for the
three-dimensional case as

A3D : m1 > 0, m2 > 0, m3 > 0, (4)

B3D : m1 > 0, m2 > 0, m3 < 0, (5)

B′
3D : m1 > 0, m2 < 0, m3 < 0, (6)

A′
3D : m1 < 0, m2 < 0, m3 < 0, (7)

for the two-dimensional case as

A2D : m1 > 0, m2 > 0, (8)

B2D : m1 > 0, m2 < 0, (9)

A′
2D : m1 < 0, m2 < 0, (10)

and for the one-dimensional case as

A1D : m1 > 0, (11)

A′
1D : m1 < 0. (12)

Figure 1 represents the typical behavior of the DOS near
the VHS related to the critical points in the respective dimen-
sions [26]. In the three-dimensional case, the critical points
are classified into two: (i) all the effective mass have the
same sign (extremum; A3D, A′

3D), or (ii) either of the three
has the different sign (saddle point; B3D, B′

3D). Near the VHSs
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FIG. 1. Asymptotic forms of the DOS near the VHSs for
(a) three, (b) two, and (c) one dimensions. A(A′) and B(B′) represent
the VHSs corresponding to the extrema and saddle points, respec-
tively. See the main text for more specific definitions of the VHSs.

related to those critical points (commonly represented by
EVHS below), the DOS behaves as

D(E ) ∝ √
E − EVHS (A3D), (13)

D(E ) ∝
{−√

EVHS − E + const (E < EVHS)

const (E > EVHS)
(B3D). (14)

The classification for the two-dimensional case is as follows:
(i) all the effective masses have the same sign (extremum;
A2D, A′

2D), or (ii) the signs of the values of the effective mass
are different (saddle point; B2D):

D(E ) ∝ θ (E − EVHS) (A2D), (15)

D(E ) ∝ log
1

|EVHS − E | (B2D), (16)

where θ denotes the theta function θ (x) = 0 (x < 0); 1(x >

0). In the one-dimensional case, the one effective mass is
either positive (A1D) or negative (A′

1D):

D(E ) ∝ 1√
E − EVHS

(A1D). (17)

The dependencies related to A′
3D, B′

3D, A′
2D, and A′

1D are
inverse of those without primes, respectively. In later discus-
sions we often focus only on the critical points with (without)
prime, as parallel arguments are obviously applicable to those
without (with) prime by the energy inversion.

The above discussion clarifies that, for possible divergence
of DOS in three dimensions, it is necessary that the bilinear
expansion should be broken down at certain band critical
points. In other words, the rank of the coefficient matrix in
Eq. (1) must be lower than 3 (Ref. [24]). This means that
the expansion series in certain coordinates begins with the
higher-order terms, or, as a limiting case, the critical point
extends over a continuous one or higher-dimensional region
in the k space. For simplicity, we ignore the higher-order
terms and concentrate on the latter possibility in this paper;
the band dispersion is either parabolic or flat. From this view,
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by taking the limits where any of the effective masses become
infinity, the form of the DOS around the VHS converges to
any low-dimensional counterpart. For example, for the B3D

case, in the limit m2 → ∞ the DOS form converges to that
of B2D, whereas the limit m3 → ∞ corresponds to A2D. These
correspondences reflects that the effective dimension of the
band structure is reduced due to the extension of the critical
point. The higher-order components of ε(k) can make subtle
changes to the degree of singularity, though we ignore them.
What we do in this work is consider a simple modification
of general three-dimensional band structures which yields
the extended critical points for possible utilization of the
diverging nature of D(E ) in lower dimensions.

B. Saddle loop and extremum shell

In this section, we characterize a general mechanism for
emergence of the peak in the DOS in a three-dimensional
system. Let us consider a saddle point P of class B′

3D for
example [Fig. 2(a), left], where in the k1 and k2 directions
the band dispersion is concave (m1 = m2 < 0). We assume
that the dispersion is kept parabolic in the k3 direction with
positive-definite effective mass around P in the equal-k3 plane
(m3 > 0) in the later discussion in this paragraph. In this case,
the resulting DOS exhibit the shoulderlike VHS [Fig. 2(b)]
corresponding to the critical point B′

3D in Fig. 1. Suppose
any perturbation is exerted on the system, which significantly
reduces the energy eigenvalues in the close vicinity of P
(push the P point). With sufficiently large amount of the
perturbation, P turns into the energy minimum and calderalike
structure emerges. If the change of the energy eigenvalues
is ideally circular symmetric with respect to the k1-k2 plane,
a closed loop of the saddle points, or saddle loop, appears
as depicted in Fig. 2(c). At all the points on this line, the
band dispersion is concave in the direction perpendicular to
the line, flat along the line, and convex in the k3 direction
as assumed above. As a result, a divergent singularity of the
DOS corresponding to the case B2D is formed [Fig. 2(d)].
Interestingly, the original saddle point P is then modified
into the local minimum A3D and it does not appear in the
DOS spectrum since the contribution around the point, being
proportional to

√
E − EP, is overwhelmed by the contribution

from the vicinity of the saddle loop.
One can also conceive a similar situation for the maximum

point P corresponding to type A′
3D. For simplicity, let us

assume the band isotropy around this point as well (m1 =
m2 = m3 < 0). The DOS form near the singularity trivially
corresponds to ∝√

EP − E [Figs. 3(a) and 3(b)]. By introduc-
ing a perturbation with spherical symmetry that appreciably
reduces the energy eigenvalues around P, the maxima of the
resulting spectrum form a closed shell, or extremum shell,
around P [Fig. 3(c)]. At any points on this shell, the band dis-
persion is zero and parabolic in the two tangential directions
and one perpendicular direction, respectively. The divergent
singularity of the A′

1D type then appears at the energy value on
the shell [Fig. 3(d)].

1. Higher-order Lifshitz transitions

We here show the character of the saddle loop and ex-
tremum shell from the perspective of the equal energy surface.
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FIG. 2. Schematic picture of the concept of perturbing the saddle
point P in three dimensions. (a) Two-dimensional band structure near
the original saddle point and (b) the corresponding form of the DOS
near its energy level Es. In the third dimension (not shown), the
band is assumed parabolic. (c) The band structure with the circular
symmetric perturbation turning P from the maximum to minimum
in the two dimensions. The dashed line indicates the saddle loop.
(d) Form of the DOS, where the divergence occurs at the energy
level of the saddle loop. (e) The band structure with anisotropic
deformation to (c), where we indicate the ridge as a remnant of the
saddle loop as dotted line. The emergent saddle points are denoted by
Es and E ′

s . (f) The corresponding schematic form of the DOS, where
shoulders are formed at Es and E ′

s , respectively.

