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Spin-orbit coupling and spin-triplet pairing symmetry in Sr2RuO4
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Spin-orbit coupling (SOC) plays a crucial role in determining the spin structure of an odd parity psedospin-
triplet Cooper pairing state. Here, we present a thorough study of how SOC lifts the degeneracy among
different p-wave pseudospin-triplet pairing states in a widely used microscopic model for Sr2RuO4, combining a
Ginzburg-Landau (GL) free energy expansion, a symmetry analysis of the model, and numerical weak-coupling
renormalization group (RG) and random phase approximation (RPA) calculations. These analyses are then used
to critically re-examine previous numerical results on the stability of chiral p-wave pairing. The symmetry
analysis can serve as a guide for future studies, especially numerical calculations, on the pairing instability
in Sr2RuO4 and can be useful for studying other multiband spin-triplet superconductors where SOC plays an
important role.
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I. INTRODUCTION

Understanding an unconventional superconductor requires
identifying and understanding both its superconducting order
parameter symmetry and the pairing mechanism. The two
are intimately connected. In Sr2RuO4, both of these are still
not well understood. Early experiments, including muon spin
relaxation [1], NMR [2], Polar Kerr effect [3] measurements,
point toward a spin-triplet chiral p-wave pairing [4,5], which
is a two-dimensional (2D) analog of the A phase of helium
3He [6] and is potentially useful for topological quantum
computing [7,8].

However, it is difficult to reconcile the spin-triplet chiral
p-wave picture with several other experiments [9]. Chiral edge
currents have been predicted for the chiral p-wave pairing
state but not detected [10,11]; splitting of the superconduct-
ing transition temperature Tc in the presence of an in-plane
magnetic field or a uniaxial strain [12,13] is expected but not
found. Recent NMR experiments [14,15] report a significant
drop of the spin susceptibility in the superconducting phase
measured in an in-plane magnetic field, which contradicts
previous measurements [2] and suggest either spin-triplet
helical or singlet pairing, although strong spin-orbit coupling
[16,17] can complicate the interpretation of the experimental
data.

Most theoretical studies [18,19] on the pairing mechanism
are connected to spin or charge fluctuation mediated super-
conductivity, inspired by work on 3He [6]. However, spin
fluctuations in Sr2RuO4 are complicated due to the multior-
bital nature of its normal state. The normal state of Sr2RuO4

contains two quasi-1D α and β bands, derived mainly from
the Ru t2g dxz, dyz orbitals, and one quasi-2D band from the dxy

orbital. Although early on it was proposed that the supercon-
ductivity is dominated by one set of the three bands [20], more
recent calculations suggest that superconductivity on the three
bands is comparable and indicate that the three orbitals should

be treated simultaneously. A further complication in a micro-
scopic analysis comes from the sizable spin-orbit coupling
(SOC) which entangles the three orbital degrees of freedom
with spin. The effect of SOC on the normal state Fermi
surface (FS) has been emphasized previously in Ref. [16] and
was recently found to be larger than previously thought [17].
However, the effect of SOC on the superconducting state is
still poorly understood.

Understanding the effect of SOC on the superconducting
phase is crucial to address the relative stability of chiral
p-wave and helical p-wave pairing states. This is because
in the absence of SOC, and in the weak-coupling limit, all
spin-triplet p-wave pairing states are degenerate due to the
unbroken spin rotation symmetry [21]. A mechanism to lift
the degeneracy in the absence of SOC is to consider the
spin fluctuation feedback effect due to the superconducting
condensate itself, which spontaneously breaks the spin ro-
tation symmetry and modifies the pairing interaction. This
mechanism is responsible for the stability of the 3He A phase
[6] and has been used to stabilize the chiral state in theories
of Sr2RuO4. However, in a Ginzburg-Landau free energy
expansion in terms of the superconducting order parameter
near Tc, the feedback effect only appears at fourth-order; while
the SOC effect can split Tc of different spin triplet states at
quadratic order [21]. Therefore it is important to understand
how the normal state SOC affects the stability of different
pairing states.

