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As the surface Andreev bound state (ABS) forms at the open (1,1) edge of a dx2−y2 -wave superconductor,
the local density of states increases. Therefore, a strong electron correlation and drastic phenomena may occur.
However, a theoretical study on the effects of the ABS on the electron correlation has not been performed yet. To
understand these effects, we study the large-cluster Hubbard model with an open (1,1) edge in the presence
of a bulk d-wave gap. We calculate the site-dependent spin susceptibility by performing the random-phase
approximation and modified fluctuation-exchange approximation in real space. We find that near the (1,1) edge,
drastic ferromagnetic (FM) fluctuations occur owing to the ABS. In addition, as the temperature decreases, the
system rapidly approaches a magnetic-order phase slightly below the transition temperature of the bulk d-wave
superconductivity (SC). In this case, the FM fluctuations are expected to induce interesting phenomena such as
edge-induced triplet SC and quantum critical phenomena.

DOI: 10.1103/PhysRevB.101.075114

I. INTRODUCTION

In bulk cuprate superconductors, strong antiferromagnetic
(AFM) fluctuations cause interesting phenomena—for exam-
ple, d-wave superconductivity (SC) [1–6] and non-Fermi-
liquid phenomena in the normal state [7–10]. Moreover, both
the Hall coefficient and magnetoresistance are strongly en-
larged due to the spin-fluctuation-driven quasiparticle scat-
tering [11–13]. In recent years, the axial and uniform charge
density wave (CDW) has been observed in various optimally
doped and underdoped cuprate superconductors [14–17]. The
discovery of the CDW has activated the study of the present
field. To explain the CDW mechanism, spin-fluctuation-driven
CDW formation mechanisms have been proposed [18–23].

In many previous studies, electronic states in bulk systems
with translational symmetry have been analyzed. On the other
hand, real-space structures such as surfaces, interfaces, and
impurities break the translational symmetry of a system, and
they can induce interesting phenomena that cannot be realized
in the bulk systems. In the normal states of cuprate supercon-
ductors, YBa2Cu3O7−x (YBCO) and La2−δSrδCuO4 (LSCO),
nonmagnetic impurities induce a local magnetic moment
around them, and the uniform spin susceptibility exhibits the
Curie-Weiss behavior [24–29]. In theoretical studies, various
analyses are performed using the Heisenberg and Hubbard
models containing a nonlocal impurity, and the enhancement
in the spin fluctuations is obtained [30–33]. In the case of a
local impurity, the enhancement in the local spin susceptibility
is reproduced by the improved fluctuation-exchange (FLEX)
approximation performed in real space [34]. Because these
analyses are performed in real space, the site dependence of
the spin susceptibility is satisfactorily explained.

Recently, the present authors predicted theoretically that
ferromagnetic (FM) fluctuations develop at the open (1,1)
edge of the two-dimensional cluster Hubbard model. In

addition, as the temperature decreases, the local mass-
enhancement factor and quasiparticle damping increase
strongly at the (1,1) edge, and the system approaches the
magnetic critical point. The above are edge-induced quantum
critical phenomena [35]. These impurity- or edge-induced
magnetic criticalities originate from the high local density of
states (LDOS) sites caused by the Friedel oscillation. More-
over, the enhanced spin fluctuations may cause interesting
phenomena such as edge-induced spin triplet SC.