The equal energy surface is defined by the manifold in the
k space where ε(k) is equal to a certain energy value. The
surface at the Fermi energy (Fermi surface) is of particular
interest as it displays the electronic states dominating low-
energy phenomena. The change of the topology of the equal
energy surface by varying the energy value is called Lifshitz
transition [27]. In three dimensions, generally two types of the
transition occur: pocket appearance and the neck disruption.
These transitions are observed when the energy value varies
through the levels of critical points of types A3D and B3D,
respectively. When we change the energy value through the
VHS due to the saddle loop or extremum shell, topologically
distinct transitions occur in the equal energy surface, so to
speak, (i) the edge-pair switching transition [Fig. 4(a)]: two
adjacent surfaces are attached along the saddle loop and a
pocket is detached with the switching of the edge connections,
and (ii) surface pair formation transition [Fig. 4(b)]: two
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FIG. 3. Schematic picture of the concept of perturbing the ex-
tremum P in three dimensions. (a) Cross sections of the three-
dimensional band structure near the original maximum. Here, the
value of ε(k) is represented by the color scheme. (b) The corre-
sponding form of the DOS near its energy level Ee. (c) The band
structure with the spherically symmetric perturbation turning P from
the maximum to minimum. The dotted line indicates the extremum
shell. (d) The form of the DOS, where the divergence occurs at the
energy level of the extremum shell Ee. (e) The schematic form of
the DOS for the case with anisotropic deformation to (c), where
termination point corresponding to the maximum Ee and the shoulder
corresponding to the saddle point Es are formed, respectively (the
corresponding three-dimensional band structure is not shown). (f)
The variant of (e) with additional saddle point E ′

s on the shell, where
the corresponding shoulder is formed.

parallel surfaces emerge along the extremum shell from the
void. Those transitions are actually variants of the known
neck disruption transition, in that they are understood as the
simultaneous occurrence of the neck disruption (or formation)
on one- and two-dimensional manifolds, respectively. For this
reason, we later refer to those transitions as higher-order

ky

kz

Above Es Below Es

kx

ky

kz

kx

kz

ky

kx

ky

kz

kx

kz

ky

(a)  “Edge pair switching”

Above Ee Below Ee
(b) “Surface pair formation”

ky

kz kx kx

FIG. 4. Higher-order Lifshitz transitions. (a) The edge-pair
switching transition in the equal energy surface, where the surfaces at
the energy levels slightly above and below Es for the band structure
of Fig. 2(c). (b) The surface pair formation transition, where the
surfaces at the energy levels slightly above and below Ee for the band
structure of Fig. 3(c). The closeup view of the cross sections is also
displayed, where the white lines indicate the cutting planes.

Lifshitz transitions. We propose to give them specific names
since those transitions are directly related to the source of the
divergence of DOS; namely, the linear (planar) region in the
k space where “edge-pair switching (surface pair formation)”
occurs is responsible for the divergent contribution. Note that
the neck disruption at a point indicates the divergence of the
derivative of DOS, but not of the DOS itself.
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2. Effect of anisotropy

In realistic three-dimensional systems, we cannot generally
expect the ideal saddle loop and extremum shell since they
require that the gradient of the band is exactly zero along
them. Still, we can state that the DOS peaks resulting from
those, though not divergent, persist against subtle deforma-
tions of the band structure, as long as the the k dependence
of ε(k) is not drastic. In the above discussions of the saddle
loop, we have assumed circular symmetry for the perturbation
around the original saddle point P. When some anisotropy is
introduced, the saddle loop is deformed into a (not ideally
circular) loop of ridge line encircling P [Fig. 2(e)], along
which the band dispersion is not exactly zero. In the middle of
this line, there must emerge one or more minima and maxima,
which correspond to the critical points of type B3D and B′

3D,
respectively. The divergent DOS singularity then evolves into
two (or more) neighboring shoulders, whose energy distance
corresponds to the band dispersion along the ridge loop. The
whole structure appears as a “peak” in the calculated DOS.
Note that the presence of the two types of critical points is
due to the periodicity of ε(k) along the loop, and they are not
assured for ε(k) on an open linear region.

A parallel discussion applies to the case of the extremum
shell. With the deformation of the band structure from the
above ideal case, the shell is somehow deformed and at least
two critical points, respectively, of A′

3D and B3D are assured to
appear anywhere on the shell, and can B′

3D appear occasion-
ally. The divergent DOS singularity then evolves into adjacent
termination point and shoulder(s), between which the DOS
rapidly varies [Figs. 3(e) and 3(f)]. Note that the apparent
width of the DOS peak does not exactly correspond to the
energy distance between the A′

3D and B3D points [Ee − Es in
Fig. 3(f)].

The anisotropy also changes the appearance of the higher-
order Lifshitz transitions depicted above. When the energy
level is tuned through the peak positions, the transition ini-
tiates from the isolated VHSs anywhere on the loop or shell.
The starting and end points of the transitions would appear as
the well-known neck disruption or formation. By comparing
the equal energy surfaces below the lower VHS and above the
higher VHS, we see the edge-pair switching or surface pair
formation process. A statement therefore remains valid that,
even with the anisotropy, the higher-order Lifshitz transitions
occurring between a certain (nonzero) energy range indicate
the peaked concentration of the DOS within that range, as well
as displays the k-point region responsible for the peak.

In the literature, one sometimes finds discussions relating
the peak of the DOS and any VHS appearing in the band
structure along specific linear paths. For the above two cases,
the DOS peaks are better understood as remnant of the ideal
saddle loop or extremum shell. The total DOS peak is formed
by the states near the loop or shell, not only by those in the
vicinity of the isolated VHSs. The VHSs would correspond
to any detailed feature of the peak such as shoulders, but
what dominates the peak width is the degree of the band
dispersion over the loop or shell, where specific positions
of the VHS could change depending on subtle perturbations.
We believe that many of the DOS peaks found so far in the
model and first-principles band structure calculations of the

three-dimensional systems should be of the present classes.
Later, we demonstrate a simple model system that exhibits
the DOS peaks due to the saddle loop and extremum shell and
analyze the first-principles band structure of a realistic system,
superconducting H3S under extreme compression [25], from
the viewpoint of the present theory.

III. TIGHT-BINDING MODEL

In the previous section, we have discussed the possible
DOS peaks in three dimensions due to formation of the saddle
loops and extremum shell. This mechanism is apparently so
general that one would expect it is ubiquitous, though the
requirements for its occurrence seems difficult to realize in
terms of the Hamiltonian. The essential factor is that the
perturbation acts strongly only at the close vicinity of the
original saddle point or extremum in the k space. Another
factor in the case of the saddle loop is that the band dispersion
in the other direction must remain parabolic with definite sign
of the effective mass. Here, we exemplify a simple model
system where those requirements are satisfied.

