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Recently, it was shown that by means of an scanning tunneling microscope it is experimentally possible to
stimulate clock transitions between the singlet and the nonmagnetic triplet state of a Heisenberg-coupled spin
dimer [Bae et al., Sci. Adv. 4, eaau4159 (2018)]. This leads to more strongly protected clock transitions while
ordinary ones only provide first-order protection against magnetic noise. However, large decoherence times of
clocklike states normally refer to ensembles of spins which do not dephase. In the cited experiment, only one
single dimer is manipulated and not an ensemble. For this reason, we simulate how a single dimer behaves
in an environment of other spins which couple to the dimer via dipolar interactions. We perform unitary time
evolutions in the complete Hilbert space, including dimer and a reasonably large environment. We will see
that for a weak environment, this approach confirms long decoherence times for the clocklike state, but with
stronger couplings this statement does not hold. As a reference, we compare the behavior of the dimer with
other, non-clock-like, superposition states. Furthermore, we show that the internal dynamics of the bath plays an
important role for the decoherence time of the system. In a regime where the system is weakly coupled to the
bath, stronger interactions among environmental spins worsen the decoherence time up to a certain degree, while
if system and bath are strongly coupled, stronger interactions in the environment improve decoherence times.

DOI: 10.1103/PhysRevB.101.075101

I. INTRODUCTION

To perform quantum computing, it is necessary to have
building blocks that are individually controllable and whose
superposition states have long decoherence times. Spin sys-
tems that exhibit clock transitions are promising candidates, at
least for the last property [1–4]. Such clock transitions mean
a stimulation between two energy eigenstates |E1〉 and |E2〉
of the system which are independent of the external magnetic
field at least to first order [2]. This leads to a precession of
the phase difference in a superposition of these two states
with a frequency ω = E1 − E2, which is thus also independent
of the external magnetic field. When an experimenter excites
an ensemble of such systems, all spins precess at the same
frequency ω and do not dephase, regardless of local magnetic
field fluctuations. Experimentally, this results in large T ∗

2
times.

In this paper, we investigate the decoherence behavior of
a single spin dimer which is dipolar coupled to a bath of en-
vironmental spins, motivated by the experiment described in
Ref. [1]. Regarding decoherence, this is a completely different
scenario compared to dephasing of an ensemble of spins. As
an approximation of the exact environment in the experiment,
we use a model system in which the environmental spins
are randomly distributed on a spherical surface around the
spins of the dimer. Therefore, the absolute values of our
decoherence times are not realistic, but we can make relative
statements in the sense that scenario A has a much longer
decoherence time than scenario B, using our environment as a
test bed.

Generally, local magnetic field fluctuations can have many
sources. Beyond an inhomogeneity in the external field, re-

ferred to as nonintrinsic decoherence, intrinsic effects such as
dipolar interactions of near nuclei are important [5]. But not
only that, for molecular spin clusters it was shown that interac-
tions with neighboring electronic spins play an important role
too [6]. Thus, we investigate in our model both cases: strong
and weak magnetic moments of the environmental spins.

Figure 1 illustrates the system we are interested in, a
Heisenberg coupled spin dimer with s1 = s2 = 1/2 and thus
four energy levels. Two of them are completely independent
of the external magnetic field, not only to first order. We
will refer to a superposition between these two states as our
clocklike scenario. Experimentally, it is possible to create and
manipulate these superpositions [1]. In view of this, such
systems are individually controllable; this meets an important
criterion for the usability in the context of quantum computing
as pointed out in the beginning. In the experiment, the dimer
consists of two titanium atoms; a localized time-dependent
magnetic field was realized by means of an STM tip. The tip
moved one atom in an inhomogeneous magnetic field. In this
way, the atom experienced a time-dependent magnetic field.
A small difference in the Landé factors of the two atoms was
also compensated by the tip.

As a side note, we want to point out that manipulation of
single (molecular) spins is usually difficult. Magnetically, this
is possible by means of an STM. But in the area of spintronics,
much research is also being devoted to how individual spins
can be manipulated by means of time-dependent electric fields
as an alternative approach [7,8].