On the other hand, surfaces or interfaces also cause var-
ious interesting phenomena in the superconducting state. At
the (1,1) edge or interface of dx2−y2 -wave superconductors,
the Andreev bound state (ABS) is formed, and the LDOS
increases at the Fermi level [36–41]. This originates from the
sign change in the bulk d-wave SC gap. The ABS is observed
by scanning tunneling spectroscopy (STS) experiments as
the zero-bias conductance peak [42–45]. The surface ABS is
also regarded as the odd-frequency pairing amplitude induced
at the surface of an even-frequency superconductor [46,47].
Owing to the increase in the LDOS caused by the ABS, a
strong electron correlation is expected to emerge near the
edge. However, theoretical studies on the effects of an ABS
on this electron correlation have been limited. Furthermore,
a surface or an interface can induce a time-reversal symmetry
breaking (TRSB) SC state. For example, it is proposed that the
(1,1) edge of a d-wave superconductor exhibits d ± is-wave
SC [48–50]. In this case, the relative phase between the s- and
d-wave gaps is π/2. The emergence of the TRSB SC state
has been discussed in polycrystalline YBCO [51] or twinned
iron-based superconductor FeSe in the nematic phase [52]. To
understand such interesting SC at a surface or an interface, we
have to clarify the effect of the ABS on the spin fluctuations,
which can mediate surface-induced SC.

In this study, we investigate the prominent effects of the
ABS on the surface electron correlation. For this purpose,
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we construct the two-dimensional cluster Hubbard model
with the (1,1) edge in the bulk d-wave SC state, and cal-
culate the site-dependent spin susceptibility by performing
the random-phase approximation (RPA) and modified FLEX
approximation (GV I -FLEX) in real space [34]. We find that
the strong FM fluctuations at the (1,1) edge are enhanced
much more drastically in the bulk d-wave SC state than in
the normal state. The strong FM fluctuations induced by the
surface ABS may drive interesting emerging phenomena, such
as edge-induced SC.

II. MODEL

In this study, we analyze the square-lattice cluster Hubbard
model with a d-wave SC gap:

H =
∑
i, j,σ

ti, jc
†
iσ c jσ + U

∑
i

ni↑ni↓

+
∑
i, j

�d
i, j (c

†
i↑c†

j↓ + c j↓ci↑), (1)

where ti, j is the hopping integral between sites i and j.
We set the nearest, next-nearest, and third-nearest hopping
integrals as (t, t ′, t ′′) = (−1, 1/6,−1/5), which correspond
to the YBCO tight-binding (TB) model. c†

iσ and ciσ are the
creation and annihilation operators of an electron with spin
σ , respectively. U is the on-site Coulomb interaction, and
�d

i, j ≡ �
d,↑↓
i, j is the d-wave SC gap between sites i and j.

Figure 1(a) shows the Fermi surface of the periodic Hubbard
model at filling n = 0.95. Then, AFM fluctuations develop
owing to the Q = (π, π ) nesting.

In this study, we investigate a cluster Hubbard model with
an open (1,1) edge. Figure 1(b) shows the square lattice with
the (1,1) edge. Y = 1 corresponds to the edge layer. For
convenience, in this study, we analyze the one-site unit cell
structure shown in Fig. 1(c). This model is periodic along
the x direction, whereas the translational symmetry is violated
along the y direction. By performing a Fourier transformation
on the x direction, the first term of Eq. (1) is expressed as

H0 =
∑

kx,y,y′,σ

H0
y,y′ (kx )c†

kx,y,σ
ckx,y′,σ . (2)

We also perform a Fourier transformation on the x direction of
the d-wave gap �d

i, j = �d/2(δx,x′+1δy,y′+1 + δx,x′−1δy,y′−1 −
δx,x′δy,y′+1 − δx,x′δy,y′−1). Here, we assume that �d is real

FIG. 1. (a) Fermi surface in the bulk YBCO TB model at filling
n = 0.95. (b) Square lattice with a (1,1) edge. (c) One-site unit cell
square lattice with a (1,1) edge. To simplify the calculation, we use
the square lattice shown in (c) instead of that in (b). Solid lines
represent the nearest-neighbor bond. Layer Y in (b) corresponds to
layer y in (c).

and nonzero only between the nearest sites. Its (kx, y, y′)
representation is given as

�d
y,y′ (kx, T )

= �d (T )

{
e−ikx − 1

2
δy,y′+1 + eikx − 1

2
δy,y′−1

}
, (3)

where �d (T ) is the temperature dependence of the d-wave
gap function. We suppose that �d (T ) obeys the BCS-like T
dependence:

�d (T ) = �d
0 tanh

(
1.74

√
Tcd

T
− 1

)
, (4)

where �d
0 ≡ �d

0 (T = 0). Now, we denote the number of sites
along the y direction as Ny. The Ny × Ny Green’s functions in
the d-wave SC state, Ĝ, F̂ , and F̂ †, are given as(

Ĝ(kx, εn) F̂ (kx, εn)

F̂ †(kx, εn) −Ĝ(kx,−εn)

)

=
(

εn1̂ − Ĥ0(kx ) −�̂d (kx )

−�̂d (kx ) εn1̂ + Ĥ0(kx )

)−1

, (5)

where εn = (2n + 1)π iT is the fermion Matsubara frequency.
Here, (Ĥ0)y,y′ = H0

y,y′ .
To demonstrate the emergence of the ABS at the (1,1) edge

of the TB model in the bulk d-wave SC state, we calculate the
LDOS given by

Dy(ε) = 1

2π2

∫ π

−π

dkxImGy,y(kx, ε − iδ). (6)

Figure 2 displays the obtained LDOS for �d (T ) = 0.08
by setting δ = 0.01. At the edge (y = 1), Dy(ε) has a large
peak at the Fermi level, ε = 0, owing to the ABS. The LDOS
at y = 300 = Ny/2 exhibits a V-shaped ε dependence, which
corresponds to the bulk LDOS in the d-wave SC state. Note

FIG. 2. LDOS in the (1,1) edge cluster Hubbard model in the
d-wave SC state for �d = 0.08. The unit of energy is |t | = 1. y = 1
and y = 300 correspond to the (1,1) edge and bulk, respectively. For
convenience, we set δ = 0.01.
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FIG. 3. Diagram of the irreducible susceptibility, χ 0 or φ0, in the
(kx, y, y′) representation. The line with an arrow is G. The line with
two arrows is F or F †.

that the height of the peak is proportional to the size of
the bulk d-wave gap [49]. A secondary minor peak at ε =
0.1 originates from a superconducting surface state that is
different from the surface ABS. We explain the origin of this
secondary peak in Appendix A.

III. RPA ANALYSIS

A. Formalism

In this section, we calculate the spin susceptibility of
the (1,1) edge cluster Hubbard model using the RPA in the
(kx, y, y′) representation. Figure 3 shows the diagrams of the
irreducible susceptibilities, χ̂0 and φ̂0. They are given by Ĝ,
F̂ , and F̂ † as

χ0
y,y′ (qx, ωl ) = −T

∑
kx,n

Gy,y′ (qx + kx, ωl + εn)

× Gy′,y(kx, εn), (7)

φ0
y,y′ (qx, ωl ) = −T

∑
kx,n

Fy,y′ (qx + kx, ωl + εn)

× F †
y′,y(kx, εn), (8)

where ωl = 2lπ iT is the boson Matsubara frequency. φ0 is
finite only in the SC state. The Ny × Ny matrix of the spin
susceptibility χ̂ is calculated using χ̂0 and φ̂0 as


̂(qx, ωl ) = χ̂0(qx, ωl ) + φ̂0(qx, ωl ), (9)

χ̂ (qx, ωl ) = 
̂(qx, ωl ){1̂ − U 
̂(qx, ωl )}−1. (10)

The spin Stoner factor, αS , is obtained as the largest eigenvalue
of U 
̂(qx, ωl ) at ωl = 0. The magnetic order is realized when
αS � 1. Also, the charge susceptibility is

χ̂ c(qx, ωl ) = 
̂c(qx, ωl ){1̂ + U 
̂c(qx, ωl )}−1, (11)

where 
̂c(qx, ωl ) = χ̂0(qx, ωl ) − φ̂0(qx, ωl ).