A. Promising perturbations

Before going to the specific model, we argue possible
perturbations in terms of the tight-binding model that can
yield the saddle loops and extremum shells. The tight-binding
model on a periodic lattice is generally written as

H =
∑
R,R′

∑
i j

ti j (R − R′)c†
i (R)c j (R′). (18)

Here, R and R′ denote the lattice vectors and i and j are the
index of orbitals. c†

i (R) [ci(R)] is the creation (annihilation)
operator of electrons of state i at site R. ti j (R) is the hopping
between states i and j across the unit cells connected by vector
R. The hopping with R yields the k dependence of the energy
eigenvalues εn(k) (n : band index) with the form ∼cos(k · R);
the near-site hopping (=small R) thus gives slowly varying
component in the k space. If the band structure near the
saddle or maximum point is dominated by such slowly vary-
ing components, it is modified to the minimum by adding
more rapidly oscillating contributions which originate from
the hopping with larger R. In Fig. 5, we depict an example: In
one direction, the maximum of the dispersion ∼cosk at k = π

is modified to the minimum by adding the component with the
cos2k form. Note that in this case the relative amount of the
cos2k component represented by parameter A in Fig. 5 must
be larger than some threshold value in order to change the
maximum at k = π to local minimum.

In multiband systems, there can also be a possibility that
the composition of the states labeled by nk varies rapidly with
respect to k, as observed in the topological insulator [28].
In such a situation, one could render the target saddle or
maximum to minimum point by exerting any orbital-selective
perturbation.

The farther-neighbor hopping is especially promising as
the candidate perturbation in that it is generally expected to
become appreciable in systems under strong compression.
Below, we first demonstrate the formation of the DOS peak
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k
2ππ0

cosk
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+

=

FIG. 5. Modification of the maximum (at k = π ) to minimum by
a rapidly varying Fourier component. A denotes a parameter.

in a tight-binding model due to the farther-neighbor hopping.
We later discuss the origin of the DOS peak at the Fermi level
in the compressed H3S, where we find that the perturbation
responsible for the peak formation is the farther-neighbor
orbital selective hopping.

B. Simple cubic lattice model

We consider the single-orbital nearest-neighbor tight-
binding model on the simple cubic lattice [Fig. 6(a)]

H = −t
∑

〈R,R′〉sc

c†(R)c(R′), (19)

where 〈R, R′〉sc denotes that R and R′ are the nearest-
neighbor sites in the simple cubic lattice. The resulting energy
eigenvalue of the total Hamiltonian reads as

ε(k) = −2t (coskx + cosky + coskz ). (20)

In the simple cubic Brillouin zone [Fig. 6(b)], the isolated
VHSs of types A3D, B3D, B′

3D, and A′
3D are located at the �,

X , M, and R points, respectively. Therefore, the DOS does not
exhibit divergence [solid lines in Figs. 6(c) and 6(d)].

In order to induce the band deformation around the critical
points at the M and R points, we here introduce the farther-
neighbor hopping t (R−R′=2ai ) = −t ′ with ai (i = x, y, z) be-
ing the primitive lattice vectors. The energy eigenvalue is then
modified to

ε(k) = −2t (coskx + cosky + coskz )

−2t ′(cos2kx + cos2ky + cos2kz ). (21)

The necessary condition for turning the saddle point at M
to minimum is that the maxima in the band dispersions along
the X -M and �-M are located in the middle of the paths, which
correspond to t ′ > t/4. This is also the necessary condition for
turning the maximum at R to minimum. We therefore exam-
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FIG. 6. (a) Simple cubic tight-binding model with farther-
neighbor hopping. (b) The simple cubic Brillouin zone, where the
k-point path for the band structure calculation is depicted. The point
X ′ is a symmetrically equivalent to X . (c) The calculated band
structure and (b) the DOS of the model of the spectrum (21). Here
and hereafter, t is fixed to 1 eV.

ined the band structure and DOS with t ′ changed through t/4.
In Fig. 6(c), we indeed find maxima with t ′ = 0.3t and 0.4t at
fractional points near M and R, and concomitantly the peaks
in the DOS are formed. In the present case, the critical points
responsible for the shoulders of the DOS peaks are located
exactly on the regular Brillouin zone paths (Fig. 7). It must
be, however, noted that those points are just cross sections of
the high-dimensional saddle loops and extremum shell, and all
the states in the vicinity of those high-dimensional structures
contribute to the peaks. We also note that the critical points at
the M and R points are, as displayed in Fig. 7(b) and 7(c), no
longer responsible for any appreciable structures in the DOS
peaks.

To verify the saddle loop and extremum shell, we also
examined the evolution of the equal energy surfaces through
the DOS peaks with t ′ = 0.4t . The surface pair formation
at the extremum shell is ideally observed when the energy
level is reduced through the corresponding DOS singularity.
The upper panels of Fig. 8 show the change of the equal
energy surfaces. The pocket formation is first observed at
the maximum between the �-R path, the surfaces gradually
evolve and finally bifurcate into two nested surfaces sand-
wiching the deformed extremum shell (indicated by bold
dashed line) when the energy level is below the lower DOS
shoulder. Comparing the end points [(1) to (4)], the whole
change is interpreted as the surface pair formation. Similarly,
the edge-pair switching transition should be observed when
the energy level passes down the energy position of the ideal
saddle loop. According to the lower panels, the transition
starts with the neck formation at a point on the �-M line
and the resulting hole gradually evolves into the void running
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guides to the eye. The small difference of the DOS values from those in Fig. 6 is due to the smearing scheme used for the DOS calculation.

along the deformed saddle loop (indicated by bold dashed
line), and thus the edge-pair switching transition is completed.
The higher-order Lifshitz transitions occurring on the single
band within the nonzero energy range thus indicates the saddle
loop and extremum shell.

