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Lattice dynamics of palladium in the presence of electronic correlations
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We compute the phonon dispersion, density of states, and the Griineisen parameters of bulk palladium in
the combined density functional theory (DFT) and dynamical mean-field theory. We find good agreement
with experimental results for ground-state properties (equilibrium lattice parameter and bulk modulus) and the
experimentally measured phonon spectra. We demonstrate that at temperatures 7 < 20 K the phonon frequency

in the vicinity of the Kohn anomaly, wr(qk ), strongly decreases. This is in contrast to DFT where this frequency
remains essentially constant in the whole temperature range. Apparently, correlation effects reduce the restoring
force of the ionic displacements at low temperatures, leading to a mode softening.
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I. INTRODUCTION

The vibrational spectrum is a key quantity for understand-
ing the interatomic interactions in a material. For solids,
various inelastic scattering techniques exist to measure the
phonon dispersion relation. These results can be readily
compared with calculations within density functional theory
(DFT) [1-4]. Within the DFT, a frequently used method to
compute the phonon dispersion relation is the frozen phonon
approach based on total energy calculations. The same for-
malism is also used to compute ground-state properties such
as equilibrium lattice parameters and bulk modulus. In the
past decade it has been demonstrated that within the combined
DFT and dynamical mean-field theory (DMFT) [5-8], the so-
called DFT+DMFT approach [9,10], many of the electronic
ground-state properties of d-metal elements, their alloys and
compounds can be properly described [9—12]. This is also true
in the case of palladium where results of the local density
approximation (LDA) for the bulk modulus turns out to over-
estimate the experimental value by more than 10%. Indeed,
using LDA+DMFT it was shown [13] that the experimental
volume V = 99.3 a.u.? is reproduced and that the difference
in the bulk modulus from the experimental value is reduced to
less than 1%. In addition, the results for the spectral function
demonstrate the existence of a high-energy satellite formation
in agreement with experiment [14]. In our previous study we
also discussed the importance of local and nonlocal correla-
tion effects [13] by comparing the LDA+DMFT results with
the self-consistent quasiparticle GW approach [15,16]. More
recently, a LDA+DMFT study [17] using a quantum Monte
Carlo impurity solver found comparable electronic effective
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mass as in Ref. [13]. In addition, in Ref. [17], employing a
lattice (k-dependent) FLEX solver resulted in a self-energy
with weak k-dependence. These results show the importance
of including local, dynamic correlation effects in computing
the ground-state properties of Pd.

The goal of this paper is to calculate the changes in the
phonon dispersions and phonon density of states of elemental
solid palladium under pressure when electronic correlation
effects are included. In addition, we investigate the volume de-
pendence of the phonon frequencies, i.e., the mode Griineisen
parameters. We employ the quasiharmonic approximation
(QHA), according to which the harmonic approximation holds
at every volume, and the harmonic frequencies are replaced
by renormalized volume dependent frequencies [18,19]. It has
been shown in the case of Pd that the QHA describes thermal
dilation effects accurately and that higher order corrections
are three orders of magnitude smaller for temperatures up to
the melting temperature [20].

Early experimental studies of the phonon spectra in pal-
ladium were performed by Miiller and Brockhouse [21-23]
using neutron scattering, and a Kohn anomaly at a vector
around q = 27”[0.35, 0.35, 0] was proposed. The analysis by
Freeman et al. [24] showed a pronounced enhancement of the
generalized susceptibility (Lindhard function) at a g-vector
of around 27”[0.325, 0.325, 0]. Later, Savrasov and Savrasov
[25] and Takezawa [26] reported numerical studies where
they found no signature of phonon anomalies in Pd. Stewart
[27] reported a softening in the phonon dispersion at around
q= 27”[0.3, 0.3, 0] using DFT, which still somewhat underes-
timated the experimental value. He showed that the electronic
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degrees of freedom are responsible for the softening of the
phonon mode. However, Liu et al. [28] pointed out that the
observed Kohn anomaly by Stewart depends sensitively on
the technical details of the simulation. They observed that the
Kohn anomaly vanishes when a calculation is performed with
a denser k-mesh. Recently, Dal Corso [29] investigated the
influence of various exchange correlation functionals on the
phonon spectrum in transition and noble metals. This included
the zero-point anharmonic expansion (ZPAE) [30] and the
thermal expansion of the lattice constant, which also affects
the equilibrium bulk modulus [31,32]. He showed that the
LDA calculations overestimate the experimentally measured
phonon frequencies by 5% while the generalized gradient
approximation (GGA) [33] underestimates them by about 7%
at the high symmetry point L = Z[1, 1, 1].

