
PHYSICAL REVIEW B 101, 075125 (2020)

Spin and charge transport in topological nodal-line semimetals
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We study transport properties of topological Weyl nodal-line semimetals (NLSs). Starting from a minimal
lattice model with a single nodal loop, and by focusing on a normal metal–NLS–normal metal junction, we
investigate the dependence of the novel transport behavior on the orientation of the nodal loop. When the
loop is parallel to the junction interfaces, the transmitted current is found to be nearly fully spin polarized.
Correspondingly, there exists a spin orientation along which the incident electrons would be totally reflected. An
unusual resonance of half transmission with the participation of surface states also occurs for a pair of incident
electrons with opposite spin orientations. All these phenomena have been shown to originate from the existence
of a single forward-propagating mode in the NLS of the junction and argued to survive in more generic multiband
Weyl NLSs.
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I. INTRODUCTION

Topological Dirac or Weyl nodal-line semimetals (NLSs)
[1–40], characterized by one-dimensional (1D) band cross-
ings between bulk conduction and valence bands in mo-
mentum space and topologically protected drumhead surface
states [1,30] at the boundary, have attracted much attention
recently. Although some materials are proposed to exhibit
nodal-line fermions near the Fermi level, only a few of them,
including XTaSe2 (X = Pb, Tl) [15,16], ZrXY (X = Si, Ge; Y =
S, Se, Te) [17–19,25,26,29,36,40], PtSn4 [21], XB2 (X = Al,
Zr, Ti) [32–34], and SrAs3 [35], have been experimentally ver-
ified by angle-resolved photoemission spectroscopy (ARPES)
and quantum oscillations. NLS materials always demonstrate
rich topological configurations such as nodal-net [5,34,41–
43], nodal-chain [44–46], and Hopf-link [31,47–52] structures
formed by the nodal lines. Among these materials, most are
Dirac NLSs, in which the line nodes are fourfold degenerate.
PbTaSe2 [16] is an exception, which is a spin-orbit (SO) Weyl
NLS possessing several doubly degenerate nodal lines. Very
recently, the room-temperature magnet Co2MnGa [53] with
negligible SO interaction has been discovered to be a Weyl
NLS, exhibiting exotic transport effects.

Up to now, a majority of the transport experiments
[19,25,26,29,35,40] have mainly focused on the confirmation
of the existence of the nodal lines in the bulk materials. Less
concern has been shown for the novel nature itself of the
transport property in the NLS materials. Theoretically, spin-
related transport properties have been studied for the NLSs.
Phenomena such as resonant spin-flipped reflection [54] and
anomalous Hall current [55,56] were predicted. In this paper,
we study the spin and charge transport in the Weyl NLSs with
a single nodal loop. For a junction made up of the NLS and
normal metals, we find that due to the existence of only one
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forward-propagating mode in the Weyl NLS region, exotic
transport phenomena occur. The transmitted charge current
is found to be nearly fully spin polarized. For a relevant
scattering state, total reflection and surface states involved
transmission resonance are found, the latter of which is also
accompanied by the half transmission. These unusual features
are expected to be verified in the future transport experiments
in Weyl NLS materials.

This paper is organized as follows. In Sec. II, based on a
lattice model, we introduce a wave-function transport method
and then derive the related conservation laws as well as the
corresponding charge and spin current densities and spin
torque. In Sec. III, starting from a minimal model of NLS,
we successively discuss the transport properties of the N-
NLS-N (where N represents normal metal) junctions when
the nodal loop is parallel or perpendicular to the interfaces,
or intersecting them at 45◦. The nonconserved spin current
density and spin torque together with the extension to the
multiband case are also discussed. In Sec. IV, we summarize
our results.

II. TRANSPORT METHOD FOR A LATTICE SYSTEM

A. Scattering matrix

In this section, we introduce a wave-function method in lat-
tice form, which is similar to Ref. [57], to solve the transport
problem of a noninteracting scattering system with multiple
terminals. In the following we take a two-terminal case as
an example, schematically shown in Fig. 1, to illustrate the
essential points of the method. Both normal leads are assumed
to be translational invariant along the propagating directions,
and can be viewed as quasi-one-dimensional (1D) half-infinite
lattices. Given an energy E , one can obtain for each lead
all modes φm, characterized by their wave vectors ±km, m =
1, 2, . . . , M ′, with 2M ′ being the total number of the modes.
For simplicity, we assume that km is real when m � M,
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corresponding to the propagating modes, whereas km is com-
plex when M < m � M ′, corresponding to evanescent ones.
The wave functions are the superpositions of all possible
modes. For the scattering state of the propagating mode
φn (n � M ) incoming from lead L, the spinor wave functions
at site j ( j � 0) of leads L and R can be given by

�L
n ( j) = φne−ikn j +

M ′∑
m=1

rmnφmeikm j, (1)

�R
n ( j) =

M ′∑
m=1

tmnφmeikm j, (2)

where rmn and tmn are the reflection and transmission ampli-
tudes. Here for each propagating mode m, φm is so normalized
that its group velocity vm = 〈φm|∂kHL(R)(k)|k=km |φm〉 is fixed
to be 1, where HL(R)(k) is the Hamiltonian of lead L (R).

On the other hand, the wave function � of the whole trans-
port system should obey the stationary Schrödinger equation

H� = E�, (3)

where � = (�S, . . . , �L( j), . . . , �R(k), . . . )T , and H takes
the following form:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HS

T · · · 0

0
...

...
0 0 0

0 · · · 0

0
...

...
0 0 T

T † 0 0
...

... 0
0 · · · 0

HL 0

0 0 0
...