IV. DOS PEAK IN THE CUBIC H3S SUPERCONDUCTOR

In this section, we study the electronic structure of the
recently discovered high-temperature superconductor H3S
(Refs. [25,29]). After its theoretical and experimental dis-
coveries, first-principles calculations have revealed its band
structure [30–35]. Its particularly interesting feature is the
peak in the DOS at the Fermi level. According to the Bardeen-
Cooper-Schrieffer theory of the phonon-mediated conven-
tional superconductors [36,37], an approximate formula of the

superconducting transition temperature Tc is written as

Tc ∝ ω exp

[
−1

λ

]
, (22)

where ω denotes the frequency of the phonon mode mediating
the electron pairing, and λ is the dimensionless parameter
representing the total pairing strength. Because λ is propor-
tional to the DOS at the Fermi level, the peaked DOS is
thought to be a crucial factor for the high Tc. In fact, several
groups have reported that the experimentally observed Tc is
accurately reproduced with the Eliashberg theory [30,38–40]
and density functional theory for superconductors [33,41,42],
where its Tc is boosted by the large DOS. Although the
conventional phonon mechanism thus explains the high Tc,
potential impacts of the DOS shoulder as the VHS and small
electronic energy scale indicated by the DOS peak width
have also attracted attention for possible unconventional
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FIG. 8. Snapshots of the higher-order Lifshitz transitions for the equal energy surfaces with t ′ = 0.4t . The simple cubic Brillouin zones
are depicted as white frames. Labels (1)–(8) indicate the energy levels at which the equal energy surfaces were calculated. (Upper) The surface
pair formation transition around the extremum shell indicated by dashed lines. (Lower) The edge-pair switching transition around the saddle
loop indicated by dashed lines.
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mechanism [43–45]. In either direction, the presence of the
DOS peak at the Fermi level is a pivotal basis of the theoretical
discussions. Nevertheless, its existence has yet been verified
with direct experimental observations because of the difficulty
of the high-pressure experiments. It is hence important to see
if there is any general mechanism behind the formation of the
DOS peak that makes it persist against subtle changes of the
structure and calculation conditions, or it is a consequence of
the accidentally fine-tuned crystal structure.

The “minimal” modeling of the electronic states in H3S
has been first proposed by Bernstein and coworkers [31].
They have pointed out that the inversion of the onsite energies
between the hydrogen 1s and sulfur 3p is important and pro-
posed a simple tight-binding model with the sulfur 3s, 3p and
hydrogen 1s orbitals with only the nearest-neighbor hopping
parameters. Later, Quan and Pickett [34] have published a
set of tight-binding parameters with farther-neighbor hopping
obtained by the construction of the Wannier functions [46,47].
Ortenzi and coworkers, on the other hand, have argued that
important hopping parameters are missing in their models and
proposed an alternative model [48] constructed by the recipe
of Slater and Coster [49]. They focused on the critical point in
the middle of the N-X path in the base-centered-cubic (bcc)
Brillouin zone and imposed a criterion that the energy level of
this point, as well as the topology of the Fermi surfaces, are
reproduced, but their resulting DOS peak is rather broadened
compared with the first-principles calculation. Souza and
Marsiglio [50,51] took an opposite approach; they studied
the features of the band structure intrinsic to the Bravais
lattices. They recalled the finding by Jelitto [13] that the single
s-orbital nearest-neighbor tight-binding model on the bcc
lattice yield the divergence of the DOS, which is due to the
completely flat band dispersion on planar manifolds (bound-
aries of the reduced simple cubic Brillouin zone) induced by
the interference of the Bloch phase of the wave function [14].
However, its relation to the DOS peak of H3S is not apparent
as such flat dispersion is yet found.

For the modeling of the system, it is important to determine
which of the features of the first-principles band structure are
essential. We concentrate on its DOS peak; we first examine
the mechanism how the DOS peak is formed and later explore
the simple model that at least retains the DOS peak formed
by the common mechanism. Through the previous close anal-
ysis, the DOS peak has been found to have two adjacent
shoulder structures and the locations of the corresponding
critical points in the k space have also been specified [34].
We first see that the actual feature responsible for the whole
peak is the above-mentioned saddle loop and the previously
found critical points are just its cross sections.

A. First-principles band structure

We calculated the first-principles electronic band struc-
ture of the cubic H3S with the plane-wave pseudopoten-
tial method as implemented in QUANTUM ESPRESSO [52].
The Perdew-Burke-Ernzerhof generalized gradient approxi-
mation [53] was adopted for the exchange correlation func-
tional. The pseudopotentials were made with the Troullier-
Martins scheme [54,55]. The plane-wave cutoff for the wave
function was set to 80 Ry. The cubic lattice parameter was set
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FIG. 9. (a) Crystal structure of the cubic H3S, where large and
small balls represent sulfur and hydrogen atoms, respectively. The
primitive and conventional unit cells are indicated by thin and bold
lines, respectively. (b) The Brillouin zones corresponding to the
respective definitions of the unit cell. (c) The electronic (left) band
structures and (right) DOS spectra, where dashed line indicates the
Fermi level. Thin and bold lines are the results of the first-principles
calculation and effective tight-binding model derived from the Wan-
nier functions, respectively. The dotted line is the upper bound of
the frozen window for the construction of the Wannier functions (see
main text).

to 5.6367 bohrs, which is the optimized value under 200 GPa.
We derived the Wannier model using WANNIER90 [56]. The
sulfur s, p and hydrogen s orbitals were adopted as the initial
guess. We imposed the frozen window constraint [47], within
which the Hilbert space is assured to be spanned by the
resulting Wannier orbitals. Very wide energy window up to
Fermi level plus �40 eV, within which the states are used
for constructing the Wannier orbitals, was set for accurate
reproduction of the first-principles band structure. We did not
minimize the gauge-dependent part of the Wannier spreads to
get the projected Wannier orbitals rather than the maximally
localized ones so that subtle possible shift of the Wannier
centers from the atomic sites does not occur [57].

We show the calculated band structure in Fig. 9(c). Here,
we took the nonprimitive simple cubic cell [45] [Fig. 9(a)] for
convenience in the later discussions, by which the Brillouin
zone is folded from the bcc one as shown in Fig. 9(b). Our
calculated band structure (thin line) reproduces the features
shown in the previous studies, especially the sharp peak in the
DOS at the Fermi level [34]. The apparent local maxima seen
in the middle of the X -M and M-� paths have been related
to the DOS peak in previous discussions [45]. We name the
maximum along the X -M path P for later analysis. We further
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FIG. 10. Band dispersions along unconventional paths. (a) The k-point paths passing the target point P indicated by dark star and (b) the
corresponding band dispersions. (c) The k-point paths for location of the saddle loop and (d) (left) the corresponding band dispersions. The
light stars indicate the minimum and maximum along the line of saddle points, whereas squares represent the midpoints of the saddle line.
(Right) Total DOS D(E ) from first principles, from the Wannier model and partial DOS D(E ) − DSL(E ) from the Wannier model. The region of
integration for DSL(E ) (�SL) [shown by shaded volume in (a) and (c)] is defined by {k|0.20 <

√
(kx − 0.5)2 + (ky − 0.5)2 < 0.35; |kz| < 0.15}

with k in the unit of 2π/a. The horizontal dotted-dashed line indicates the upper bound of the frozen window same as in Fig. 9(c). (e) Schematic
picture of the saddle loops, where the anomaly is concentrated.

scrutinize the relation between the details of the band structure
and DOS peak.