The effect of SOC on the spin triplet pairing states in
Sr2RuO4 has been studied previously in Refs. [21–28] semi-
analytically to various degrees and included in different nu-
merical calculations [18,29–31], using different models and
approaches. However, a systematic and more complete treat-
ment is lacking. Also, conflicting statements have been made
regarding the degeneracy among different p-wave pairing
states in the presence of SOC. In this paper, we present
a complete Ginzburg-Landau free energy analysis of the
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SOC effect on the superconducting state at quadratic order
in the order parameter. Then we focus on a 2D three-band
microscopic model with SOC and identify the terms that
lift the degeneracy among different p-wave states based on
a symmetry analysis of the model. The results are supple-
mented with numerical weak-coupling RG and RPA calcu-
lations [18,26]. This model has been adopted in different
numerical calculations [18,24,26,27,29–33] under different
approximations to determine the dominant pairing instability
for Sr2RuO4. Our analysis shows that some of the previous
numerical results obtained in certain parameter regimes are
incorrect. Since our results are obtained largely based on
symmetries of the model, they also apply beyond weak-
coupling and provide a guide to future numerical calculations.
Furthermore, some of the conclusions and analysis here can
be applied to other multiband spin-triplet superconductors,
where SOC is important for the pairing.

The rest of the paper is organized as follows. In Sec. II,
a complete GL analysis of SOC effects on triplet states is
presented. In Sec. III, we study the SOC induced GL free
energy terms for Sr2RuO4 based on a widely studied 2D three-
band microscopic model using analytical symmetry analyses
and numerical weak-coupling RG calculations. In Sec. IV, we
reexamine the chiral p-wave instability in Sr2RuO4, where we
provide a new phase diagram calculated within the RPA for
the microscopic model, and also generalize the 2D analysis
to 3D. Sec. V contains our conclusions. Some details of the
derivations are relegated to Appendices, including details on
the extension of this work to 3D models of Sr2RuO4.

II. GENERAL GINZBURG-LANDAU ANALYSIS

In the presence of SOC, spin is not a good quantum
number. However, time reversal and inversion symmetries still
ensure a twofold degeneracy at each k point in the Brillouin
zone, which can be used to define a pseudospin and to classify
all possible pairing states into pseudospin singlet and triplet
sectors. Here, we focus on pseudospin triplet p-wave pairing
states.

For a general pseudospin triplet state the order parameter
is a 2 × 2 matrix,

�̂(k) ≡
∑

μ={x,y,z}

∑
j={x,y}

dμ
j σμiσy ψ j (k). (1)

where σμ are Pauli matrices in pseudospin space; ψ j (k) are
two basis functions in k space that transform like kx and ky

under the D4h point group.
In the absence of SOC, the GL free energy at quadratic

order in the superconducting order parameter is

f 0
2 = α0(T )

〈
1

2
Tr[�̂†(k)�̂(k)]

〉
FS

(2a)

= α0(T )
∑

μ={x,y,z}

∑
j={x,y}

|dμ
j |2, (2b)

where the superscript “0” indicates quantities defined for zero
SOC. α0(T ) ∝ (T 0

c − T ) and 〈· · · 〉FS means averaged over the
FS. The trace, Tr[· · · ], is performed in pseudospin space.

In general, the presence of SOC breaks both the full
pseudospin SU(2) rotation and spatial D4h symmetries. The

TABLE I. All possible SOC induced GL free energy terms at
quadratic order in �̂ for pseudospin triplet pairing states of a 2D
model. For 3D models there are additional terms, which can be found
in Appendix C.

GL terms Expressions in terms of dμ
j

f SOC,1
2 |dz

x |2 + |dz
y |2

f SOC,2
2 (dx

x )∗dy
y + (dy

y )∗dx
x

f SOC,3
2 (dx

y )∗dy
x + (dy

x )∗dx
y

f SOC,4
2 |dx

x |2 + |dy
y |2

f SOC,5
2 |dy

x |2 + |dx
y |2

remaining symmetry group for a 2D model of Sr2RuO4 is
DL̂+Ŝ

4h ⊗ U (1)C , where DL̂+Ŝ
4h is the D4h point group whose

symmetry operations act simultaneously on the spatial k and
pseudospin spaces. U(1)C is the charge U(1) gauge symmetry.
Time-reversal and inversion symmetries are also assumed,
although they might be spontaneously broken in the ground
state. To derive the most general form of the GL free energy
terms at quadratic order we consider all possible contractions
of (dμ

i )∗dν
j , viewed as a rank-4 tensor, such that the contracted

results are a scalar that is invariant under all symmetry opera-
tions of DL̂+Ŝ

4h ⊗ U (1)C . This leads to five terms in the GL free
energy, which are tabulated in Table I. Details of the derivation
can be found in Appendix A.