... 0
0 · · · T †

0 HR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Here HS and �S are the Hamiltonian matrix and wave function
of the scattering region. T is the nearest-neighboring (NN)
hopping matrix in the normal leads. The Schrödinger Eq. (3)
is composed of three sets of equations, among which the last
two are obeyed exactly by �L and �R described in Eqs. (1)
and (2). The remaining unknown �S can be solved as follows,

�S = G(E )

⎡
⎢⎢⎢⎢⎣

T �L(1)
0
...
0

T �R(1)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
N×1

, (5)

where G(E ) = (E − HS )−1 is the Green’s function of the
scattering region. More explicitly, �S can be written as

�S ( j) = Gja(E )T �L(1) + Gjb(E )T �R(1). (6)

As shown in Fig. 1, cell a (b) in the scattering region is
actually the 0th cell of lead L (R). Correspondingly, their

FIG. 1. (a) Schematic of a two-terminal lattice transport system,
where the centered scattering region is so constructed that it contains
the end unit cells a and b of the half-infinite normal leads. (b) A
quasi-1D lattice, which is part of the transport system. The dashed
line denotes a cross section between neighboring sites j and j + 1,
while the six curved arrows represent the bond currents whose paths
intersect with the dashed line. Here the bonds up to the 3rd NN
hoppings are taken into account.

wave functions should be identical to each other,

�L(0) = �S (a), (7)

�R(0) = �S (b). (8)

According to the above equations, one can determine the co-
efficients rmn and tmn, among which those associated with the
propagating modes constitute a 2M × 2M scattering matrix

S =
[

r t ′
t r′

]
, (9)

where the r (r′), t (t ′) are the M × M reflection and transmis-
sion matrix for the scattering state incident from lead L (R).
Owing to current conservation, S is unitary S†S = SS† = 1,
i.e.,

r†r + t†t = r′†r′ + t ′†t ′ = I, (10)

rr† + t ′t ′† = r′r′† + tt† = I, (11)

r†t ′ + t†r′ = rt† + t ′r′† = 0. (12)

These conservation equations actually guarantee that in a
time-reversal invariant system, the transport property is the
Fermi surface’s property. This means that for any scattering
state with E < EF , in any normal lead, all charge or spin
current contributions from all possible modes with the same
E (which may be incident from the same or different lead)
would cancel each other out.
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Compared with the Green’s function transport method
[58], this one is much simpler and gives directly the wave
function of the scattering region, which is essential in calcu-
lating the transport physical quantities such as the spin and
charge current densities.

B. Conservation laws and charge and spin current densities

Now we discuss the spin and charge conservation laws of
a generic quasi-1D lattice system. Consider a tight-binding
model with multiple NN hoppings, described by

ih̄∂t�( j) = ε j�( j) +
∑

δ=±1,±2,...

Tj, j+δ�( j + δ), (13)

where the spinor wave function �( j) contains both spin and
orbital degrees of freedom. Ti, j is the hopping matrix between
site i and j; ε j is the on-site energy matrix, in which SO
interactions might be included. Introducing the charge and
spin densities ρ( j) = e�†( j)�( j), S( j) = h̄

2 �†( j)σ�( j), to-
gether with the bond charge and spin current densities defined
respectively by

Jc
i, j = 2e

h̄
Im{�†(i)Ti, j�( j)}, (14)

Js
i, j = Im

{
�†(i)

1

2
{σ, Ti, j}�( j)

}
= Js

i, j n̂, (15)

the continuity equations [59–61] of our lattice model can be
derived as

∂tρ( j) + Jc
j+1← j − Jc

j← j−1 = 0, (16)

∂t S( j) + Js
j+1← j − Js

j← j−1 = g( j). (17)

Here g( j) is the spin torque term [59–74], which plays an
important role in SO-coupled systems, and Jc

j+1← j (J
s
j+1← j )

is the charge (spin) current density flowing through the cross
section between neighboring sites j and j + 1. Either of the
current densities can be expressed as the sum over the bond
currents whose hopping paths intersect with the cross section.
As an illustration, for a model system with up to the 3rd NN
hoppings, Jc

j+1← j can be expressed as

Jc
j+1← j = Jc

j+3, j + Jc
j+2, j + Jc

j+2, j−1

+ Jc
j+1, j + Jc

j+1, j−1 + Jc
j+1, j−2,

(18)

which is schematically shown in Fig. 1(b). Js
j+1← j has a

similar expression. Meanwhile, the spin source term g( j)
takes the following form:

g( j) = Im

{
�†( j)

1

2
[σ, ε j]�( j)

}

+
∑

δ

Im

{
�†( j)

1

2
[σ, Tj, j+δ]�( j + δ)

}
.

(19)

If the transport system has SO coupling, g( j) is generally
nonzero, so the spin current is not conserved. Furthermore,
if the system is in a steady state, i.e., ∂tρ( j) = ∂t S( j) = 0,
a conserved charge current density Jc ≡ Jc

j+1← j = Jc
j← j−1

independent of the cross section’s location can be defined,
while the spin current Js( j) ≡ Js

j+1← j still depends on j since
it is generally not conserved. However, for the normal leads,

which are assumed to be SO decoupled, Js is also conserved.
Therefore, for a scattering state n described by Eqs. (1) and
(2), its contribution to the charge and spin current density at
both leads can be given as

Jc
n,R = e

h̄

M∑
m=1

|tmn|2 = e

h̄
(t†t )nn,

Jc
n,L = e

h̄

(
1 −

M∑
m=1

|rmn|2
)

= e

h̄
[1 − (r†r)nn],

(20)

Js
n,R =

M∑
m=1

〈σ〉m|tmn|2 = (t†σt )nn,

Js
n,L = 〈σ〉n −

M∑
m=1

〈σ〉m|rmn|2

= 〈σ〉n − (r†σr)nn,

(21)

where 〈σ〉m = 〈φm|σ|φm〉/〈φm|φm〉. Generically, one has
Jc

n,R = Jc
n,L according to (16), but Js

n,R �= Js
n,L, due to the

spin-torque effect in the NLS. The zero-biased charge (spin)
conductance Gc ≡ dIc/dV (Gs ≡ dIs/dV ) is proportional to
the sum of the current density contributed from each mode,

Gc
R = e2

h
Tr(t†t ) = Gc

L = e2

h
[M − Tr(r†r)], (22)

Gs
R = e

2π
Tr(t†σt ), Gs

L = − e

2π
Tr(r†σr). (23)

Similarly, Gs
R �= Gs

L.