We find that the band dispersion along kz through P is
convex as shown in Fig. 10(b). To see the band dispersion in
the direction normal to the BZ boundary, we also calculated
the band dispersions along the paths depicted in Fig. 10(c).
Departing from the boundary, the degenerate bands split, and
one of the maxima are aligned in a curly line indicated by
stars. Those points, around which the band is concave in the
path directions and convex in the kz direction, form the saddle
loop encircling the M point. Note that there are in total three
symmetrically equivalent saddle loops interchanged by the
threefold rotation in the (1 1 1) axis. We find that the small
dispersion along the loop corresponds to the width of the
DOS peak [Fig. 10(d)], which suggests that the DOS peak is
dominated by the saddle loops. Furthermore, we calculated
the local DOS originating from the saddle loops by

DSL(E ) = Nsym

∑
nk∈�SL

δ(E − εnk ), (23)

where the volume of integration �SL is limited to a tiny shaded
region depicted in Figs. 10(a) and 10(c) and Nsym(=12) is the
symmetry factor. By subtracting DSL(E ) from the total DOS
D(E ), the peak structure completely vanished [Fig. 10(d)].
This result directly evidences that the DOS peak structure is
wholly due to the saddle loop.

Finally, we also calculated the equal energy surfaces with
different energy levels through the DOS peak position. As
indicated by dashed lines in Fig. 11, we observed two edge-
pair switching transitions on the paths around the M point.

According to the above analysis, the region where the inner
transition occurs is responsible for the DOS peak. The posi-
tion of the higher-order Lifshitz transition through the energy
range of the target DOS peak thus indicates the “hot spot”
corresponding to the peak.

We thus establish the simplistic view on the complicated
electronic structure of this system as depicted in Fig. 10(e).
Its anomalous aspects, peaked concentration of the DOS and
possible competition of the electronic and phononic energy
scales, originate from tiny regions in the k space around
the M points where the saddle loops are located. This fact
should encourage further scrutiny on the electronic states of
the saddle-loop regions and their interplay with phonons, not
only the multiple hole pockets around the � point [58,59],
though it is out of the scope of this work.

B. Wannier model and its analysis

The present result motivates us to seek for a simple model
that reproduces the saddle loop as the minimal model for
the DOS peaking in H3S. Starting from the seven-orbital
Wannier model (sulfur s, p and hydrogen s × 3) that perfectly
reproduce the ab initio band structure [Fig. 9(c); see Table II
for the original hopping parameters], we conducted a thorough
examination on how the band structure and DOS change by
omitting any hopping parameters. The crystal structure of the
cubic H3S is bipartite, in that it is formed by identical simple
cubic sublattices shifted from each other by (a/2, a/2, a/2)
[Fig. 12(a)]. In preceding analyses [34,60], it has been pointed
out that the electronic density contributed to by the states near
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FIG. 11. Edge-switching transition in the equal energy surfaces
with variable energy levels through the DOS peak in H3S. The bold
and thin dashed lines indicate the transition lines which are and are
not responsible for the DOS peaks, respectively.

the DOS peak is spatially concentrated along the individual
simple cubic frames. Inspired by this fact, we calculated the
electronic structure of a “bipartitioned” simple cubic lattice
(known as the ReO3 structure) by neglecting all the hopping
parameters across the sublattices. Interestingly, we find that
the saddle-loop structure around the M point, as well as the
DOS peak emerging from this, are retained with this simple
cubic lattice model as shown in Fig. 13(c). The local maxima
along the X -M and M-� paths indicated by arrows are the
cross sections of the saddle loop around the M point.

The above result suggests an interesting possibility: the
saddle-loop structure is persistent against the doubling of the
simple cubic cell, and then the seven-orbital simple cubic
lattice model captures the mechanism of the DOS peak for-
mation. The former point can be supported theoretically, by
considering the interference effect of the Bloch functions [14].
Consider any Bloch state composed of orbitals on a single
sublattice |
s;nk〉, where s(= 1, 2) denotes the index of the
sublattice. The Wannier Hamiltonian H is block diagonalized
for each k. Due to the commensurate shift between the sublat-
tices and mirror symmetries, the following formula holds:

〈
1;nk|H|
2;nk〉 = 0 (k ∈ boundary of the SC BZ). (24)

S Hx

Hz

Hy

(a) (b)

(c)
Sulfur-p

t (4)Ss-Ss

t (4)Hs-(H)-Hst (1)Ss-Hs

t (1)Spσ-Hs

Sulfur-s

Hydrogen-s

FIG. 12. (a) Partitioning of the crystal structure of H3S into two
identical simple cubic lattices. (b) The simple cubic (ReO3) H3S
structure. (c) The tight-binding hopping parameters of the minimal
model. The symmetrically equivalent parameters are not shown. Note
that the actual form of the Wannier orbitals is depicted in Fig. 14.

This implies that the band structure at the BZ boundary is
less affected by the hopping across the sublattices, compared
with the k-point regions far from the boundary. With the
saddle points along the X -M and X ′-M paths [Fig. 6(b)]
retained against the intersublattice coupling, from the physical
requirement that the variation of the band dispersion is not
drastic in the k space, the saddle loop connecting those points
must be persistent as well. We hence assert that the decoupled
simple cubic lattice model is the minimal one.

To seek the origin of the saddle loop, we next calculated the
electronic structure of the single sublattice model with only
the nearest-neighbor hopping parameters retained [Fig. 13(e)].
The saddle-loop structure then converged to the saddle point
at the M point as indicated by an arrow. The corresponding
DOS peak was smeared. We found that the saddle loop is
recovered by considering farther-neighbor hopping parame-
ters t (4)

Ss−Ss and t (4)
Hs−(H)−Hs [Fig. 12(c)]. The superscript (4)

implies that the hopping connects the fourth-nearest-neighbor
sites in the original crystal structure. Notably, those parame-
ters are positive and yield contributions to the energy spec-
trum in the +[cos(a1 · k) + cos(a2 · k)] form, with which the
energy eigenvalue at M is reduced (pushed). The orbital-
resolved spectral function (Ref. [61]; see Appendix A for
its formal definition) displayed in Fig. 13(f) shows that the
electronic state at the saddle point M is mainly composed
of the sulfur s and hydrogen Hz s orbitals [Fig. 13(f)].
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FIG. 13. Electronic band structure of the Wannier models with different levels of approximation. (Left) Band structures and DOS spectra
derived from (a) the Wannier model that shows the perfect agreement with the first-principles calculation for the low-energy states [see
Fig. 9(c)], (c) the Wannier model where the hopping between the two bipartite lattices is ignored, (e) the bipartite simple cubic Wannier model
with only the nearest-neighbor hopping parameters (t (1)

Ss−Hs and t (1)
Spσ−Hs in Fig. 12), and (d) the “minimum” model where the farther-neighbor

hopping parameters (t (4)
Ss−Ss and t (4)

Hs−(H)−Hs in Fig. 12) are added on top of (c). (b), (d), (f), (h) The corresponding spectral functions.