We can also write the SOC induced terms in terms of
�̂. When the pseudospin rotation symmetry is broken, order
parameter products other than �̂†�̂, such as �̂†σi� and
�̂†σi�σ j , can also appear in Eq. (2a) [34]. Considering all
such combinations that are invariant under the symmetry
group DL̂+Ŝ

4h ⊗ U (1)C leads to the same conclusion that there
are five independent terms in the GL free energy at quadratic
order. The results can be found in Table IV of Appendix A.

Some of the terms in Table I have been identified previ-
ously [21–26,28], but Table I provides the most complete form
of all possible SOC induced terms at quadratic order. These
terms in general lift the degeneracy among different p-wave
states, which belong to the five irreducible representations of
the D4h group and are classified in Table II. Depending on
the symmetries of microscopic models, some of these terms
may or may not appear. In the following, we focus on a
particular 2D three-band interaction model [18], identify the

TABLE II. Irreducible representations (irrep.) of the DL̂+Ŝ
4h point

group. The order parameters are given for 2D models. Only the
pseudospin triplet p-wave pairing states are considered. The first four
irrep., {A1u, A2u, B1u, B2u}, give helical pairings that do not break time
reversal symmetry; while the Eu irrep. supports two chiral states,
ẑ(kx ± iky ), that spontaneously break time reversal symmetry.

irrep. Order parameter

A1u d(k) = x̂kx + ŷky

A2u d(k) = x̂ky − ŷkx

B1u d(k) = x̂kx − ŷky

B2u d(k) = x̂ky + ŷkx

Eu d(k) = ẑ(kx, ky )
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SOC induced terms, and analyze how they affect the relative
stability of different p-wave pairing states.

III. MICROSCOPIC DETERMINATION OF THE SOC
INDUCED TERMS

We consider the microscopic model Hamiltonian,

H = HK + V, (3)

where HK is the kinetic energy part that gives rise to the
normal state Fermi surfaces, and V is the interaction. In
addition to hopping terms, HK contains a SOC term, which,
written in k space, is

2ηL · S = η
∑

	,m,n=1,2,3

iε	mnc†
k,m,sσ

	
ss′ck,n,s′ , (4)

where {1, 2, 3} = {dyz, dxz, dxy} orbitals, and {s, s′} are the
actual spins, not the pseudospins to be defined below. ε	mn is
the fully antisymmetric tensor and η is the SOC strength. c†

(c) is the electron creation (annihilation) operator.
Following Ref. [18], we write HK in the basis �(k) =

[ck,1,↑; ck,2,↑; ck,3,↓; ck,1,↓; ck,2,↓; ck,3,↑]T , such that it is block
diagonal

HK (k) =
(

H↑↑(k) 0
0 H↓↓(k)

)
, (5)

where

Hss(k) =
⎛
⎝ εyz(k) g(k) + isη −sη

g(k) − isη εxz(k) iη
−sη −iη εxy(k)

⎞
⎠. (6)

εyz, εxz, and εxy describe intraorbital hoppings; while g(k) is
the only interorbital hopping for a 2D model.

The interaction [18] we consider is a multiorbital on-site
Kanamori-Hubbard type interaction

V = U

2

∑
i,a

ni,a,↑ni,a,↓ + U ′

2

∑
i,a �=b,s,s′

ni,a,sni,b,s′

+ J

2

∑
i,a �=b,s,s′

c†
iasc

†
ibs′cias′cibs

+ J ′

2

∑
i,a �=b,s �=s′

c†
iasc

†
ias′cibs′cibs. (7)

ni,a,s ≡ c†
i,a,sci,a,s is the spin and orbital resolved electron den-

sity operator at site i. U (U ′) is the intraorbital (interorbital)
repulsive Hubbard interaction. J is the Hund’s coupling, and
J ′ the pair hopping. The Hund’s coupling term can be also
written as [35] −J