III. TRANSPORT PROPERTIES IN
THE N-NLS-N JUNCTION

In general, the SO-coupled systems often exhibit rich
transport phenomena such as the spin Hall effect [75–77]
and spin-polarized current [62,67,71]. On the other hand, the
transport properties of a scattering system strongly depend
on its Fermi-surface topology. The topological NLSs are thus
expected to exhibit exotic features, since they usually have
both a nontrivial Fermi surface and strong SO coupling. In real
NLS materials, there are always several nodal loops which
could be linked or connected. These topologically nontrivial
geometric structures may have great influence on the transport
properties of the NLSs. In this paper, however, we are only
focused on the NLSs with a single nodal loop. To eliminate
other possible effects, we consider a minimal lattice model as
follows,

HNLS(k) = (m − cos kx − cos ky − cos kz )σx + λ sin kzσz,

(24)
where m, λ are adjustable parameters. When m is prop-
erly chosen to be within 1 < m < 3, this minimal model
describes a topologically nontrivial semimetal with one sin-
gle nodal loop located at kz = 0 and cos kx + cos ky = m −
1, which is independent of λ. This NLS is characterized
by the drumhead surface states, which lie inside the pro-
jection of the nodal loop on the boundary and are pro-
tected by the chiral symmetry ({σy,HNLS(k)} = 0), PT
symmetry (KHNLS(k)K = HNLS(k) with K being the com-
plex conjugation), and mirror symmetry (σxHNLS(kx, ky,−kz )
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FIG. 2. (a) Schematic of the N-NLS-N junction, where two
normal metals are connected to the centered NLS and charge current
is flowing along the z direction. (b) The effective quasi-1D lattice of
the junction, when the translational invariances of the above system
along the x and y directions are taken into account. Here the blue and
red circles represent the unit cells of the normal metals and the NLS,
respectively.

σx = HNLS(kx, ky, kz )) held by the model system. In the fol-
lowing, m = 2.5 is chosen to fix the radius kL of the circle-like
loop to be about π

3 .
To extract the transport features of this NLS, we turn

to investigate its junction with normal metals. Below we
concentrate mainly on the N-NLS-N junction, as schemati-
cally shown in Fig. 2(a). From the viewpoint of Sec. II, the
two normal metals can be seen as the normal leads, whose
Hamiltonian is assumed to be

HN (kN ) = −2
(

cos kN
x + cos kN

y + cos kN
z

) − μ, (25)

where μ is the chemical potential. In most of our calculations,
we choose μ = −4 to fix the radius of Fermi sphere kN

F to be
about π

2 , satisfying kF > kL. Since the whole transport system
has translational invariances along both the x and y directions,
the N-NLS-N junction can be regarded as a quasi-1D one as
demonstrated in Fig. 2(b). The total number of modes in this
situation are 4: spin-up and spin-down forward-propagating
ones and 2 corresponding backward-propagating ones; i.e.,
mode index m =↑, ↓, M ′ = M = 2, and r, t , r′, t ′ become
2 × 2 matrices. From now on we start from this effective 1D
scattering system to analyze the transport phenomena of the
NLS. The hopping matrices T ′

a , T ′
b between the normal leads

and the NLS are also assumed to be T ′
a = T ′

b = γ 12×2 and in
most of the calculations below we choose γ = −1.

A. Nodal loop parallel to the interfaces

We first consider the case where the nodal loop lies within
the kz = 0 plane; i.e., it is parallel to the interfaces. Since
kN

x = kx and kN
y = ky are good quantum numbers, the effective

1D system is actually equivalent to the Kitaev model [78]
describing a p-wave superconductor. The Hamiltonian and its
energy dispersion can be given by

H‖
eff (kz ) = (ξ − cos kz )σx + λ sin kzσz, (26)

E‖(kz ) = ±
√

(ξ − cos kz )2 + λ2 sin2 kz, (27)

FIG. 3. (a) Low-energy dispersion of the effective 1D NLS in
the parallel case for ξ = 1 and ξ �= 1. While the former is gapless,
the latter has a small gap  = |1 − ξ |. (b) The projection of the
nodal loop on the kz = 0 plane, represented by the solid loop,
which together with the two dotted loops forms a blue annulus.
Electrons incoming from within (outside) this area give significant
(vanishingly small) contributions to the transport. The width of the
annulus is estimated to be about λ/N , with N being the number of
layers of the NLS. A, B,C are three representative incident points,
with k⊥

B = ( π

3 , 0), k⊥
A(C) = ( π

3 + δkA(C), 0), and δkA = −0.01, δkC =
0.006. The gray area represents the projection of the normal leads’
Fermi sphere. The interior of the projection loop (shaded area)
represents the drumhead surface states at the interfaces. The inset
gives the 3D geometry of the nodal loop (⊥ z). (c) Schematic of
the scattering mechanism for the complete spin polarization of the
transmitted wave. The horizontal (curved) black arrows represent
propagating (evanescent) modes, while the colored arrows represent
spin orientations, whose coordinate frame is given by the inset in the
lower left.