Introduction of t (4)
Ss−Ss and t (4)

Hs−(H)−Hs therefore substantially
reduces the energy eigenvalue at M, forming the saddle loop
around it.

The origin of the large farther-neighbor hopping with posi-
tive sign can be suggested from the Wannier orbitals displayed
in Fig. 14. Usually, the hopping between two orbitals without
phase shift is negative. In the present case, however, both
the sulfur s-like and hydrogen s-like orbitals show the sign
inversion of the wave functions and have tails in a length scale
comparable to half of the lattice parameter. These features

cause the relatively large farther-neighbor hopping with the
sign inversion.

C. Summary: What makes the DOS peaked?

We have thus reached the minimal model of H3S with
seven (or six, if we regard the onsite energy of the sulfur s-like
orbital arbitrary) parameters (Table I) that demonstrate the
DOS peak formation, The basis set is composed of the sulfur
s, p and hydrogen s orbitals with structural deformation in
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FIG. 14. Isosurfaces of the calculated Wannier functions, where
signs of the functions are distinguished by colors: (a) sulfur s-like
orbital, (b) sulfur p-like orbital, and (c) hydrogen s-like orbital.

the cubic ReO3 configuration. The nearest-neighbor hopping
model gives rise to a band with small dispersion, on which
a saddle point is located at M. The further-nearest-neighbor
hopping modifies this saddle point into the local minimum
and the saddle loop is formed around it. The doubling of the
lattice substantially modifies the whole electronic structure,
but its important features, the maxima along the X -M and
X ′-M paths, are protected due to the interference of the Bloch
states, which forces the saddle loop through those points to
persist. The relevance of the present model to the actual H3S
is validated by analysis of the spectral functions (Fig. 13; see
also Appendix A and Fig. 17 therein). The k-point dependence
of the orbital character around the saddle loop is surprisingly
consistent among the four models: the original model that

perfectly reproduces the ab initio band structure, bipartite one,
bipartite nearest-neighbor one, and the final minimal one.

In the above description we ignored the hopping across the
different sublattices in order to highlight the mechanism that
“pushes” the saddle critical point. We also note a quantitative
effect of some intersublattice hopping parameters. We found
that concurrent inclusion of t (1)

Hs−Hs and t (2)
Spσ−Hs (Table II) in

combination with the farther-neighbor intrasublattice hopping
parameters t (4)

Ss−Ss and t (4)
Hs−(H)−Hs have also effect of enhanc-

ing the “M”-shape dispersion of the relevant band along
the X -M-� path in Fig. 13(c), though its mechanism is not
obvious. The original first-principles band structure is then
reproduced better. Note that those parameters do not solely
yield the saddle loop, whereby we conclude that their effect is
secondary compared with the farther-neighbor hopping. The
detail on this point is summarized in Appendix B.

Finally, we try to reconcile the previous representa-
tive proposals of the tight-binding modeling of this system
(Refs. [31,34,48]) with our “minimal” explanation in view
of the reproduction of the saddle loops and DOS peaks.
Among them, only Ref. [48] employed a different method
for calculating the parameters; prepare the model first and fit
the parameters so that the band energies at selected k points
agree with the first-principles values. In Table II, we summa-
rize the first-, second-, third-, and fourth-neighbor hoppings
connecting the sites departed by distances a/2, a/

√
2,

√
3a/2,

and a, respectively. The subscripts Ss, Sp, and Hs denote the
Wannier orbitals displayed in Fig. 14. To our observation, the
fifth-neighbor hopping parameters (across the sites departed
by

√
5a/2) also have appreciable effects on the whole band

structure, which we do not append in the text, though. The full
set of the parameters is available online in the output format
of WANNIER90 [62].

The inversion of the onsite energy levels of the sulfur
p(-like) and hydrogen s(-like) states are wholly consistent
among all the models. Also, the published Wannier model
parameters in Refs. [31,34] are in fair agreement with ours,
where the subtle differences are thought to originate from the
gauge degree of freedom of the Wannier orbitals or setting of
the energy window parameters. Bernstein and coworkers [31]

TABLE I. Tight-binding parameters (eV) of the minimal model that explains the saddle loop around the M point and related DOS peak.
The onsite energies are calculated from the level of sulfur s-like orbital. The sign ± indicates the arbitrariness in the definition of the s-pσ type
hopping. See Fig. 12(c) for the definitions of the hopping parameters.

Pressure (GPa) 120 160 200 240 120

Distortion No. Molecule Lattice

Lattice parameter (a.u.) 5.8990 5.7542 5.6367 5.5375 (See text)
Onsite
Sulfur s like
Sulfur p like 8.16 7.82 7.49 7.20 7.98 8.32
Hydrogen s like 6.42 5.77 5.18 4.62 6.27 6.50
Hopping
t (1)
Ss−Hs −3.84 −4.09 −4.30 −4.48 −4.69, −2.98 −3.84

t (1)
Spσ−Hs ±5.04 ±5.35 ±5.62 ±5.85 ±5.69, ±4.31 ±5.07

t (4)
Ss−Ss +0.81 +0.91 +0.99 +1.07 +0.78 +0.81

t (4)
Hs−(H)−Hs +0.43 +0.46 +0.49 +0.51 +0.45 +0.46
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TABLE II. Tight-binding parameters of this work and
Refs. [31,34,48]. The sign ± indicates the arbitrariness in the
definition of the s-pσ type hopping. Dagger (†) indicates the
parameters included in our minimal model (Table I).

Parameter (eV) Present Ref. [31] Ref. [34] Ref. [48]

Lattice parameter (a.u.) 5.6367 5.6409 5.6 5.64
Method Wannier orbital construction Analytical fit

Onsite
Sulfur s like
Sulfur p like 7.49 7.3 7.95 11.38
Hydrogen s like 5.18 3.6 2.52 10.29

1st NN
(†) t (1)

Ss−Hs −4.30 −4.2 −4.37 +2.81

(†) t (1)
Spσ−Hs ±5.62 −5.2 −5.42 +4.65

t (1)
Hs−Hs −2.26 −2.7 −2.80 −2.73

2nd NN
t (2)
Ss−Hs −0.10 (N. A.) (N. A.)

t (2)
Spσ−Hs ±1.00 (N. A.) +0.93

t (2)
Hs−Hs +0.08 (N. A.) (N. A.)