∑
i,a �=b(Si,a · Si,b + ni,ani,b/4), where Si,a is

the orbital resolved electron spin vector operator at site i and
ni,a = ni,a,↑ + ni,a,↓. The Kanamori-Hubbard interaction V is
derived from the Coulomb interaction and is invariant under
SO(3) rotations in the t2g d-orbital space, provided J ′ = J
and U ′ = U − 2J [35]. Crystal field splitting in Sr2RuO4 in
general lowers the symmetry of the interaction in the orbital
space, which, however, does not affect our following discus-
sions. Each of the four terms of V is SU(2) spin rotational
invariant. The repulsive V can give rise to Cooper pairing
instabilities in non-s-wave channels [36].

A. Hamiltonian in the pseudospin basis

Using a†
i,a,σ (ai,a,σ ) for electron creation (annihilation)

operators with the pseudospin σ and orbital a at site i, we
define

(a†
i,1,σ , a†

i,2,σ , a†
i,3,σ ) ≡ (c†

i,1,σ , c†
i,2,σ , c†

i,3,σ̄ ), (8)

where σ̄ =↓ (↑) if σ =↑ (↓). Written in the pseudospin
basis, �̃(k) = [ak,1,↑; ak,2,↑; ak,3,↑; ak,1,↓; ak,2,↓; ak,3,↓]T , the
kinetic energy part HK (k) remains the same as in Eq. (6),
whose H↑↑ (H↓↓) block can be identified with pseudospin ↑
(↓).

Rewriting the interaction V in Eq. (7) in terms of {a†, a}
and denoting the new interaction by Ṽ , we have

Ṽ = ṼU + ṼU ′ + ṼJ + ṼJ ′ , (9)

where

ṼU = U

2

∑
i,a

ni,a,↑ni,a,↓, (10a)

ṼU ′ = U ′ − J/2

2

∑
i,a �=b,σ,σ ′

ni,a,σ ni,b,σ ′ , (10b)

ṼJ = −J
∑

i

⎧⎨
⎩
∑
a �=b

Si,a · Si,b − 2
∑

a={1,2}

[
Sy

i,aSy
i,3+ Sz

i,aSz
i,3

]⎫⎬⎭,

(10c)

ṼJ ′ = J ′

2

∑
i,σ �=σ ′

⎧⎨
⎩

∑
a �=b={1,2}

−
∑

a �=b={2,3}
−

∑
a �=b={1,3}

⎫⎬
⎭

a†
iaσ a†

iaσ ′aibσ ′aibσ . (10d)

In these equations, all operators are in terms of {a†, a}:
ni,a,↑ = a†

i,a,↑ai,a,↑, etc. In the following, we identify the terms

in the Hamiltonian HK + Ṽ that breaks the pseudospin rota-
tional symmetry.

B. Degeneracy at g(k) = J = J′ = 0

Although the presence of HSOC breaks spin rotation sym-
metry in the normal state, it does not necessarily lead to a
symmetry breaking in the pseudospin space and, therefore,
the degeneracy among different pseudospin triplet p-wave
pairing states may remain intact. In the current model, this
is the case when both g(k) ≡ 0 and J = J ′ = 0. This has been
pointed out previously in Ref. [24] by a direct expansion of the
effective interaction in the Cooper pairing channel in terms of
the SOC constant η up to quadratic order. Here, we provide a
proof purely based on symmetry.

First notice that HK can be brought into a pseudospin
SU(2) invariant form by the following unitary transformation
(written in the k space)

U : {a†
k,1,↓, ak,1,↓} → {−a†

k,1,↓,−ak,1,↓}, (11)

if there is no interorbital hopping term, i.e., g(k) ≡ 0 in
Eq. (6). In this case, under the U transformation,

H̃K ≡ U†HKU = H↑↑ ⊗ σ0, (12)

where σ0 is the identity matrix in the pseudospin space.
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When J = J ′ = 0, the U transformation leaves Ṽ in Eq. (9)
unchanged, which is pseudospin SU(2) rotational invariant
since Ṽ and V share the same form. Therefore, if both g(k) ≡
0 and J = J ′ = 0, the whole microscopic Hamiltonian after
the U transformation,

H̃ = H̃K + Ṽ , (13)

is pseudospin SU(2) invariant. Consequently, all p-wave pseu-
dospin triplet pairing states resulting from the microscopic
Hamiltonian are degenerate. This conclusion does not depend
on how the microscopic model is treated, i.e., whether the
pairing states are calculated in weak-coupling RG [18], RPA
[29,30], or other methods.