The paper is organized as follows. In Sec. II, we introduce
the theoretical model. In Sec. III, we explain the different
scenarios we investigate for the initial state of the dimer and
how we prepare the environment. We also point out why
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FIG. 1. Energy eigenvalues of H
∼ S . The singlet state is shown in

red, the nonmagnetic triplet state in blue, and the other two triplet
states in black.

decoherence is a process for which no energy exchange be-
tween system and environment is needed; it therefore differs
from relaxation and thermalization. In Sec. IV, we show
our numerical results. The paper closes with a discussion in
Sec. V.

II. MODEL

The Hamiltonian of our model consists of three parts:

H∼ = H∼ S + H∼ SE + H∼ E . (1)

The first part H∼ S (system Hamiltonian) describes the spin

dimer and contains Heisenberg and Zeeman terms:

H∼ S = J �s∼1 · �s∼2 + gSμSB
(
s∼

z
1 + s∼

z
2

)
. (2)

The magnetic field B is constant and points in the z
direction. The coupling constant J is chosen to be antiferro-
magnetic (J = 9.425 K, with h̄ = kB = 1) and of the same
order of magnitude as measured in the experiment [1]. The
magnetic interaction strength gSμS = 1.3434 K/T is chosen
to be the same as for free electrons. The dimer consists of
two spins s1 = s2 = 1/2 so H∼ S has four energy eigenvalues.

The spins couple either to total spin S = 0 (singlet) or to a
spin S = 1 (triplet). As marked in Fig. 1, the eigenstates of
the singlet and the nonmagnetic triplet state are given by

|ψ±
clock〉 = 1√

2
(|↑↓〉 ± |↓↑〉), (3)

and the other two states of the triplet are provided by the
polarized states |↑↑〉 and |↓↓〉.

The second part H∼ SE of Hamiltonian Eq. (1) contains dipo-

lar interactions between dimer and (N − 2) environmental
spins,

H∼ SE =
2∑

i=1

N∑
j=3

A1

r3
i j

(
�s∼i · �s∼ j −

3(�s∼i · �ri j )(�s∼ j · �ri j )

r2
i j

)
, (4)

with constant

A1 = μ0gSμSgμ

4π
. (5)

FIG. 2. Symbolic visualization of the investigated model. The
two spins of the dimer are shown in red and blue and there are nine
environmental spins on a spherical surface around both of them.

We will use the factor gμ as tunable parameter for the
dipolar interaction strength of the environmental spins and
therefore the coupling between system and environment.

The last part, H∼ E , contains dipolar interactions between

different environmental spins and their Zeeman terms,

H∼ E = λ

N∑
i=3

N∑
j=i+1

A2

r3
i j

(
�s∼i · �s∼ j −

3(�s∼i · �ri j )(�s∼ j · �ri j )

r2
i j

)

+
N∑

i=3

gμ(B + �Bi )s∼
z
i , (6)

with constant

A2 = μ0(gμ)2

4π
(7)

and magnetic fluctuations �Bi at the individual positions of
the environmental spins. We found that in our scenarios these
inhomogeneities make no difference; we therefore apply in the
following: �Bi = 0 ∀i. The factor λ in Hamiltonian Eq. (6) al-
lows us to scale the dipolar interactions among environmental
spins only, without changing H∼ SE . Increasing the value of λ is

comparable to a situation where the environmental spins are
closer together and therefore interact stronger.

In the case of dipolar interactions, we need to choose
spatial coordinates of all spins. Altogether, we choose N = 20
spins of which (N − 2) are environmental spins. We arrange
each half of them randomly around the two spins of the dimer
on a spherical surface with radius R = 1.5 Å. The model is
illustrated in Fig. 2.

We pretend the two spins of the dimer s1 and s2 far apart
(ri j → ∞), so with respect to the dipolar interactions the
two clusters of environmental spins do not mutually interact.
This simplifies the calculation and should not be unphysical,
since the dipolar interactions decrease with r3

i j . This trick also
allows us to diagonalize the Hamiltonian H∼ S + H∼ E (without

H∼ SE ) because the effective Hilbert space is smaller and we

can show the energy spectrum of system and environment. But
to perform time evolution including H∼ SE , the Hilbert space is

075101-2



DECOHERENCE OF A SINGLET-TRIPLET … PHYSICAL REVIEW B 101, 075101 (2020)

−5 0 5
0

2000

4000

6000

8000

10000

Energy E (K)

FIG. 3. Histogrammed number of energy eigenvalues of envi-
ronmental Hamiltonian H

∼ E at B = −1 T. The magnetic interaction

strength is chosen to be gμ = 0.6717 K/T with scaling parameter
λ = 1. The total number of energy eigenvalues is 218.

too large to diagonalize the Hamiltonian, and we rely on other
numerical methods.