3rd NN
t (3)
Ss−Ss +0.06 (N. A.) +0.30 +2.31

t (3)
Ss−Spσ ±0.30 (N. A.) (N. A.) +3.33

t (3)
Sp−Spσ +1.38 (N. A.) (N. A.) +1.69

t (3)
Sp−Spπ +0.29 (N. A.) (N. A.) −0.07
1
4 t (3)

Sp−Spσ + 3
4 t (3)

Sp−Spπ +0.56 (N. A.) +0.60 +0.37

t (3)
Hs−Hs +0.01 (N. A.) (N. A.)

4th NN
(†) t (4)

Ss−Ss +0.99 (N. A.) +0.94

t (4)
Ss−Spσ ±1.11 (N. A.) 1.29

t (4)
Sp−Spσ −1.78 (N. A.) −1.83

t (4)
Sp−Spπ −0.05 (N. A.) (N. A.)

(†) t (4)
Hs−(H)−Hs +0.49 (N. A.) +0.55

t (4)
Hs−(S)−Hs −1.28 (N. A.) −1.14

published only the nearest-neighbor hopping parameters; we
found that those can yield DOS peak related to isolated saddle
points at M similarly to Fig. 13(e) but not the saddle loop. The
list published by Quan and Pickett [34] includes the positive
farther-neighbor hopping parameters (t (4)

Ss−Ss and t (4)
Hs−(H)−Hs in

our expression), from which we expect that the DOS peak
as well as the saddle loops are sufficiently reproduced. They
also reported that the DOS calculated with the single sub-
lattice model with the nearest-neighbor hopping is “nothing
like the original one.” This result probably corresponds to
our Fig. 13(e); incorporating t (4)

Ss−Ss and t (4)
Hs−(H)−Hs into their

sublattice model would reproduce the DOS peak and sad-
dle loops. The hopping parameter between sulfur s-like and
p-like states departed by (a/2, a/2, a/2) (Wsp in Ref. [48];
t (3)
Ss−Spσ in our expression) was, in our calculation, small,

which is probably why Quan and Pickett did not mention this
parameter. More on this parameter, we found that it has an
effect of raising the energy level at the midpoint of the M-�
path, which corresponds to the maximum in the N-X path of
the bcc Brillouin zone. Ortenzi and coworkers [48] referred

to this point, not the loop, for their parameter fitting and
did not introduce the farther-neighbor hoppings; therefore,
the isolated VHS was reproduced, but the whole saddle-loop
structures was not, which is likely the reason of their DOS
peak smearing.

D. Pressure dependence

The two pivotal statements established through this section
are that (i) the DOS peak at the Fermi level originates from the
saddle loops around the M and symmetrically related points
and (ii) the single sublattice model explains how they are
formed. We examine if those points are also valid against the
change of the external pressure. We recalculated the electronic
structures with the cubic lattice paremeters optimized at 120,
160, and 240 GPa and derived the Wannier model parameters
with the same procedure. As a whole, the band structure
changed only slightly. We show only the behavior in the
energy range ±2 eV in Fig. 15. The peak height of the DOS
was almost the same, whereas the Fermi level shifted a little
toward the middle of the peak by increasing the pressure.
This result is consistent with a previous calculation [43]. We
confirmed that the DOS peak commonly originates from the
saddle-loop region �SL defined in Fig. 10 (see Appendix C
for specific data). The Wannier model parameters for different
pressures are summarized in Table I. We observe that the
hopping parameters monotonically increase in absolute value
by pressure, which is simply due to the compression of the
system. Importantly, the farther-neighbor hopping parameters
t (4)
Ss−Ss and t (4)

Hs−(H)−Hs remained positive and sizable regardless
of the pressures. One is reminded that the modification of the
saddle point into the loop generally requires that the pertur-
bation is stronger than any threshold value (see Fig. 6). We
confirmed that the single sublattice nearest-neighbor hopping
model yields only the saddle points and they are modified into
the saddle loops by those farther hopping parameters. These
results support that the validity of the above statements (i) and
(ii) across the experimental pressure range.

The above calculations were performed with the Im3̄m
cubic structure, but in the experiments, the crystal structure
is thought to suffer from distortions, especially at relatively
low pressures. For more relations to the experiments, we also
calculated the band structure with two types of distortions at
120 GPa. One is the molecular (R3m) distortion [30]; the three
hydrogens are displaced from the center of the bonds so that
the local H3S molecules are formed [Fig. 16(a)]. This struc-
ture is more stable than the high-symmetry cubic structure in
terms of the Born-Oppenheimer energy surface, whereas the
high-symmetry structure may be more stable if the quantum
nature of the hydrogen positions is considered [40]. The other
is the lattice distortion; in a previous experiment [63], a
uniform stretch of the crystal was observed in the cubic (111)
direction [Fig. 16(b)], though its origin is yet unclear [64].
To obtain the input crystal structures with these distortions,
we performed the variable cell structure optimization for the
molecular R3m phase and simply changed the angles between
the lattice vectors with the hydrogen positions kept in the
middle of the bonds, respectively. In the former case, the
lattice parameter was 5.9233 and the cosine of the angle
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FIG. 15. Pressure dependence of the first-principles (a) band structure and (b) DOS for the cubic H3S. The scale of the k-point axis, which
actually depends on the lattice parameter, is fixed for comparison.

between the lattice vectors, which is exactly zero for the ideal
cubic structure, was �0.001. The hydrogen positions shifted
from the bond centers by about 0.21 bohrs in the bonding
directions. In the latter, we set the angle cosine to �0.030 so
that the degree of the distortion defined by Ref. [63] is 3%.