Until now, the numerical modeling of phonons in Pd did
not include correlation effects. Following up our previous
work, in this article we compare the results of the lattice
dynamics obtained by LDA and LDA+DMFT. In Sec. II
we discuss the details of the calculation and in Sec. III we
briefly describe the methodology of frozen phonon calcula-
tions within the LDA and LDA+-DMFT method. In Sec. IIT A
the phonon dispersion curves are computed within the Born-
Oppenheimer (BO) adiabatic approximation including DMFT
corrections for the electrons by assuming the system to be
perfectly harmonic. In Sec. IIIB we calculate the mode
Griineisen parameters which can be employed to assess the
anharmonicity on the level of the QHA. Namely, although
the QHA neglects cubic or quartic terms in the expansion
of the Born-Oppenheimer energy surface, it includes the
anharmonic strain- or volume-dependence of the frequencies.
Section IIIC addresses the finite temperature behavior of
a specific mode close to the Kohn anomaly. The phonon
frequencies computed within LDA4+DMFT show a strong
temperature dependence which is not observed in DFT(LDA).
The article is closed with a brief conclusion in Sec. IV.

II. COMPUTATIONAL DETAILS

Pd crystallizes in the face-centered cubic structure (Fm3m
space group) with a one-atom basis. The palladium atom is
located at the Wyckoff position 4a, i.e., (0,0,0). We performed
a lattice relaxation within LDA with the parametrization of
Perdew and Wang [34] for the exchange-correlation func-
tional. In the present study we employ the full-potential
linearized muffin-tin orbitals (FPLMTO) method, as imple-
mented in the RSPT code [35-37]. We used three kinetic
energy tails with corresponding energies —0.3, —2.3, and
—1.5Ry. The muffin-tin radius was set to 2.45 a.u. and was
kept constant for all unit-cell volumes. For the charge density
and the angular decomposition of the potential inside the
muffin-tin spheres a maximum angular momentum /y,x = 8
was set. The calculations include spin-orbit coupling and
scalar-relativistic terms. Brillouin-zone integration was per-
formed using a Fermi-Dirac function (thermal broadening).
The k-mesh grid is 16 x 16 x 16 for the equations of state.
To go beyond the LDA and include electronic correlations the
local interaction term 1/2 Zm Ui, MMCI]CLCM ¢, 1s added
to the Hamiltonian, where A; = (m;, 0;). Here the operators
cg) annihilate (create) electrons on the orbital m; with the