B. Numerical result of χ̂ and αS in real space

Next, we perform the RPA analyses for the cluster Hubbard
model with the bulk d-wave SC gap, with the translational

symmetry along the x direction. We set the number of kx

meshes as Nx = 64, that of sites along the y direction as Ny =
64, and that of Matsubara frequencies as Nω = 1024. We set
the electron filling, n = 0.95; the Coulomb interaction is U =
2.25 in the RPA. Here, the unit of energy is |t | = 1, which
corresponds to ∼0.4 eV in cuprate superconductors. We set
the transition temperature for the d-wave SC as Tcd = 0.04. In
addition, we define �max as the maximum value of the d-wave
gap on the Fermi surface. In the present model, �max =
1.76�d

0 for n = 0.95. Experimentally, 4 < 2�max/Tcd < 10
in YBCO [53,54]. Therefore, we set �d

0 = 0.06 or 0.09, which
corresponds to 2�max/Tcd = 5.28 or 7.92 for Tcd = 0.04. By
performing this analysis, we show that the ABS drastically
enhances the FM fluctuations at the (1,1) edge, and the system
rapidly approaches a magnetic-order phase.

First, we study the site-dependent static spin susceptibility,
χ̂ (qx, ωl = 0), in the d-wave SC state using the RPA. Here-
after, we refer to the spin susceptibility in the normal state as
χ̂ (n). We also introduce the following susceptibilities in the
SC state to clarify the origin of the enhancement in the FM
fluctuations:

χ̂ ′ = 
̂′(1 − U 
̂′)−1 (
̂′ = χ̂0), (12)

χ̂ ′′ = 
̂′′(1 − U 
̂′′)−1 (
̂′′ = χ̂0(n) + φ̂0). (13)

Here, χ̂0 and χ̂0(n) are the irreducible susceptibilities in the
bulk d-wave SC and normal states, respectively. In suscepti-
bilities χ̂ ′ and χ̂ ′′, the effects of the d-wave gap in φ̂0 and χ̂0

are dropped, respectively.
Figure 4 shows the obtained RPA susceptibilities for �d

0 =
0.09 at T = 0.0365. χy,y(qx ) represents the correlation of the
spins in the same layer y at ωl = 0. In the edge layer (y = 1),
χy,y(qx ) has a large peak at qx = 0. This result means that
strong FM fluctuations develop in the (1,1) edge layer. The
FM correlation along the edge layer is consistent with the
AFM correlation in the periodic Hubbard model. This strong
enhancement occurs only for y = 1 and y = 2. In fact, the

FIG. 4. qx dependence of χy,y(qx ) obtained by the RPA for �d
0 =

0.09 at T = 0.0365. The value of y corresponds to the depth from
the (1,1) edge. y = 1 is the (1,1) edge and y = 32 corresponds to the
bulk.
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FIG. 5. Comparison between χ1,1(qx ), χ
(n)
1,1 (qx ), χ ′

1,1(qx ), and
χ ′′

1,1(qx ) for �d
0 = 0.09 at T = 0.0365.

Stoner factor is αS = 0.990 with the edge, whereas αS =
0.673 in the periodic model. Therefore, the present model with
the bulk d-wave SC gap approaches the magnetic quantum
critical point with introduction of the edge.

Next, we compare the d-wave SC and normal state.
Figure 5 shows χ1,1 and χ

(n)
1,1 in the model with edge. The

enhancement in the FM fluctuations is much more drastic
in the d-wave SC state compared to that in the normal state
discussed in Ref. [35]. Therefore, this strong enhancement
cannot be explained only by the existence of the edge.

Furthermore, we examine the contribution from φ̂0 and χ̂0

to the enhancement of total spin susceptibility. In Fig. 5, we
present χ ′

1,1(qx ) and χ ′′
1,1(qx ). The height of the peak of χ̂ ′ is

much smaller than that of χ̂ . On the other hand, the height of
the peak of χ̂ ′′ is enlarged whereas it is slightly lower than
that of χ̂ . Therefore, φ̂0 due to anomalous Green’s functions
gives the dominant contribution for the increment of χ̂ . Also
χ̂0 − χ̂0(n) gives a minor contribution since χ̂ ′ > χ̂ (n).