We show the first-principles band structures and DOS in
Figs. 16(c) and 16(d). Although the whole band structure is
again consistent, appreciable changes in the band structure
and DOS were seen in the vicinity of the Fermi level. The
molecular distortion has large effect in particular around the
� point, with which some hole Fermi surfaces disappear.
This change is largely responsible for the apparent reduction

of the total DOS peak height from the cubic case seen in
Fig. 16(d), which is also implied by the partial DOS from
the region other than the saddle loop one in Fig. 16(f). On
the other hand, the effect of the lattice distortion is significant
on the saddle loop, as indicated at the local band maxima
in the X -M and M-� paths. It lifts the degeneracy at the
former maximum and the resulting DOS peak splits into two
[Fig. 16(d)]. The partial DOS analysis for the saddle loop and
other regions [Figs. 16(e) and 16(f)] shows that the contribu-
tion from outside the saddle-loop region D(E ) − DSL(E ) is
almost invariant, indicating that the impact of this distortion
is local in the k space. The origin of this is thought to be the
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FIG. 16. Distortion dependence of the band structure and DOS at 120 GPa. Although the reciprocal vectors vary by the distortions, we plot
the bands in the same scale by defining the special points in terms of the reciprocal vector coordinates. (a), (b) Views of the distortions, where
the (1 1 1) axis is indicated by solid line. The degrees of the distortions are exaggerated. (c), (d) The first-principles band structures and DOS
with and without the distortions, respectively. (e) The saddle-loop contribution DSL(E ) defined in Eq. (23) and (f) the remnant D(E ) − DSL(E ),
calculated with the Wannier models.
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FIG. 17. (a)–(d) Spectral functions, continued from Fig. 13.

intersublattice coupling [Eq. (24)] switched on by the reduced
symmetry. The DOS peak separation could be observable as
a “pseudogap” structure through any probes that detect the
electronic transition processes between the split bands, though
its actual magnitude is expected to depend on the degree of
the distortion. We note that, apart from the subtle changes of
the DOS peak structure, the concentrating trend of the DOS
near the Fermi level around the saddle loops is persistent
against those distortions. The positive sizable farther-neighbor
hopping parameters were also obtained as summarized in
Table I as well, suggesting the robustness of the mechanism
extracted by the sublattice model. These results again validate
the statements (i) and (ii) above, as well as clarify the impor-
tance of the saddle loops in the experiments.

V. CONCLUSIONS

In this paper, we have characterized an archetype of the
mechanisms that yield the DOS peak in three-dimensional
crystals. Modifying the second-order saddle point (maximum)
into local minimum by “pushing” the band hypersurface, the
saddle-loop (extremum shell) structure certainly appears and
it induces concentration of the DOS at a tiny energy range.
Being the high-dimensional structure, the saddle loop and
extremum shell are difficult to recognize from the standard
scheme of visualizing the band structures along linear paths

in the Brillouin zone. The existence of the critical points
anywhere (not necessarily at the special points) on these
structures are assured by their closed nature, which appear in
the DOS spectra as adjacent shoulders. The width of the DOS
peak is determined by the band dispersion over the entire loop
and shell. We have pointed out that the higher-order Lifshitz
transition through the energy levels across the DOS peak is a
useful indicator to locate those structures in the k space. Our
theory gives us a deep insight into an important feature, the
DOS peaks, of the electronic structure, as well as provides a
simple guiding principle for design of electronic materials.

We have demonstrated how the electronic structure in the
superconducting H3S under pressure is understood with the
present theory. The DOS peak in this system, which is thought
to be the source of the high-temperature superconductivity,
is accompanied by several puzzling features such as critical
points at apparently fractional low-symmetry points. Through
the close analysis, we have extracted the saddle-loop structure
and successfully derived a minimal model for the DOS peak
formation. The cubic ReO3 structure with sizable positive
farther-neighbor hopping results in the saddle loops around
the M and symmetrically equivalent points, which remains
relevant against the lattice doubling. Although we do not go
so far as to state that this is the minimal appropriate modeling
for the superconductivity of this system, it is confirmed that
one of its ingredients, formation of the DOS peak, is more
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FIG. 18. (a) Schematic picture of the intersublattice coupling
parameters t (1)

Hs−Hs and t (2)
Spσ−Hs in Table II. The bold and dashed lines

indicate the respective sublattices. (b) The band structure calculated
from the nearest-neighbor sublattice model [Fig. 13(e)] with t (1)

Hs−Hs

and t (2)
Spσ−Hs, (c) that from the “minimal” model [Fig. 13(g)] with

t (1)
Hs−Hs and t (2)

Spσ−Hs, and (d) that from the sublattice model [Fig. 13(c)]

with t (1)
Hs−Hs and t (2)

Spσ−Hs.

than accidental and the same mechanism can be applicable to
various isomorphous systems.
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APPENDIX A: SPECTRAL FUNCTIONS

We calculated the orbital-resolved spectral function

Ai(k, ω) = 1

π
Im

[
1

ω − H(k) − i0+

]
ii

, (A1)

with H(k), i, and 0+ being the Fourier component of the
Wannier Hamiltonian, orbital index, and infinitesimal positive
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FIG. 19. (a)–(d) Total DOS from first principles, from the Wan-
nier models and the partial DOS from the Wannier models, similarly
to Fig. 10(d).
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number. In Fig. 17, we append the spectral function for the
orbital components not displayed in the main text. The sulfur
pz and hydrogen Hx s and Hy s states are irrelevant for the tar-
get band responsible for the DOS peak and their components
are summed in the figure. All the components show similar
behavior among the models, especially for the target band.

APPENDIX B: EFFECT OF INTERSUBLATTICE HOPPING

Among the intersublattice hopping parameters in Table II,
we found that t (1)

Hs−Hs and t (2)
Spσ−Hs [Fig. 18(a)] have appreciable

effect on the band structure, especially when we take them
into account concurrently with the farther-neighbor hopping
parameters t (4)

Ss−Ss and t (4)
Hs−(H)−Hs. We here summarize their

effect with Fig. 18. In Figs. 13(e) and 13(g) we have shown
that the nearest-neighbor sublattice hopping model only yields
the saddle point and it is modified into the loop by the
farther-neighbor hopping. If we incorporate the above in-
tersublattice hopping parameters into the nearest-neighbor
sublattice model, the saddle loop is not formed [Fig. 18(b)].

Incorporating the farther-neighbor hopping, the saddle loop
is eventually formed, where the band dispersion along the
X -M-� path is enhanced than that of our minimal model
[Fig. 18(c); compared with Fig. 13(g)]. Finally, the sublattice
model with the full inclusion of the intrasublattice hopping
[Fig. 13(c)] plus those intersublattice hopping parameters
gives us the band structure [Fig. 18(d)] which remarkably
resembles with the first-principles result depicted in Fig. 9(c).
The DOS peak was commonly formed, though its detailed
structure (width, maximum, and number of the singularities)
depends somehow.

APPENDIX C: PARTIAL DOS ANALYSIS
FOR VARIABLE PRESSURES

In Fig. 19, we append the decompositions of the DOS
with the partial contribution DSL(E ) calculated within the
saddle-loop region �SL defined in Fig. 10 for the pressures
120–240 GPa. We find that the peaks at the Fermi level are
commonly dominated by DSL(E ).
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