spin z-projection o; =1, |. The summation over the set of
basis functions {m; = —[, ..., 1} (I =2) is restricted to the
correlated subset (the 4d-orbital subspace in our case). We
used the so-called muffin-tin-only correlated subspace which
corresponds to basis functions which are zero outside the
muffin tin region; see Sec. II in Refs. [36,38] for addi-
tional information about the basis-function dependence. The
interaction matrix elements U, j,1,1, are components of a
rotational invariant fourth-rank tensor. These are computed
from the on-site Slater-Koster integrals using atomic wave
functions [39]. The averaged local Hubbard interaction U is
varied in the range from 0.75 to 1.30 eV, while the Hund’s
rule coupling is kept fixed at J/ = 0.3 eV. A double-counting
correction is included to cancel the contributions due to the
total energy functional originating from the electron-electron
interaction captured within the exchange-correlation func-
tional of DFT. This correction is applied to the self-energy
[36]: X5, (iw,) = Ty, (iwn) — Efgz(O) with E,\D]CM(O) =
Smmy /(2L + 1) Zm; Yinso.mse, (0), since this is known to be
the appropriate correction for metals, which ensures Fermi-
liquid behavior [40]. We note that the frozen-phonon approach
is not limited to a specific choice of double-counting. The
spin-polarized T-matrix fluctuation exchange approximation
(Sp-TFLEX) [41] on the Matsubara domain was used as an
impurity solver for the DMFT problem. Throughout this paper
finite temperatures are only considered for the electronic
subsystem, where the temperature enters in the Matsubara
frequencies w, = 2n+ )nT, (n € Z). We chose the same
temperature for the imaginary-frequency Matsubara mesh
in DMFT as for the Brillouin-zone integration. The elec-
tronic charge was updated self-consistently in all LDA and
LDA+DMFT calculations [36]. The LDA+DMEFT results do
not change significantly in the temperature range from 275 to
325 K, which allows for a comparison between our results
(T =316K) and the experimental data measured at room
temperature. In the search of a mode softening in the vicinity
of the Kohn anomaly we also performed a finite temperature
study in an extended temperature range down to 15 K.

For the frozen phonon superlattice we used the Brillouin-
zone integration by Fourier quadrature, which permits us to
keep the k-mesh density (namely, 16 x 16 x 16 k-points per
fce Brillouin zone) consistent in all calculations [42]. This
minimizes systematic numerical errors when total energies are
compared. We estimated errors due to k-mesh sampling for
the LDA study by computing all phonon frequencies using
a denser k-mesh of 32 x 32 x 32 within the fcc Brillouin-
zone for the frozen phonon calculations. The error estimates
for the phonon frequencies were computed as the differ-
ences A,(q) = |0y (Q)fine — @y (Qsparse|, Where w,(q)gine and
@y (qQ)sparse denote the phonon frequencies which are com-
puted using the 32 x 32 x 32 and 16 x 16 x 16 k-mesh, re-
spectively. We found that A, (q) is smaller than 3 meV. In the
presented Figures, we indicate the errors due to finite k-mesh
sampling. The same error estimates have been performed for
the LDA+DMFT calculations for the zone-boundary phonon
frequencies. The LDA+DMFT error estimates are found to be
smaller than their corresponding LDA values. The reduction
of the sensitivity of the LDA+DMFT results as compared to
the LDA results is expected to originate from the broadening
of the one-electron spectra due to many-body effects. A fine
g-mesh grid of 24 x 24 x 24 is used to compute the phonon
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TABLE I. Left part: Volume V for various methods (upper part) and experiments (lower part). Middle part: Computed or experimentally
measured pressure P, and isothermal/adiabatic bulk modulus K,_r/s in the upper part and lower part, respectively. The computed values for
the bulk modulus K, includes a correction term for the pressurized sample. The computations where done at 7 = 316 K and the experiments
have been performed at room temperature as well. Right part: Zone boundary frequencies computed under adiabatic conditions are compared

with the experimental phonon frequencies [21].

w,(q)

Method V (aud) P(GPa) K, (GPa)? x Refs. (L, L) (L,L7) X, X7) (X, X)
LDA 95.94 0 226.6 T/S [13] 30.2 13.6 30.0 20.7
LDA 99.30 -10.3 186.5 T/S [13] 27.9 12.8 27.7 19.3
LDA+DMFT 95.94 4.5 225.7 S [13] 30.9 13.7 30.3 20.8
LDA+DMEFT 99.30 —6.0 186.0 S [13] 28.5 13.0 28.1 19.4
Exp 99.30 0 195 S (21,531 28.2 13.0 27.5 18.8
Exp 99.30 0 189 T [54] - - - -
Exp 99.30 0 193 T [55] - - - -

#The values in the K, column correspond either to the adiabatic (K,_s) value, the isothermal (K,_r) value, or to both when K7 and K; coincide
in the 7 = 0 formalism. The difference between the reciprocal values 1/Ks (Ref. [21]) and 1/Kr (Ref. [54]) is 1/Kr — 1/Ks = VT B?/Cp,
where Cp is the heat capacity and constant pressure, and § = 1/V (dV/9T ), is the volumetric thermal expansion coefficient.