where ξ ≡ ξ (k⊥) = m − cos kx − cos ky is a varying parame-
ter depending on k⊥ ≡ (kx, ky) of the incident electrons. The
1D system H‖

eff (kz ) is topologically nontrivial if |ξ | < 1 and
trivial otherwise. It is also characterized by the fact that it is
gapless if ξ = 1, but has a finite gap  = |1 − ξ | otherwise,
shown explicitly in Fig. 3(a). The incident electrons with rela-
tively large |1 − ξ | are thus expected to have little contribution
to the electron transport. Since ξ = 1 corresponds to the
projection loop, only the incoming electrons corresponding
to the neighboring area of the loop (ξ − 1 ∼ 0) contribute
significantly to the transport. This area is exhibited as the
blue annulus in Fig. 3(b). The drumhead surface states at
the interfaces are also shown as the shaded region within
the projection of the nodal loop. Without loss of generality,
consider λ > 0. As demonstrated in detail in the Appendix,
when ξ − 1 ∼ 0, H‖

eff (kz ) has four eigensolutions: kz = ±iχ1,
±iχ2, with χ1 = 1−ξ

λ
and χ2 = ln( 1+λ

1−λ
). The generic wave

function can be written as

�S ( j) = (ae−χ1 j + be−χ2 j )φ+ + (ceχ1 j + deχ2 j )φ−, (28)
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where a, b, c, d are superposition coefficients, and φ± =
1√
2
(1,±i)T . While χ2 is nearly independent of ξ and corre-

sponding to the evanescent states localized at the interfaces
with their attenuation length χ−1

2 being approximately a few
lattice constants, χ1 strongly depends on ξ and even χ1 = 0
when ξ = 1. For any finite length N of the NLS system, as
long as |1 − ξ | < λ/N , the two evanescent states correspond-
ing to χ1 can be actually viewed as propagating ones since
their attenuation length χ−1

1 can be comparable with N .

1. Fully spin-polarized transmitted current

Consider the left-incoming scattering states with their k⊥

lying inside the annulus. For a spin-σ incident electron, the
transmitted wave can be written as

�R( j) =
[

t↑σ

t↓σ

]
e−ik j ≡ tσ

[
cos θ

2 e−iφ

sin θ
2

]
e−ik j . (29)

Here the total transmission amplitude tσ of the transmitted
wave is introduced with (θ, φ) being its spin orientation, and
k = k↑ = k↓ ≡ kN

z = cos−1(ξ − 0.5) ∼ π
3 .

We now show that (θ, φ) is independent of the inci-
dent electron’s spin orientation σ , i.e., (θ↑, φ↑) = (θ↓, φ↓) ≡
(θ, φ). To interpret this phenomenon, we study in detail
the scattering process of a representative scattering state,
as schematically shown in Fig. 3(c). When a left-incoming
electron with ξ < 1 for example is incident on the left inter-
face, the transmitted wave consists of two forward evanescent
modes corresponding to term a and b in Eq. (28). Only term a
is actually a “propagating” mode which is capable of reaching
another interface as long as the length N is finite and ξ is
sufficiently close to 1. When this single mode is incident on
the right interface, it will cause a definite transmitted wave
as described by Eq. (29). The reflected wave by the right
interface will then be reflected alternatively by the left and
right interfaces. As a result, the amplitude tσ of the transmitted
wave will be renormalized but with the spin polarization
(θ, φ) left unaltered. Since the “propagating” mode is an
eigenmode of the system, for an incident electron with fixed
ξ , varying its spin orientation can only change this mode’s
amplitude a and thus can only change the total transmission
amplitude tσ , keeping the spin polarization unchanged.

Because all the k⊥ points on the projection loop have
the identical H‖

eff (kz ) with ξ = 1, electrons incident from
them share the same transmitted spin polarization (θ, φ).
However, when the incident k⊥ is scanning along the radial
direction, (θ, φ) varies with ξ , which is shown in Figs. 4(a)
and 4(b). The variation of (θ, φ) is slight if that of k⊥ is
kept within the annulus. Actually, by considering the scat-
tering state of the φ+ mode being incident on the right in-
terface, one can obtain t↑σ /t↓σ = i(η − ieikN

z )/(η + ieikN
z ), and

(θ, φ) can be derived analytically: θ = cos−1( 2η

1+η2 sin kN
z ),

φ = tan−1( 1−η2

2η cos kN
z

), where η = (1 + λ)/2γ 2. Therefore, a
nearly fully spin-polarized transmitted current can be ex-
pected, which is shown in Fig. 4(c). Here for a NLS system
with N = 100, the current polarization P = e|Gs|/h̄Gc can
reach 99.992%. By increasing the length N , higher polar-
ization P can be expected since the width of the annu-
lus proportional to λ/N will become narrower. Numerical

FIG. 4. (a), (b) Spin-polarization angle (θ, φ) of the transmitted
wave as a function of parameter λ. Data are shown for the three
representative incident points denoted in Fig. 3(b). The spin polar-
ization is found to be independent of incident spin orientation, so
θ↑ = θ↓, φ↑ = φ↓. (c) Transmitted charge and spin conductances, as
well as current polarization, as functions of parameter λ.

calculations also reveal that for spin-up or spin-down incident
electrons, the superposition coefficients of the wave function
in NLS Eq. (28) are proportional to each other and obey the
relation a↑/a↓ = c↑/c↓ = d↑/d↓, which is consistent with
our interpretation.

The complete spin polarization indicates that the trans-
mission matrix t is singular, since (t↑↑, t↓↑)T and (t↑↓, t↓↓)T

are proportional to each other because of Eq. (29). One can
thus change the spin basis of lead R to transform t into a
more meaningful form. By rotating the spin axis from z to
that defined by (θ, φ), t becomes (t↑ t↓

0 0 ). According to the
relation between the charge and spin current densities for
a pair of incident electrons with opposite spin orientations,
|Js| =

√
(h̄Jc/e)2 − 4 det(t ), we have Jc = e

h̄ |Js|.