Figure 3 shows the energy spectrum of H∼ E with parameters

B = −1 T, gμ = 0.6717 K/T, and λ = 1. Figure 4 shows the
combined spectrum of H∼ S + H∼ E with the same parameters.

Most energy eigenvalues are centered around the singlet and
the triplet region of the dimer, which gives two peaks in the
distribution of energy values but also energies in between.
Therefore, the interaction H∼ SE will cause transitions between

levels of this spectrum when the system is time evolved with
the full Hamiltonian Eq. (1), even for small interactions H∼ SE .

In general, our approach is very similar to central spin
models with the difference that we have two spins of interest
in the center [9,10].

III. PREPARATIONS

In all following calculations, we initialize the total state in
a product

|ψ (t = 0)〉 = |ψS〉 ⊗ |ψE 〉 (8)
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FIG. 4. Histogrammed number of energy eigenvalues of Hamil-
tonian H

∼ S + H
∼ E at B = −1 T. The magnetic interaction strength is

chosen to be gμ = 0.6717 K/T with scaling parameter λ = 1. The
total number of energy eigenvalues is 220.

of dimer and its environment. As an initial state of the dimer,
we investigate different scenarios. We choose between four
initial states |ψS〉 that are all superpositions of eigenstates
of H∼ S

A: |ψS〉 = 1√
2

(|ψ+
clock〉 + |ψ−

clock〉) = |↑↓〉 , (9)

B: |ψS〉 = 1√
2

(|ψ+
clock〉 + |↓↓〉)

= 1

2
|↑↓〉 + 1

2
|↓↑〉 + 1√

2
|↓↓〉 , (10)

C: |ψS〉 = 1√
2

(|↑↑〉 + |↓↓〉) (11)

D: |ψS〉 = 1√
2

(|ψ−
clock〉 + |↓↓〉)

= 1

2
|↑↓〉 − 1

2
|↓↑〉 + 1√

2
|↓↓〉 . (12)

To make a statement if the initial state of the dimer in
scenario A has a long decoherence time, we need to compare
it with a reference in the same model environment. Our
reference will be the scenarios B, C, and D which are non-
clock-like superpositions. Due to dipolar interactions with
the environmental spins, the state Eq. (8) will not remain a
product state: system and environment will entangle.

Since our Hamiltonian is time independent, time evolution
is given by

|ψ (t )〉 = U∼ (t ) |ψ (0)〉 = e
−iH∼ t |ψ (0)〉 (13)

with time evolution operator U∼ (t ) and full Hamiltonian H∼ ,

Eq. (1). We calculate the evolution with a Suzuki-Trotter
product expansion numerically exact [11]. As the initial state
of the environment |ψE 〉, we choose a random state with
Gaussian distributed coefficients, both for real and imaginary
parts. In this way, we reach all of the possible states with
the same probability [12–15]. The state |ψE 〉 is maximally
uncorrelated, also referred to as an infinite temperature state.

In general, the state of the environment can have a consid-
erable impact on the decoherence behavior of the system as
already pointed out in Refs. [16,17]. For example, the envi-
ronment could be at a lower temperature. In such a case, the
energy spectrum of the environment is only partially occupied
if the width of the spectrum is much larger than kBT , which
changes the thermalization (and maybe also decoherence)
process [18]. This is typically not the case for nuclear spins
with small magnetic moments, but in the case of a dense
electronic environment the temperature of the latter could
become important. Such effects will not be covered in this
paper.

Regarding the set of all possible environmental states, low
temperatures are special. The overwhelming majority of all
possible states we obtain by choosing a random state will
be close to infinite temperature and behave the same, i.e.,
typically according to the concept of typicality [19–21]. For
this reason, the dynamics we will show for one single random
state already represents the dynamics for most of all possible
environmental states, cf. Refs. [14,15,22,23].
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All information about the dimer is contained in the reduced
density matrix