The bulk modulus is computed from the elastic constants (Ref. [53]).

density of states (DOS) employing the tetrahedron integration
method [43] after fitting to a five nearest-neighbor Born—von
Karman (BvK) force constant model.

III. PHONON CALCULATIONS FROM FIRST PRINCIPLES

The frozen phonon approach [44,45] is frequently used to
calculate the phonon spectra. In this method the eigenvector
of the given phonon is obtained from symmetry considera-
tions when the appropriate atomic displacements are frozen
in. The associated lowering of the symmetry corresponds to
supercells of dimensions that match the phonon wavelength.
In this way the method is not limited to the linear response
of the energy functional with respect to lattice vibrations. A
shortcoming of the frozen-phonon method is the supercell
size, which may become impractically large, especially when
long-wavelength phonons are considered.

The linear response method in combination with LDA+
DMFT was first applied on the Mott insulators, NiO and
MnO [46], and is currently being further extended [47—49].
In combination with the many-body (LDA/GGA) + DMFT
approach the frozen phonon technique was used to compute
the phonon spectrum of the elemental metals, namely Fe
(Ref. [50]) and Pu (Ref. [51]), as well as the compound KCuF3
(Ref. [52]). Below we take the frozen-phonon approach and
present results for the phonon band structure and the corre-
sponding phonon density of states of palladium using the LDA
and LDA+DMFT approach.

A. Phonon dispersions and density of states

In the BO approximation the nuclei are considered immo-
bile during the characteristic electronic time scales. Within
the harmonic approximation the potential energy surface is
expanded up to second order in the ionic displacement. The
equation of motion for the ionic subsystem is determined
by the BO energy surface, obtained from the total energy
within the LDA and LDA+DMEFT. Its solution specifies the
eigenmodes of a vibration with the characteristic frequencies

w,(q), where the index v = 1, 2, 3 enumerates the three linear
independent phonon branches. The relation between the sym-
metry adapted basis |v) and the Cartesian basis is explained in
the Appendix.

In Figs. 1(a) and 1(c) we present the phonon dispersion
curves computed at the LDA equilibrium volume and at the
experimental equilibrium volume, respectively, in comparison
with the experimental measurements [21]. We find a good
qualitative agreement with the experimentally measured dis-
persion curves (see also Table I). For the LDA equilibrium
volume (VLpa) the phonon frequencies are overestimated for
most of the q-points. This overestimation can be corrected
considering the experimental equilibrium volume Vg, which
is larger than Vipa [13]. Hence, the phonon frequencies
computed with Vg,, correspond to the values which would
be obtained for a negative pressure of P = —10.3 GPa (see
also Table I). We find that by including electronic interactions
of U =0.75eV and J = 0.3eV does not improve the LDA
results further. The bulk modulus and lattice constant com-
puted within LDA+DMFT, however, show a better agreement
with experiment than the LDA result [13]. One significant
difference is observed along the [110]-direction [see Figs. 1(a)
and 1(c)], namely, the mode softening obtained within the
LDA at q = 27”[0.32, 0.32, 0] in the 7; branch (see the Ap-
pendix for definition of the branch labeling) is reduced within
LDA+DMEFT. Hence, the presented result, computed at high
temperatures, is not in line with the experiment. A detailed
study on the temperature dependence of the mode in the vicin-
ity of q = 27”[0.32, 0.32, 0] will be presented in Sec. IIIC.
There it is shown that at lower temperatures (7" < 15K) the
mode softening is well described within LDA+DMFT.