Figure 6(a) shows the qx dependence of φ̂0. In the bulk,
φ0

32,32 is zero because the x axis is the direction of the d-wave

FIG. 6. qx dependence of irreducible susceptibilities for �d
0 =

0.09 at T = 0.0365. (a) Comparison between φ0
y,y(qx ) at the edge

(y = 1) and in the bulk (y = 32). (b) Comparison between χ0
1,1(qx )

and χ
0(n)
1,1 (qx ).

FIG. 7. T dependence of αS in the RPA. The inset shows the T
dependence of the size of the d-wave gap. We assume that the BCS-
like T dependence is given by (4). We set the transition temperature
of the d-wave SC as Tcd = 0.04.

gap node. Interestingly, φ0
1,1 is finite and has a peak at qx = 0.

This is explained as an effect of the ABS, which corresponds
to the odd-frequency SC induced at the (1,1) edge as discussed
in Refs. [46,47]. We give a brief discussion on this issue in
Appendix B. In Fig. 6(b), we show the qx dependence of χ̂0

and χ̂0(n). At the edge, χ0
1,1 is slightly larger than χ

0(n)
1,1 owing

to the peak of the LDOS due to the ABS.
Figure 7 shows the T dependence of αS in the RPA. The

inset shows the T dependence of the size of the d-wave gap,
which is given in Eq. (4). αS in the SC state increases sharply
as T decreases compared to that in the normal state, due to
the development of the ABS. The increase for �d

0 = 0.09 is
sharper than that for �d

0 = 0.06 because the height of the ABS
is proportional to �d

0 . αS reaches unity at T ≈ 0.036 for �d
0 =

0.09, and the edge FM order is realized. To summarize, we
predict the emergence of FM order at the (1,1) edge of dx2−y2 -
wave superconductors.

IV. FLEX ANALYSIS

A. GV I-FLEX

In this section, we study the spin susceptibility using
the modified FLEX (GV I -FLEX) approximation developed
in Ref. [34], since the negative feedback effect on χ̂ near
the impurity is prominently overestimated in conventional
FLEX. In fact, the negative feedback is suppressed by vertex
corrections near the impurity as pointed out in Ref. [34]. In the
modified FLEX, the cancellation between negative feedback
and vertex corrections is assumed, and then reliable results
are obtained for the single-impurity problem [34].

To apply the modified FLEX to the present model, we
first calculate the self-energy in the periodic system without
the edge, �0(kx, ky, iεn), using the conventional FLEX ap-
proximation. Then, by performing the Fourier transformation
for the y direction, we obtain �0(kx, y, y′, iεn) = �0(kx, y −
y′, iεn). Next, we calculate the Green’s functions in the (1,1)
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edge model with �0(kx, y, y′, iεn):(
ĜI (kx, εn) F̂ I (kx, εn)

F̂ I
†
(kx, εn) −ĜI (kx,−εn)

)
=

(
εn1̂ − Ĥ0(kx ) − �̂0(kx, iεn) −�̂d (kx )

−�̂d (kx ) εn1̂ + Ĥ0(kx ) + �̂0(kx,−iεn)

)−1

, (14)

where Ĥ0(kx ) is the tight-binding model with the (1,1) edge.
In the GV I -FLEX, the spin susceptibility is calculated by ĜI ,

F̂ I , and F̂ I
†

instead of Ĝ, F̂ , and F̂ † in Eqs. (7)–(10).
In this approximation, the d-wave gap is renormalized

by the self-energy. The renormalized d-wave gap in bulk
is evaluated by �d

0
∗ = �d

0/Zbulk, where Zbulk is the on-site
mass-enhancement factor in the bulk.