ρ
∼

= TrE (ρ
∼

SE ), (14)

in which ρ
∼

SE = |ψ〉 〈ψ | is the density matrix of the quantum

state of the total system. Regarding the initial state Eq. (8),
the reduced density matrix Eq. (14) describes a pure state,
but becomes mixed over time through interactions H∼ SE . This

process of entanglement is the essence of decoherence for
an observer of the dimer [24,25]. Written in the basis of the
eigenstates of H∼ S , the reduced density matrix Eq. (14) con-

tains nondiagonal interference terms which decay over time.
There are various ways of quantifying decoherence; for

example, purity Tr(ρ
∼

2) or the von Neumann entropy S =
−Tr(ρ

∼
ln ρ

∼
) [26]. We decided to look directly at the rele-

vant (depending on the scenario) nondiagonal elements of
the reduced density matrix. The more entangled the system
and environment are, the smaller the absolute value of these
matrix elements becomes and the more quantum mechan-
ical superpositions of the dimer are destroyed. Of course,
superpositions and coherence still exist at the level of the
complete state of the total system including the environment,
but experimentally the measurement statistics of the dimer as
a subsystem turns more and more into a classical mixture.

We want to point out that this entanglement and therefore
the decay of the nondiagonal elements of the reduced density
matrix in general do not require a substantial energy exchange
between system and environment [27]. Imagine a product
state such as Eq. (8) and the system in a superposition |ψS〉 =
|ψS1〉 + |ψS2〉. The state Eq. (8) can then be written as

|ψ〉 = 1√
2

( ∣∣ψS1

〉 + ∣∣ψS2

〉 ) ⊗ |ψE 〉

= 1√
2

∣∣ψS1

〉 ⊗ |ψE 〉 + 1√
2

∣∣ψS2

〉 ⊗ |ψE 〉 . (15)

FIG. 5. Evolution of the absolute value of the relevant nondi-
agonal element |ρi j | of the reduced density matrix Eq. (14) in the
different scenarios A, B, C, and D described in Eqs. (9), (10), (11),
and (12). The chosen parameters are λ = 1, gμ = 0.3359 K/T and
B = −1 T.

FIG. 6. Same as Fig. 5, but with gμ = 0.6717 K/T.

If the Hilbert space of the environment is very large, there
will exist states |ψE ′ 〉 which lie infinitesimally close in energy
but are orthogonal to |ψE 〉, 〈ψE |ψE ′ 〉 = 0. If the interaction
between system and environment propagates the state Eq. (15)
into

→ 1√
2

∣∣ψS1

〉 ⊗ |ψE 〉 + 1√
2

∣∣ψS2

〉 ⊗ |ψE ′ 〉 , (16)

the energy distribution between system and environment has
not changed, but the nondiagonal elements in the reduced
density matrix that represent the superposition of |ψS1〉 and
|ψS2〉 have completely decayed.

IV. CALCULATIONS

In all following calculations, the external magnetic field
is fixed to be B = −1 T. We investigate the behavior of the
four different initial scenarios A, B, C, and D described by
Eqs. (9), (10), (11), and (12). To begin, we fix λ = 1 and
vary the magnetic interaction strength gμ of the environmental
spins, which affects both H∼ SE and H∼ E .

FIG. 7. Same as Fig. 5, but with gμ = 1.3434 K/T and a shorter
period of time.
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FIG. 8. Same as Fig. 5, but the real part of ρi j (with integer
offsets) is shown instead of the absolute value. The oscillation
frequency in the different scenarios A, B, C, and D is given by the
transition energies in Fig. 1. The amplitude of this oscillation is given
by the absolute value of ρi j .

In Figs. 5, 6, and 7, the absolute value of the relevant nondi-
agonal element |ρi j | of the reduced density matrix Eq. (14) is
shown. For scenario A, this is |〈ψ+

clock|ρ∼|ψ−
clock〉|; for scenario

B, it is |〈ψ+
clock|ρ∼|↓↓〉|; for scenario C, it is |〈↑↑|ρ

∼
|↓↓〉|

and for scenario D it is |〈ψ−
clock|ρ∼|↓↓〉|. These values decay

through interactions with the environment H∼ SE , in most of

the shown cases approximately exponentially. But for the
weaker environments, a Gaussian-like decay is possible as
also pointed out in Ref. [16].

Figures 8, 9, and 10 show the associated real parts of
these matrix elements. They oscillate with a frequency ω

equal to the transition energy of the two H∼ S eigenstates the

superposition is built of (cf. Fig. 1). For scenarios A and D,
this is a much higher frequency than in scenarios B and C.
Here we clearly see that the transition energy ω is not the
most important parameter in the sense that it alone would
set the timescale for decoherence. Scenario D has a much

FIG. 9. Same as Fig. 8, but with gμ = 0.6717 K/T.