In Figs. 1(b) and 1(d) we present the phonon DOS com-
puted at the LDA equilibrium volume and at the experimental
equilibrium volume, respectively, and compare the LDA and
LDA+DMFT phonon DOS with the experimental results. The
main features of the experimental DOS are the two peaks
at around 20 and 25 meV. At V = 96.0a.u.® we find that
both within the LDA and LDA+DMEFT the peak positions
are shifted up compared to the experimental phonon DOS. At
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FIG. 1. Computed phonon dispersions along the main symmetry
directions for the LDA equilibrium volume [Fig. 1(a)] and the
experimental volume [Fig. 1(c)]. The computed phonon spectra
in LDA and LDA+DMFT are shown with blue and red symbols
respectively. The experimental dispersion curves of Pd measured
at room temperature (296K) are taken from Ref. [21] (black
boxes). The solid lines are fits to a five nearest-neighbor Born-von
Karman (BvK) force constant model. The Fermi-surface nesting
VeCtor (pest = 27”[0.32, 0.32, 0] is indicated by the vertical arrow.
Figs. 1(b) and 1(d): Computed phonon DOS at the LDA equilibrium
volume and experimental equilibrium volume, respectively.

V =99.3a.u.’ the lower peak (around 20 meV) is captured
by both the LDA and LDA4-DMFT method, while the higher
peak (around 25 meV) is shifted up in both methods. In
LDA+DMEFT the peak position (around 25 meV) in the DOS
agrees well with the experiment, since it is only shifted by
about 1 meV.

In Fig. 2 we compare phonon spectra computed at 316 K
for different values of the local Hubbard interaction U with
the experimental results measured at room temperature [21].
For U = 0.75eV and J = 0.3 eV the overall agreement with
the experimental phonon dispersion is good, differences being
similar to those in the case of the LDA results. For U =
1.0eVand U = 1.3eV at T = 316K we find that the phonon
frequencies are higher than those obtained within the LDA.
Furthermore, the phonon frequencies are found to increase
with increasing Coulomb interaction strength, i.e., the modes
become stiffer.

The softening of the phonon dispersion along the X-
line (Quest = 2£[0.32,0.32,0]) is not described by the
LDA-+DMEFT results for any of the investigated interaction
strengths. This will be further discussed in Sec. III C, where
we address the finite temperature behavior of the phonon
frequencies.

B. Phonon dispersion at different volumes
In the first attempt to analyze the volume dependence of
the phonon frequencies on a quantitative level, it is useful
to consider the Griineisen parameter ¥.°(q). It represents the
relative change of w, (q) with isotropic change in volume for
a particular phonon branch v at the symmetry point q, and is

computed according to
V. (dw,(q)
— . ey
wy(q)\ 9V

ye(q) = —

Usually the values of y,9(q) are positive and lie in the range
1.5 £ 1.0 (Ref. [56]), where a larger value suggests that an-
harmonic effects are important for the particular phonon mode
of interest. This is only valid when anharmonicity is weak to
start with. Using the values provided by Eq. (1), we computed
the average Griineisen parameter (y9) defined as (y%) =
>, 173V [ dqyf(q). We also computed the thermody-
namic Griineisen parameter which within the QHA takes the
form: y§ =3,,Cv(@, )1 (@)/>,,Cv(q,v). The spe-
cific heat per mode has the form Cy (q, v) = kgx?e*/(e* — 1)?,
with x = hBw,(q). We find that thG is essentially equivalent
to the average value (y©) (see Table II). The main effect of
electronic correlations is a decrease of ,§ by about 10%. We
provide these results with the following interpretation: We
know from previous studies [13] that electronic correlations
lead to a softening of the lattice it can be expected that the
coupling between phonon degrees of freedom and the volume
are reduced. Hence, the Griineisen parameter is expected to be
reduced by correlation and that is what is seen.