B. Numerical result of χ̂ and αS in real space

In the numerical study of GV I -FLEX, we set the number
of kx meshes as Nx = 64, that of sites along the y direction
as Ny = 64, and that of Matsubara frequencies as Nω = 1024.
We set the electron filling, n = 0.95; the transition tempera-
ture for the d wave is Tcd = 0.04. The Coulomb interaction is
U = 2.65.

Figure 8 shows the qx dependence of χy,y(kx ) in the GV I -
FLEX for �d

0 = 0.12 at T = 0.036. With this parameter, we
obtain Zbulk = 1.37, �d

0
∗ ≈ 0.087, and 2�max

∗/Tcd ≈ 7.69.
At the (1,1) edge (y = 1), χ1,1(qx ) has a large peak at qx = 0.
In the periodic model without an edge, αS = 0.699 in the
FLEX approximation. The Stoner factor increases to αS =
0.989 by introducing the (1,1) edge. Therefore, the enhance-
ment in the FM fluctuations at the edge is obtained by both
the RPA and GV I -FLEX.

Figure 9 shows the T dependence of αS in the (1,1)
edge cluster model given by the GV I -FLEX. In the normal
state, αS increases gently as T decreases. However, in the
presence of the bulk d-wave SC gap, αS increases sharply

FIG. 8. qx dependence of χy,y(qx ) obtained by the GV I -FLEX for
�d

0 = 0.12 at T = 0.036. y = 32 corresponds to the bulk. With this
parameter, we obtain Zbulk = 1.37. The renormalized gap is �d

0
∗ ≈

0.087 and 2�max
∗/Tcd ≈ 7.69.

as T decreases. For �d
0 = 0.08, the mass-enhancement factor

is Zbulk = 1.38 at T = 0.032. Thus, we obtain �d
0
∗ ≈ 0.058

and 2�max
∗/Tcd ≈ 5.11. For �d

0 = 0.12, αS reaches 0.99 at
T = 0.036. For a fixed ratio 2�max

∗/Tcd , the obtained T
dependence of αS is comparable in both the RPA and GV I -
FLEX.

V. EFFECT OF THE FINITE D-WAVE COHERENCE
LENGTH ON THE EDGE-INDUCED

SPIN FLUCTUATIONS

In this section, we study the enhancement in the FM fluc-
tuations when the d-wave gap is suppressed near the edge for
a finite range, 1 � y � ξd , where ξd is the coherence length of
the d-wave SC. We set the y dependence of the d-wave gap as

�d
y,y′ (kx, T )

{
1 − exp

(
y + y′ − 2

2ξd

)}
. (15)

We note that the anomalous self-energy for the d-wave SC gap
is calculated self-consistently in the SC FLEX approximation
below Tcd [4]. If the SC FLEX is applied to the edge cluster
model, the d-wave gap for y � ξd should be naturally sup-
pressed. Instead, we set ξd as a parameter to simplify the anal-
ysis. From the experimental results [55–58], we can estimate
ξd to be 3 sites for T 	 Tcd . For T � Tcd , ξd 
 3 because of
the relation ξd ∝ (1 − T/Tcd )−1/2 in Ginzburg-Landau theory.
Thus, we set ξd = 3 and 10 in this analysis. The y dependence
of the given |�d

x=0,y+1;x=0,y| is shown in Fig. 10(a). The
inset shows the corresponding nearest-neighbor bonds in real
space. Figure 10(b) shows the LDOS at the edge. Although the
height of the peak of the ABS is reduced, the peak structure
remains for finite ξd (�10).

FIG. 9. T dependence of αS in the GV I -FLEX. We set the
transition temperature of the d-wave SC as Tcd = 0.04. We obtain
�d

0
∗ ≈ 0.058 and 2�max

∗/Tcd ≈ 5.11 for �d
0 = 0.08.
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FIG. 10. (a) Site dependence of the d-wave gap suppressed near
the edge over ξd . We set �d

0 = 0.08, and plot it at T = 0.032. ξd = 0
corresponds to the site-independent d-wave gap. The inset shows the
nearest-neighbor bonds corresponding to |�d

x=0,y+1;x=0,y|. (b) LDOS
at the (1,1) edge for the finite ξd .