2. Total reflection

As the transmitted wave Eq. (29) for a spin-up
incident electron is proportional to that for a spin-down
one with identical k⊥, indicating that the two properly
superposed transmitted waves could exactly cancel out,
the incident electron whose wave function proportional
to (t↓,−t↑)T would be totally reflected. A specific spin
orientation (θin, φin) for the incident electrons can thus be
defined as (cos θin

2 e−iφin , sin θin
2 )T ∝ (t↓,−t↑)T . Because

t↑/t↓ = i(η + ieikN
z )/(η − ieikN

z ) = −t↓σ /t↑σ = − tan θ
2 eiφ ,

(θin, φin) is found to obey an interesting relation with the
spin-polarization angle (θ, φ) of the transmitted wave:
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FIG. 5. Total transmission probabilities for a pair of incident
electrons with opposite spin orientations as their transverse mo-
mentum k⊥ is scanning along the kx axis and near point B with
k⊥

B = ( π

3 , 0), as denoted in Fig. 3(b). For different chemical potential
μ (or kF ) of the normal leads, all curves peak at locations near point
B. Here λ = 0.5. The insets give the peak location as a function of μ

and λ, respectively. The thick dashed line is the band gap (kx ) =√
3

2 |kx − π

3 | and the thick green solid line denotes the drumhead
surface states.

θin = π − θ , φin = π − φ. By rotating the spin axis of lead
L from z to that defined by (π − θin, π + φin) = (θ,−φ),
the transmission matrix (t↑ t↓

0 0 ) can be further transformed

into (t↗ 0
0 0), where t↗ = cos θ

2 eiφt↑ + sin θ
2 t↓ is the total

transmission amplitude for the incident electron with spin
orientation (θ,−φ). This effect indicates that the NLS
materials could act as spin-valve devices in future spintronics.

3. Resonance of transmission probability and half transmission

The third novel effect is the resonance of transmis-
sion probability. Let us consider a pair of incoming elec-
trons with opposite spin orientations but identical k⊥.
The total transmission probability can be expressed as∑

σ ′,σ |tσ ′σ |2 = Tr t†t . Generically, because of Eq. (10),
Tr t†t = 2 − Tr r†r � 2. However, a stronger inequality can
be proved: Tr t†t � 1. This is because Tr t†t is an invariant
expression which is independent of spin representation. If
we denote the spin states with opposite spin orientations
(θin, φin) and (π − θin, π + φin) as | ↙〉 and | ↗〉, respec-
tively, then Tr t†t = |t↗|2 = |t↑↗|2 + |t↓↗|2 = 1 − |r↑↗|2 −
|r↓↗|2 � 1 since t↑↙ = t↓↙ = 0. When the incident k⊥ is
scanning along the kx axis near kx = π

3 , the transmission prob-
ability Tr t†t at different kF is shown in Fig. 5. The resonance
of Tr t†t occurs for each curve. The peak position weakly
depends on kF but remarkably half transmission Tr t†t = 1
occurs; i.e., all peak values take exactly the value of 1. The
fact that the peak position is near and within the projection of
the nodal loop is evidence of participation of the drumhead
surface states at the interfaces in the transport process. This

FIG. 6. Low-energy dispersion of the effective 1D system of
the NLS in the perpendicular case for (a) kx = 0 and (b) kx �= 0.
While the former is gapless, the latter has a small gap  = λ| sin kx|.
The upper inset gives the red projection line of the nodal loop
and that of the Fermi sphere of the normal leads. The lower one
gives the 3D geometry of the nodal loop (‖z). (c) Schematic of a
representative scattering process occurring in the N-NLS-N junction
in the perpendicular case. Here the symbol p (h) represents the
particle (hole)–like propagating modes.

can be understood as follows. On one hand, the metallic
surface states are expected to give significant contributions
to the transport. On the other hand, as k⊥ is moving away
from the projection loop, the gap increases linearly, leading
to the suppression of their contribution. As a result of the
combination of the two effects, the peak near and within the
the projection loop can be expected, as exhibited in Fig. 5.

B. Nodal loop perpendicular to the interfaces

Second, we discuss the transport properties of the NLS in
the N-NLS-N junction when the nodal loop is perpendicular
to the interfaces. In this situation, the nodal loop of the NLS
described by cos ky + cos kz = 1.5 is located at the kx = 0
plane, which can be obtained by rotating the model system
of (24) about the y axis by 90◦, or just exchanging kz with kx

in the model. Thus the effective 1D Hamiltonian can be given
as

H⊥
eff (kz ) = (ξ − cos kz )σx + λ sin kxσz, (30)

where ξ = 2.5 − cos kx − cos ky. Its energy spectrum is

E⊥(kz ) = ±
√

(ξ − cos kz )2 + λ2 sin2 kx. The gapless (gap-
ful) low-energy dispersion for kx = 0 (kx �= 0) is shown in
Fig. 6(a) [Fig. 6(b)].

1. Partially spin-polarized current

Different from the parallel case, the projection of the nodal
loop in this situation is a line segment, as shown in the inset
of Fig. 6(a). Similarly to the previous discussion, the main
contributions to the transport process come from the incident
electrons with their k⊥ near the projection line. Therefore,
only the regime with kx ∼ 0 needs to be considered. On the
other hand, although ξ shares the same expression to the
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FIG. 7. (a) Spin-polarization angle θ of the transmitted wave as
a function of λ for two representative incident points shown in the
upper inset of Fig. 6. (b) Transmitted charge and spin conductances,
as well as current polarization, as functions of parameter λ. (c) Total
transmission probability Tr t†t for a pair of incident electrons with
identical k⊥ but opposite spin orientations when k⊥ is scanning along
the projection red line. The lower inset is part of the transmission
probability but as a function of the variation of kN

z N . The upper inset
gives that as a function of kx near kx = 0, when k⊥ is scanning along
the kx axis. Here λ = 0.5.

parallel case, here it can vary within a finite region: 0.5 �
ξ � 1. Thus there exist 4 eigensolutions for 1D H⊥

eff (kz ): two
forward (backward)–propagating modes including a particle-
like one kz = k + iχ (−k − iχ ) and a hole-like one kz = −k +
iχ (k − iχ ), where k = cosh−1 ξ and χ = λkx/

√
1 − ξ 2. See

the Appendix for details. The wave function of the quasi-1D
NLS in the junction can be given by