In Fig. 3 we present the phonon frequencies at the zone
boundaries as a function of the unit-cell volume V in LDA
and LDA+DMFT. Red and blue decorated lines correspond to
transversal and longitudinal modes, respectively. Upon lattice
expansion (increasing volume) phonon modes are seen to
become softer. Note that in the studied range the phonon fre-
quencies decrease almost linearly with the volume, and within
a good approximation the linear curves are shifted rigidly
by an amount $w,(q = X, L) = 0,(q)°T — w,(q)"PA (see
also Table II). These results indicate that the correlation
effects lead to a stiffening of the lattice. As seen in Fig. 3,
the frequency shifts due to volume expansion are significant
in the considered volume range in comparison with the error
estimates for the L, , X5, X5~ modes, while this is not the
case for the L; mode. In Table II we present the values of
the )/UG (q) for the modes X, , Ly, X;", and L; in LDA and
LDA+DMFT. The results show that ¥,°(q, v) is larger for
the longitudinal modes X; and L, than for the transversal
modes L and X" The overall effect of electronic correlations
is the significant reduction of y.°(q, v) for the longitudinal
modes, while for the transversal modes yVG (q, v) remains
almost unchanged (X5~ mode) or even increases (L; mode).

C. Phonon dispersion at different temperatures

In the previous sections we discussed LDA+DMFT results
for phonon spectra calculated at 316 K. For the wave vector
q= 27”[0.375, 0.375, 0], which is close to the nesting vector
Qnest> the phonon modes were found to become stiffer with
increasing Coulomb interaction strength.
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FIG. 2. Computed phonon dispersion curves along the main symmetry directions for the experimental volume for different values of U and
J, where the LDA result corresponds to the case when U = J = 0eV. The experimental dispersion curves of Pd recorded at room temperature
are taken from Ref. [21] (black boxes). The connecting lines were obtained by fitting the data to a five nearest-neighbor Born-von Karman

force constant model.

In this section we present results of LDA4+DMFT calcu-
lations performed in a wide temperature range for interaction
parameters U = 1.00eV and J = 0.30eV. We used the har-
monic approximation and, consequently, the renormalization
of phonon frequencies is only due to the electronic correla-
tions at finite temperatures while the anharmonic (phonon-
phonon) terms are ignored.

Within the LDA it is easy to compute the phonon spectra
at finite temperatures since this requires only a multiplication

-0 LDA LZ'
o—a LDA+DMFT Lz'

©0-0 LDA XJ'
o—a LDA+DMFT Xs'

-0 LDA L;
E—a LDA+DMFT LJ.

o -0 LDA X/
©&—o LDA+DMFT XS'

100

96 97 98 99 100 96 97 98 99

V(au’) V(au’)

FIG. 3. Computed phonon frequencies at the high symmetry
points L [Figs. 3(a), 3(c)] and X [Figs. 3(b), 3(d)] as a function of the
volume computed in LDA (disc symbol) and LDA+DMFT (square
symbol) with U = 0.75eV and J = 0.3 eV. The longitudinal modes
are L, and X5 [Fig. 3(a), 3(b) blue color] and the transversal modes
are Ly and X, [Figs. 3(c), 3(d) red color].

with the Fermi function when only the electronic temperature
is considered, as is the case in our investigation. By con-
trast, for low temperature calculations in the LDA+DMFT
approach a large number of Matsubara frequencies must
be included in the impurity solver to reach convergence.
This increases the computational time very significantly. The
LDA+DMEFT calculation of phonons were performed using
both a fine and a sparse Matsubara mesh of 32 768 and 4 096
frequencies, respectively. We found that for temperatures 7
larger than about 150K the difference in the phonon fre-
quencies computed with the finer Matsubara mesh becomes
negligible in comparison with the sparse mesh. Hence, we will
use the sparse mesh in the following to keep the computational
effort at a manageable level.

In Fig. 4(a) we compare the experimental and the computed
phonon dispersions along the direction X close to room
temperature. One clearly observes that in the vicinity of the
possible Kohn anomaly at gy the DMFT results lie above
the LDA results and the experimental data [21]. To understand
the frequency behavior near q,es better we computed the tem-
perature dependence down to low temperatures (7' = 15 K),
both within LDA and LDA+DMFT. The results are shown in
Fig. 4(b). For temperatures T < 20 K the phonon frequencies
obtained within LDA4+DMFT are found to be significantly
reduced compared to room temperature. Not only are they
now lower than the LDA results but, in fact, they approach
the experimental values. Clearly the LDA4+DMFT approach
performs better at lower temperatures where quantum effects
are more relevant. The strong temperature dependence of the
phonon frequencies at wave-vectors close to the nesting vector
(Kohn anomaly) in the presence of electronic correlations may
be interpreted as follows. When the temperature is lowered the
screening of the atomic forces becomes more efficient, which