Next, we calculate the T dependence of αS using the
RPA, and Fig. 11 shows the result for (a) �d

0 = 0.06 and
(b) 0.09 for ξd = 0–10. The increase in αS for ξd = 10 is
moderate compared to that for ξd = 0 and 3, owing to the
suppression of the ABS. For �d

0 = 0.09, αS reaches 0.986
at T = 0.03 even for ξd = 10. However, for �d

0 = 0.06 and
ξd = 10, the increase in αS becomes milder and αS ≈ 0.97
even at T = 0.03. Therefore, we conclude that the drastic
enhancement in the FM fluctuations is realized under the
conditions 2�max/Tcd � 6 and ξd 	 10, both of which are
satisfied in real cuprate superconductors.

VI. SUMMARY

In this study, we revealed that the ABS drastically enhances
the FM fluctuations at the (1,1) edge of the d-wave supercon-
ductor. For this purpose, we construct the two-dimensional
square lattice Hubbard model with the edge in the presence
of the bulk d-wave SC gap. Then we performed the site-
dependent RPA calculation in real space. By detailed analy-
sis, we found that edge-induced FM fluctuations are mainly
caused by the increment of φ̂0 due to the ABS. Furthermore,

FIG. 11. T dependence of αS by the RPA for (a) �d
0 = 0.06 or

(b) 0.09 with finite ξd . The red dashed line represents αS for the site-
independent d-wave gap. The black solid line represents αS in the
normal state.

FIG. 12. LDOS at the edge of d-wave superconductor (�d =
0.20) when the magnetization (M0 = 0.10) emerges. The red solid
line and blue dotted line represent the LDOS for up and down spins,
respectively. For convenience, we set δ = 0.01.

the Stoner factor αS exhibits a drastic increase just below the
bulk d-wave Tc, and edge-induced FM order or fluctuations
are expected to emerge. Such ABS-induced magnetic criti-
cal phenomena are also obtained by using the GV I -FLEX.
Finally, we verified that the the enhancement in FM fluctu-
ations is still prominent under the conditions 2�max/Tcd � 6
and ξd 	 10, which are satisfied in cuprate superconductors.
Therefore, we conclude that the ABS-induced FM order or
strong FM fluctuations appear in real cuprate superconduc-
tors.

The result of the present study indicates the emergence of
interesting edge-induced phenomena. For example, the edge
FM order will induce the splitting of the ABS peak, which
may be observed by STM/STS study. Figure 12 shows the
LDOS for up and down spins at the edge with the magnetiza-
tion (M0 = 0.10). The magnetization is given by the Zeeman
term HM = M0/2

∑
kx,σ

σc†
kx1σ

ckx1σ . In addition, an edge-
induced triplet SC is expected to be realized theoretically [59].
In this case, the bulk d-wave SC and edge-induced triplet SC
may coexist at the (1,1) edge (d ± ip-wave), similarly to the
d ± is-wave state discussed in Refs. [48–50]. This presents
an important problem for the future, to understand the edge-
induced SC state in strongly correlated electron systems.
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APPENDIX A: THE ORIGIN OF THE MINOR
PEAK OF THE LDOS

In this Appendix, we explain the origin of the secondary
minor peak of the edge LDOS at ε = 0.1 shown in Fig. 2. For
this purpose, we calculate the energy spectra of the d-wave
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FIG. 13. (a) Energy spectra of the d-wave SC cluster model with
the (1,1) edge. The flat dispersion at ε = 0 is the ABS. There are two
surface states separated from the bulk states in the range of 3π/4 �
kx � 5π/4. These surface states are pointed out by arrows. (b) LDOS
near the (1,1) edge in the bulk d-wave SC state. The minor peaks at
ε = ±0.1 correspond to the edge states in (a).