�S ( j) = (ae−ik j + beik j )e−χ jφ+ + (ce−ik j + deik j )eχ jφ−,

(31)

where a, b, c, d are the superposition coefficients. A represen-
tative scattering process is schematically shown in Fig. 6(c).
Quite different from the parallel case within the NLS region,
the scattering state has more than one forward-propagating
mode, leading to a partially spin-polarized transmitted wave.
This also indicates that for each relevant scattering state,
unlike the parallel case, the transmission matrix t is gener-
ically nonsingular. The spin-orientation angles θ for two
representative incident points are exhibited in Fig. 7(a), in
which a quite large splitting of the angles between spin-up and
spin-down incident electrons is found. The polarization P of
this partially spin-polarized transmitted current as well as its

FIG. 8. (a) Microscopic structure of the N-NLS-N junction,
when the nodal loop is intersecting the interfaces at 45◦. The effective
quasi-1D lattice model is also given below. (b) The projection of
the nodal loop on the kz = 0 plane, denoted by the solid line. The
elliptical gray region is the projection of the Fermi sphere of the
normal leads. The interior of the projection loop (shaded area)
represents the drumhead surface states at the interfaces. The inset
gives the 3D geometry of the nodal loop (intersecting z at 45◦).
Low-energy spectra of (c) gapless and (d) gapful quasi-1D NLSs for
the three representative incoming points BB′B′′ and AA′A′′ denoted in
(b), respectively.

spin and charge conductances are shown in Fig. 7(b), giving
P ∼ 10%, much smaller than that of the parallel case.

2. Resonance of transmission probability and perfect transmission

The total transmission Tr t†t of a pair of incident electrons
with opposite spin orientations, however, shows periodic reso-
nance behavior, as can be seen in Fig. 7(c). This is interpreted
as that the scanning of k⊥ along the projection line will lead to
the variation of the wave vector kz of the quasi-1D NLS, which
will then induce a transmission resonance peak whenever the
increase of kzN becomes a multiple of π , as exhibited in the
lower inset. When ky is near 0, perfect transmission Tr t†t =
2 can actually be realized, which is distinct from the half-
transmission behavior in the parallel case. The upper inset of
Fig. 7(c) also gives Tr t†t as a function of kx, when the incident
k⊥ is scanning along the kx axis. Note that similar behavior
was also observed in the NLS state in the hyperhoneycomb
lattice [79]. Different from the parallel case, Tr t†t peaks at
kx = 0 which is on the projection line and the peak value is
between 1 and 2. These differences can be attributed to the
absence of the drumhead surface states in this situation.

C. Nodal loop intersecting the interfaces at 45◦

We now turn to the case where the nodal loop is inter-
secting the interfaces at 45◦ in the N-NLS-N junction. This
situation can be realized by rotating both the NLS model
system (24) and the normal leads about the y axis by 45◦, as
schematically shown in Fig. 8(a). Thus each unit cell of the
corresponding quasi-1D system contains two atoms, leading
to two bands for each spin index in normal leads, which can
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FIG. 9. (a) Spin-polarization angle (θ, φ) of the transmitted wave
for the incident point B denoted in Fig. 8(b) as a function of
parameter λ. Here the nodal loop is intersecting the interfaces at
45◦. The spin polarization is also found to be independent of the
incident electron’s spin orientation, so θ↑ = θ↓, φ↑ = φ↓. (b) Spin-
polarization angle (θ, φ) when the incident k⊥ is scanning along the
projection loop. Here ϕ = 0 corresponds to point B and λ = 0.5.
(c) Transmitted charge and spin conductances, as well as current
polarization, as functions of parameter λ.

be written as

E45◦(
kN

z

) = −2 cos ky − μ ± 4 cos
kx

2
cos

kN
z

2
. (32)

In general, a four-band system often has four forward modes.
However, two forward modes are absent in this case and only
two are left. A similar conclusion can be made about the NLS
in this situation: There only exist two forward-propagating
modes; when k⊥ is near the projection loop, one is particle-
like (or hole-like) and nearly propagating while the other
is evanescent [see Figs. 8(b)–8(d)]. Since there is only a
single forward-propagating mode, a similar mechanism to the
parallel case will lead to the conclusion that for any scattering
state, the transmitted wave will be fully spin polarized. But
unlike the parallel case, the reflected backward-propagating
mode is replaced here by a hole-like (or particle-like) one.
For a representative scattering state, we demonstrate the com-
plete spin polarization of the transmitted wave in Fig. 9(a).
Similarly, for each scattering state, there is a special incident
spin orientation (θin, φin) corresponding to the total reflection,
and the resonance of transmission probability Tr t†t and half
transmission also occurs. Furthermore, the incident points
on the projection loop with different k⊥ are described by
different effective 1D Hamiltonians, resulting in different spin
orientations of the transmitted waves, as shown in Fig. 9(b).
This then leads to the nearly fully spin-polarized transmitted
wave, as the current polarization P can be varying between

FIG. 10. The spatial distributions of nonzero spin current density
and spin torque in the NLS of the junction for the parallel case,
where the scattering state is for a pair of incident electrons from
lead L with identical k⊥ but opposite spin orientations. (a) Near the
interfaces. (b) Away from the interfaces. Here λ = 0.5 and k⊥ =
(π/3 − 0.005, 0).

94% and 98% in the parameter space studied, as can be seen
in Fig. 9(c).