075120-5



W. H. APPELT et al.

PHYSICAL REVIEW B 101, 075120 (2020)

TABLE II. Left part: Griineisen parameter y.°(q) computed in LDA and LDA+DMEFT, the difference between frequencies calculated in
LDA and LDA+DMFT Sw,(q) = w,(q)°T — o, (q)"™* computed for the branches v = L, Ly, X; , X, . Right part: Average Griineisen

parameter (%), and thermodynamic Griineisen parameter y,$ computed in both methods.

Method (L,L) (L, L7) X, X3) X, X5) (y%(q)) v (T =298K) y§ (T =316K)
LDA: vo(q) 2.34 1.68 2.29 2.01 2.210 2.216 2217
LDA+DMFT: ve(Q) 2.28 1.74 2.24 2.01 2.019 2.020 2.020
Difference dw,(q) 0.45 —0.15 0.39 0.13

leads to significant phonon softening. This effect cannot be
captured within LDA. The remaining discrepancies may be
partly attributed to phonon-phonon scattering not considered
in the present calculations.

IV. CONCLUSION

We performed LDA and LDA+DMFT calculations and
determined the phonon dispersion w,(q), the phonon density
of states, the thermodynamic Griineisen parameter ytg, and
the mode Griineisen parameters y°(q) for zone-boundary
phonon modes. The phonon dispersion was computed us-
ing the frozen-phonon method which relies on the Born-
Oppenheimer and the harmonic approximations and requires
accurate total energies.

The change in the thermodynamic Griineisen parameter,
yg, as a function of the strength of the Coulomb U and Hund’s
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FIG. 4. (a) Comparison of phonon frequencies of the 7;-branch
along the ¥ direction as obtained from experiment [21] at 296 K
(black squares), LDA (blue circles), and LDA+DMFT results (red
hatched diamonds). Lines are fits and serve only as guides to the
eye. (b) Comparison of the temperature dependence of the phonon
frequency w,(qnes) as obtained from experiment [21,22] (black
squares), LDA (blue hatched circles), and LDA+DMFT (red hatched
diamonds). The interaction parameters are U = 1.00eV and J =
0.30eV.

exchange J interaction parameters, demonstrates that in the
presence of electron correlations anharmonic effects on the
level of the QHA become less important.

We also studied the phonon dispersion at finite temper-
atures in the vicinity of the possible Kohn anomaly. In
LDA+DMFT low temperature calculations require consid-
erable computational effort. We find that at 7 ~ 20K the
phonon frequency obtained within LDA+DMFT has strongly
decreased relative to the value at room temperature and ap-
proaches the experimental result. We interpret this softening
as being a consequence of the correlation-induced reduction
of the restoring force of the ionic displacement in the har-
monic approximation.
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APPENDIX: SYMMETRY ADAPTED
DYNAMICAL MATRIX

To study lattice vibrations in the harmonic approximation
the potential energy surface is expanded in second order in the
ionic displacement

U,({R}) = U,({R%})

+ : Z (R)Cye, (R = RN, (R), (A1)
A u(x. o - uotz )
2 RR’O{]O{Z

where u,(R) = R, — R® are the deviations of the ionic po-
sitions from their equilibrium positions, and a1, o = x,y, 2
denote the components of a vector in the 3D Cartesian space,
U,({R}) is the BO energy surface, and Cy,o,(R —R’) is
the matrix of interatomic force constants in the Cartesian
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FIG. 5. Phonon dispersion where the irreducible representations
(irreps) are indicated. The irrep symbols follow the convention of
Miller and Love [59]. The phonon branches are also labeled by
indicating the two transversal branches 7}, 75, and the longitudinal
branch L.