SC cluster model with the (1,1) edge. Figure 13(a) shows the
obtained energy spectra for �d = 0.09 (�max = 0.158). The
flat dispersion at ε = 0 corresponds to the surface ABS. In
addition, there are two surface states separated from the bulk
states in the range of 3π/4 � kx � 5π/4. These surface states
can give minor peaks in the LDOS. As shown in Fig. 13(b),
the LDOS at y = 1 (y = 2) possesses a minor peak at ε = 0.1
(ε = −0.1). Thus, it is verified that minor peaks at ε = ±0.1
in the LDOS originate from the finite-energy surface state in
Fig. 13(a).

APPENDIX B: RELATION BETWEEN ENHANCED FM
FLUCTUATIONS AND ODD-FREQUENCY

SUPERCONDUCTIVITY

Here, we discuss the reason for the enhancement of φ̂0 near
the (1,1) edge in more detail. First, we examine the anomalous
Green’s function, by which φ̂0 is composed. Figure 14(a)
shows the εn dependence of ReFy,y(π/4, εn). In the bulk,
ReFy,y(π/4, εn) = 0 because the x direction is the node direc-
tion of the d-wave gap. However, at the edge, ReF1,1(π/4, εn)
is finite, and it shows an odd-frequency dependence. This

FIG. 14. Anomalous Green’s function calculated for �d
0 =

0.09 at T = 0.0365. (a) εn dependence of ReFy,y(kx = π/4, εn).
The red and green points represent the component in the edge
(y = 1) and bulk (periodic system), respectively. (b) kx dependence
of ReFy,y(kx, iπT ). The red solid line and green dotted line represent
the component in the edge and bulk, respectively.

odd-frequency pair amplitude can be understood as another
physical picture of the ABS [46,47]. Figure 14(b) shows the kx

dependence of ReFy,y(kx, iπT ). At the edge, ReF1,1(kx, iπT )
is finite and has peaks at kx ≈ 4π/5 and kx ≈ 6π/5, whereas
ReFy,y(kx, iπT ) = 0 in the bulk. These peaks generate the
enhancement of φ0

1,1 at qx = 0. Therefore, the enhancement
in the FM fluctuations by φ̂0 can be explained as the direct
effect of the odd-frequency pairing, which is an aspect of the
ABS.

Next, we discuss why the large odd-frequency component
appears at the edge based on the atomic picture, assuming that
t is the small parameter. The zeroth-order Green’s function at
the same site i in the normal state is

G0
i,i(εn) = 1

εn − E
, (B1)

where E is the atomic level. The Green’s function between the
nearest-neighbor sites i and j is represented by the first-order
perturbation of hopping integral t as follows:

G0
i, j (εn) = 1

εn − E
t

1

εn − E

= t

(εn − E )2
. (B2)

Figure 15 shows the lowest-order contributions to the anoma-
lous Green’s function at the edge, F1,2. They are represented
as follows:

F1,2(εn) = −G0
1,1(εn)�d

1,3G0
2,3(−εn)

− G0
1,3(εn)�d

3,2G0
2,2(−εn)

= − 2�d
1,3tεn(

E2 − ε2
n

)2 . (B3)

In the second equals sign, we use �d
1,3 = −�d

3,2. Therefore,
F1,2(εn) is odd for εn. In the bulk, F1,2 vanishes because the
contributions through site 4 cancel those through site 3.

FIG. 15. Contributions to the anomalous Green’s function at the
(1,1) edge, F1,2. The solid line with two arrows represents F1,2.
The red and blue ovals show the d-wave SC gap between the
nearest-neighbor sites. The dotted line with an arrow is the Green’s
function in the normal state, G0. At the edge, F1,2 is finite because
the contributions through site 4 are dropped.
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