D. Spin current density and spin torque in the NLS

Now we analyze the nonconserved spin current density
and spin torque in the NLS of the junction introduced in
Sec. II. We take the parallel case to demonstrate the novel
spin transport. According to Eq. (19), and by reexpressing the
site-independent ε j and Tj, j+1 as ε j = h · σ, Tj, j+1 = t s · σ =
T ∗

j+1, j , with h = (ξ, 0, 0) and t s = (−1/2, 0,−iλ/2), the spin
torque g( j) can be rewritten as

g( j) = − Re{�†( j)σ × [h�( j)

+ t s�( j + 1) + t∗
s �( j − 1)]}. (33)

Here �(−1) = �(N + 1) ≡ 0. For an arbitrary scattering
state, it can be exactly proved that gy( j) = 0, except for j = 0
or N . The nonzero terms are gx( j) and gz( j), which take
relatively larger values only near the interfaces while they take
the form gx( j) = 0 and gz( j) = (ξ − cosh χ1)(|a|2e−2χ1 j −
|c|2e−2χ1(N− j) ) when away from the interfaces, as shown
in Fig. 10. The spin current Js( j) ≡ Js

j+1← j = Js
j+1, j can

be derived as Js( j) = Im[t s�
†( j + 1)�( j)], which means

Js
y ( j) = 0. Actually, we even have Js

x ( j) = 0 and Js
z ( j) can

also be given analytically by Js
z ( j) = −λ(|a|2e−χ1(2 j+1) +

|c|2e−χ1(2N−2 j−1))/2 when away from the interfaces. For a
pair of incident electrons with identical k⊥ but opposite
spin orientations, their contribution to the spin currents in
lead R is Js

R = |t↗|2(sin θ cos φ, sin θ sin φ, cos θ ). Notice
that electrons with the same k⊥ but incident from lead R
will also be transmitted to lead L with their spin nearly
fully polarized at (θ ′, φ′). Because of the symmetry of the
transport system, if we make a spin rotation about x by
180◦ (σy → −σy, σz → −σz), the right incident scattering
states can be equivalent to the left ones. This implies that
the spin-polarization angle (θ ′, φ′) satisfies θ ′ = π − θ , φ′ =
−φ. Thus for the pair of electrons, their contribution to the
spin current in lead L is Js

L = |t↗|2(sin θ ′ cos φ′, sin θ ′ sin φ′,
cos θ ′) = |t↗|2(sin θ cos φ,− sin θ sin φ,− cos θ ). Although
|Js

R| = |Js
L|, Js

R �= Js
L, which means that the spin torque ex-

isting in the NLS plays a role in transforming the spin current

075125-8



SPIN AND CHARGE TRANSPORT IN TOPOLOGICAL … PHYSICAL REVIEW B 101, 075125 (2020)

FIG. 11. Schematic low-energy dispersion of the effective 1D
multiband NLS when the nodal loop is parallel to the interfaces, with
k⊥ (a) on or (b) near the projection of the nodal loop. (c) Schematic
of the scattering mechanism occurring in the N-NLS-N junction in
this situation. As before, the colored arrows denote spin orientations
while the black straight (curved) arrows denote the propagating
(evanescent) modes.

in lead L to that in lead R. If we denote the increase of the
spin current due to the spin torque by the two interfaces as
δJs

L(R), we have δJs
L,x = −δJs

R,x and δJs
L,y = δJs

R,y. For δJs
z ,

the difference δJs
R,z − δJs

L,z actually equals the sum of the
small spin torque gz( j) over the whole NLS region. Finally,
for the spin conductance, the above argument also leads to
(Gs

L,x, Gs
L,x, Gs

L,z ) = (Gs
R,x,−Gs

R,y,−Gs
R,z ).

E. Generalization to the multiband NLSs and discussion

All our conclusions above on the NLS including the com-
plete spin polarization, total reflection, and half transmission,
are based on the minimal model Eq. (24). We now argue
that most of these phenomena are model independent and
should be the general features of the Weyl NLSs possessing
one single doubly degenerate nodal loop. To demonstrate this
point, we consider a 2n-band (n � 2) Weyl NLS with the
nodal loop parallel to the interfaces. The doubly degenerate
nodal loop can be seen as the intersection between the two
lowest-energy bands. The energy spectrum of the quasi-1D
NLS in the junction also has two low-energy bands, as
schematically shown in Figs. 11(a) and 11(b). Thus when the
incident k⊥ is on the projection loop, among the n forward
modes, there is a propagating one with kz = 0 whereas the
others are evanescent ones. Then when k⊥ is close to the
projection loop, the propagating mode becomes nearly prop-
agating with kz being a quite small imaginary number. As a
result, only the nearly propagating one can reach the right
interface [Fig. 11(c)]. The other n − 1 evanescent forward
modes do not play an important role in the transport. As long
as each incident k⊥ on the projection loop shares the identical
or similar quasi-1D effective Hamiltonian, the existence of
this one single forward-propagating mode will lead to the
conclusions mentioned above according to similar argument.
The doubly degenerate Weyl nodal loop is crucial here, since
a fourfold-degenerate Dirac NLS for example would result in

two forward-propagating modes, which would then lead to
trivial conclusions. The doubly degenerate nodal fermions
can be expected to be realized in SO-coupled or ferromagnetic
materials such as PbTaSe2 [16] and Co2MnGa [53]. But we
note that our conclusions cannot be applied directly to these
two Weyl NLS materials, because both of them have multiple
nodal loops, resulting in elimination of the spin polarization
of the transmitted current. We also note that in Weyl NLS
ferromagnetic materials Li3(FeO3)2 [80] and Fe3GeTe2 [81],
the spin degree of freedom is fully quenched by the large
ferromagnetic polarization and thus these two half-metallic
materials can be viewed as spinless ones, indicating that they
still cannot serve as the candidate materials.

In all the above discussion, the Fermi level is fixed at the
nodal line of the NLS, i.e., E = 0. A slight deviation of E
from 0 in the actual situation would lead to the replacement
of the nodal line by a 2D torus Fermi surface. We now argue
that this does not change any of the above main results. The
projection of the 2D torus on the interfaces is an annulus.
When the transverse momentum k⊥ of an incident electron
is within the annulus, besides many evanescent modes, there
exist two propagating ones with real kz solutions given by

kz = ± cos−1(
ξ−

√
ξ 2λ2+(λ2−1)(λ2−E2 )

1−λ2 ), among which only one
is forward-propagating, leading to results similar to the main
ones mentioned above.