representation. We introduce the dynamical matrix

1 .
Doy (@) = 72 > Conary R)EE, (A2)
R

where M is the ionic mass. The Hamiltonian of the effective
phonon system H, = — > ¢ ﬁvﬁ + U,({R}) is quadratic in
the displacement and anharmonic terms are neglected. The
normal modes of the phonon system are determined by solv-
ing the following equation of motion:

wzem (Q) = ZDOHOQ (q)eaz (q)’

o

(A3)

where e,(q) are components of the normalized vector in
3D Cartesian vector space. Nontrivial solutions are obtained
by solving the secular equation det(Dq,q,(q) — Salaza)z) =0.
The solutions are denoted as w?(q) and the corresponding
eigenmodes e, ,(q) are given by the nullspace of the matrix

Dalaz (q) - wg(q)gdlaz:
®3(Q)€a, (@) = Y Doy, (Q)€0r 1 (q)-

o]

(A4)

The index v = 1, 2, 3 enumerates the three linear independent
phonon branches in Pd. The solution of the secular equation
can be simplified by making use of the symmetry of the sys-
tem. It turns out that the eigenvalue problem in Eq. (A3) can
be decomposed into one-dimensional blocks along the certain
high symmetry lines in the irreducible Brillouin zone. This
allows us to determine the normal modes e, ,(q) by applying
group theoretical techniques without explicitly obtaining the
solution of the secular equation.

The phonon dispersion curves for a five-nearest-neighbor
force-constant model is shown in Fig. 5. The irreducible
representations (irreps) y are indicated in the figure. When the
dynamical matrix Dy, 4, (q) is written in the symmetry adapted
basis then the eigenvalue problem in Eq. (A3) decomposes
into m, blocks according to the generalized Wigner-Eckart

theorem [57,58]:

Da1a2(q) = (Ol1|D(Q)|012>
= Si S (V' ID(@)v)

= Z S;IV’SUazDV’v((I)
=) 8k S (v 5y D@y . 5. 1)
vy’

= S5 Sy 81,105, D@ 15,)

vy’

here we introduced the multi-index v =y, s,,[ (also the
branch index in our case) which runs over all irreps y, the
row [ of the irrep and the the multiplicity s, =1, ..., m, of
an irrep y in the basis «. The unitary transformation from the
Cartesian to the symmetry adapted basis is denoted as S,, =
(v|la). The symmetry-adapted basis is obtained employing
the projecting technique of Ref. [57]. Due to the highly
symmetric space-group and the simple lattice basis, consisting
only of a single atom per unit cell, the dynamical matrix
decomposes into blocks of dimension m, = 1. Therefore the
phonon frequencies can be computed efficiently in the frozen
phonon approach since only a single symmetry mode needs
to be set up to determine the mode frequency. The supercell
of the subgroup has to be commensurate with the wave-length
q and ions located at low symmetric Wyckoff positions are
displaced according to the symmetry mode of interest.

The construction of the symmetry adapted basis functions
is a cumbersome task since one needs to perform the projec-
tion of the basis a onto space group irreps for various q-points
in the irreducible Brillouin zone. It is useful to interpret the
symmetry modes as order parameter directions of a structural
second-order phase transition, and the potential energy as a
function of the ionic displacement as the Landau free energy
expansion [60,61]. The advantage of this approach is that the
order parameters of a phase transition can be found without
directly referring to the atomic positions and instead focusing
on specific irreps and their invariant subspaces. The invariant
subspaces determine subgroups, the so-called isotropy groups,
of the high symmetric parent structure.

Stokes and Hatch have developed a software package
which allows one to obtain information about the normal
modes of oscillations in a crystal by employing the concept of
isotropy subgroups [62-66]. By listing the number of irreps of
the space-group Fm3m at a given q-point one can determine
the symmetry modes systematically. Using one irrep at a time
we project out modes which transform like basis functions
of that irrep [64,66]. The supercells for the frozen-phonon
calculations can be generated using the ISOTROPY Software
Suite [67]. In the supercell geometries the ionic positions are
shifted rigidly, where we used three displacement amplitudes
of 0.02, 0.06, and 0.1 atomic units.
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