FIG. 10. Same as Fig. 8, but with gμ = 1.3434 K/T and a shorter
period of time.

shorter decoherence time, although it has almost the same ω

as scenario A. We already pointed out that an energy transfer
(relaxation) from system to environment or the other way
around is not necessary for decoherence [27].

The timescale of decoherence is primarily given by the
strength of H∼ SE . This part of the Hamiltonian depends linearly

on the magnetic moments gμ of the environmental spins. In
Fig. 5, this parameter is chosen as gμ = 0.3359 K/T, rising
up to gμ = 0.6717 K/T in Fig. 6 and to gμ = 1.3434 K/T in
Fig. 7. We find that in all these cases, scenario A performs best
regarding its decoherence time, but its advantage becomes
drastically smaller when the environment couples stronger to
the system (larger gμ).

Figures 11, 12, and 13 show time evolutions of initial
scenario A for a lot of different values of λ and again different
parameters gμ. Here we see that λ, which scales the strength
of the internal dynamic of the bath only, has a big impact
on the decoherence behavior of the system. In the case of a
weak coupling between system and environment (Fig. 11),
a large value of λ changes the decoherence behavior from

FIG. 11. Evolution of the absolute value of the relevant non-
diagonal element |ρi j | of the reduced density matrix Eq. (14) in initial
scenario A for different scaling parameters λ and fixed parameters
gμ = 0.3359 K/T and B = −1 T. Increasing λ leads to a transition
from Gaussian to exponential decay law.
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FIG. 12. Same as Fig. 11, but with gμ = 0.6717 K/T.

approximately Gaussian to exponential. Further increasing λ

leads to an oscillating decoherence time in a certain range.
For a strong coupling between system and environment

(Fig. 13), the decay is always exponential even if λ = 0,
and in this regime the decoherence time can be significantly
improved by increasing λ.

Another effect we see in all three figures is that for a small
value of λ � 1, the decaying |ρi j | has got a superimposed
oscillation. In the case of the Gaussian decay, this oscillation
is distinctive right at the beginning, while in the exponential
case it is visible at later times.

V. SUMMARY

In our investigation, we study the decoherence of a single
Heisenberg-coupled spin dimer interacting with a spin bath.
We restrict ourselves to the effect of dipolar interactions on
decoherence. Other sources of decoherence such as phonons
[28] will be postponed to future investigations. We prepared
the system in different initial states (A, B, C, and D) and
find that indeed the clocklike superposition A has longer
decoherence times than other initial scenarios. Our notion of
decoherence time refers to a setting where a single dimer
subject to a spin bath is investigated. This differs from usual
investigations of decoherence, where T ∗

2 times characterize a
dephasing ensemble.

The advantage of the clocklike scenario is impressive in a
regime of a small coupling between system and environment.
The difference between the scenarios is getting smaller with
rising strength of this coupling. In the case of a weak coupling
between system and environment, the clocklike superposition
decays Gaussian if the internal bath interactions are small
enough, otherwise the decay becomes exponential and the
decoherence time gets much worse.

FIG. 13. Same as Fig. 11, but with gμ = 1.3434 K/T and a
shorter period of time. In this regime, a stronger interaction between
environmental spins leads to a relative increase of decoherence time
with growing λ.

In the case of a strong coupling between system and en-
vironment, the decay of superpositions is always exponential,
even if the environmental spins do not interact with each other
at all (λ = 0). One surprising result is that in this regime the
decoherence time can be improved significantly by rising the
internal interaction strength among the bath spins. A possible
explanation using Fermi’s golden rule might be that in this
regime the smaller density of bath states leads to slower deco-
herence as it does equivalently for thermalization [29,30]. The
effect of a small density of bath states on decoherence needs to
be further investigated, both theoretically and experimentally.

A final remark concerns the special arrangement of the
environmental spins in our study. We studied several other
arrangements, in particular, also one where all environmental
spins are situated in the lower hemispheres around the dimer
spins—a situation that appears to be more adapted to the
experimental situation. However, our numerical experience
yields that the various geometries change the decoherence of
the system primarily through a different interaction strength
between environmental spins (for a fixed distance between
dimer and bath), which is covered in our model by choosing
different factors λ.
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