IV. SUMMARY

We have introduced a wave-function method in lattice form
to study transport properties of Weyl NLSs. This method
gives directly the wave function of the scattering region,
based upon which we have further derived the charge and
spin conservation laws and currents. Our study on a junction
made up of a Weyl NLS and normal metals indicates that
the Weyl NLSs possessing a single nodal loop parallel to
the junction interfaces have novel spin transport properties:
Incident electrons with a special spin orientation would be
totally reflected. The surface-state involved half transmission
occurs as the transmission resonance. The transmitted charge
current is nearly fully spin polarized. These phenomena can
be attributed to the existence of only one forward-propagating
mode in the NLS of the junction. This picture is found to be
model independent and has been generalized to the case of
multiband Weyl NLSs. All these features are expected to be
verified by future transport experiments and would be also
helpful in detecting new Weyl NLS materials.
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APPENDIX: EIGENSOLUTIONS OF THE QUASI-1D NLS

In this Appendix we give in detail the eigenmodes of the
quasi-1D NLS in the N-NLS-N junction. We first consider the
parallel case where the nodal loop is parallel to the interfaces,
discussed in Sec. III A. All solutions of kz together with their
corresponding eigenmodes can be obtained by solving the
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TABLE I. Classification of wave vector kz in the quasi-1D NLS in the parallel case. Here f±(ξ, λ) ≡ ξ±
√

ξ2+λ2−1
1−λ

and λ > 0.

Nodal Loop ‖ Interfaces

0 < λ < 1 λ > 1
√

1 − λ2 < ξ −√
1 − λ2 > ξ |ξ | <

√
1 − λ2 ξ − 1 ∼ 0 |ξ | = √

1 − λ2 ξ > 0 ξ − 1 ∼ 0 ξ < 0

k1 0 π cos−1 r√
1−λ2

0 0 0 0 π

χ1 ln f−(ξ, λ) ln f−(−ξ, λ) tanh−1 λ 1−ξ

λ

1
2 ln 1+λ

1−λ
ln f−(ξ, λ) 1−ξ

λ
ln[− f+(ξ, λ)]

k2 0 π − cos−1 r√
1−λ2

0 0 π π 0

χ2 ln f+(ξ, λ) ln f+(−ξ, λ) tanh−1 λ ln 1+λ

1−λ

1
2 ln 1+λ

1−λ
ln[− f+(ξ, λ)] ln 1+λ

1−λ
ln f−(ξ, λ)

eigenequation of Eq. (26) for E = 0. It is found that there are
always 4 solutions of kz in total and the propagating modes
(kz = 0) exist only for ξ = 1. Thus kz of a generic solution
has to be complex and can be expressed as k + iχ . Here k and
χ are real variables obeying

sin k(sinh χ ± λ cosh χ ) = 0,

cos k(cosh χ ± λ sinh χ ) = ξ .
(A1)

The symbol “±” means that the above two equations take a
“+” or “−” sign simultaneously. Without loss of generality,
we assume λ > 0. If kz is a solution for eigenmode φ, k∗

z is
also one for eigenmode φ∗, leading to the four solutions of kz:
k1 + iχ1, k2 + iχ2 corresponds to φ+ = 1√

2
(1, i)T , and k1 −

iχ1, k2 − iχ2 corresponds to φ− = 1√
2
(1,−i)T with |χ1| �

|χ2|. All kinds of solutions for k1, k2, χ1, and χ2 at different
situations are summarized in Table I. The wave function in the
NLS can be generally expanded as in Eq. (28) in the main text.
For any relevant scattering state described in Eqs. (1) and (2),
these coefficients together with rmn and tmn can be determined
by solving the following four Schrödinger equations for the
unit cells near the interfaces,

T �L(1) + HL(0)�L(0) + T ′†
a �S (0) = E�L(0),

T ′
a�L(0) + HS (0)�S (0) + TS�

S (1) = E�S (0), (A2)

T †
S �S (N − 1) + HS (N )�S (N ) + T ′

b�R(0) = E�S (N ),

T ′†
b �S (N ) + HR(0)�R(0) + T �R(1) = E�R(0),

where TS is the NN hopping matrix in the NLS and T ′ is
that connecting the normal leads to the NLS. The number of
layers of the NLS is N + 1. If all the wave functions could
be expressed analytically, by extending the range of j in �L,
�R from j � 0 to j � −1, and j in �S from N � j � 0 to
N + 1 � j � −1, the above equations can actually be greatly

simplified,

T †�L(−1) = T ′†
a �S (0), T ′

a�L(0) = T †
S �S (−1),

T †�R(−1) = T ′†
b �S (N ), T ′

b�R(0) = TS�
S (N + 1).

(A3)

Next, we consider the perpendicular case where the nodal
loop is perpendicular to the interfaces, discussed in Sec. III B.
In a similar way, by solving the eigenequation of Eq. (30)
for E = 0, the four solutions of kz can be obtained: kz =
±k ± iχ , where ±k + iχ (±k − iχ ) corresponds to eigen-
mode φ+ (φ−). In this case, kx is a good quantum number act-
ing as a varying parameter. It is found that φ± = 1√

2
(1,±i)T ,

when kx �= 0, and φ± = 1√
2
(0,±1)T otherwise. k and χ are

found to obey

sin k sinh χ = λ sin kx,

cos k cosh χ = ξ .
(A4)

All solutions for k and χ are summarized in Table II. Then
the wave function in this case can be given by Eq. (31) in the
main text, where the coefficients a, b, c, d can be determined
similarly according to Eq. (A2).

TABLE II. Classification of wave vector kz in the quasi-1D NLS
in the perpendicular case. Only the most interesting regime for which
kx ∼ 0 is given here.

Nodal Loop ⊥ Interfaces

kx ∼ 0

|ξ | � 1 ξ > 1 ξ < −1

k ∼ π

2 − sin−1 ξ ∼ λkx√
ξ2−1

∼π − λkx√
ξ2−1

χ ∼ λkx√
1−ξ2

∼ cosh−1 ξ ∼ cosh−1 |ξ |
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