C. SOC induced terms due to finite g(k) but with J = J′ = 0

When g(k) �= 0, after the U transformation, the kinetic
energy part of the Hamiltonian can be written as H̃K + δH̃K

with H̃K given in Eq. (12) and

δH̃K (k) ≡ 2g(k)
{
Sz

12(k) + H.c.
}
, (14)

where Sz
12(k) ≡ 1/2

∑
σ,σ ′ a†

k,1,σ
σ z

σ,σ ′ak,2,σ ′ is the interorbital
pseudospin operator along the z direction. For g(k), to be
specific, we consider the nearest-neighbor interorbital hy-
bridization as in Ref. [18], g(k) = −4t ′′′ sin kx sin ky, where
t ′′′ is the corresponding hopping integral.

Clearly, δH̃K (k) breaks the full pseudospin rotational sym-
metry. It contributes to the GL free energy a term which, to
the first order in t ′′′/t , is

δF = 〈δH̃K (k)〉 = a2
[

f SOC,2
2 − f SOC,3

2

]
. (15)

a2 ∝ t ′′′/t , and the expressions of f SOC,2
2 and f SOC,3

2 are given
in Table I. The average 〈· · · 〉 is performed in a mean-field
p-wave pairing state obtained at t ′′′ = 0 and over the k space.
In arriving at this equation, we have used: (1) because of
the sin kx sin ky dependence in g(k), only (dμ

x )∗dν
y type terms

can appear in δF so that 〈· · · 〉 does not vanish after the
k average; (2) δH̃K (k) has a remaining symmetry in the
pseudospin space; it is invariant under pseudospin rotations
about the z axis. Written in terms of the components of the
�̂ matrix, δF = a2(−i/2){�↑↑,x�

∗
↑↑,y − �↓↓,x�

∗
↓↓,y − c.c.}.

The subscript ‘x’ indicates that the quantity transforms as kx

under the spatial D4h group. This term has been identified in
Refs. [24,28] using a quite different approach. Our derivation
makes the microscopic symmetry origin of the term manifest.

Since δF in Eq. (15) preserves the pseudospin rotation
symmetry in the xy plane, it splits the four p-wave helical
states into two groups, {A1u, A2u} and {B1u, B2u}. The two
states in each group are related to each other by a fourfold
pseudospin rotation about z. To leading order in t ′′′/t , the
splitting of Tc between the two groups is δTc ∝ |a2| ∝ |t ′′′/t |.
Since δF does not have any term that splits chiral states from
helical states, the transition temperature of the chiral states,
T Eu

c , stays half way in between that of the two helical state
groups, T A1u/A2u

c and T B1u/B2u
c . We confirm these conclusions

with a numerical weak-coupling RG calculation following
Refs. [18,26]. The results are shown in Fig. 1. At larger t ′′′/t ,
the splitting between helical and chiral states has deviations
from the linear dependence on t ′′′/t arising from higher

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

(t
/U

)2
×

(|λ
H

e
−|
|λ C

h
|)
×

10
3

t /t

A1u/A2u

B1u/B2u

FIG. 1. Differences between eigenvalues of the effective two-
particle interaction in the Cooper pairing channel computed within
weak-coupling RG. Thin black lines are guides for the eye to show
the linear behavior at small t ′′′/t . λHe (λCh) is the eigenvalue for p-
wave helical (chiral) pairing states. The splitting, δTc, of Tc between
chiral and helical states is given by δTc/Tc ∝ (|λHe| − |λCh|), to linear
order in δTc/Tc. The normal state band parameters, other than t ′′′ and
η, here and elsewhere, are identical to those in Ref. [18]. Here, we
choose η = 0.1t and J/U = 0.

order contributions of δH̃K (k) to δF , which lead to terms,
f SOC,4
2 + f SOC,5

2 and f SOC,1
2 , in δF . These terms leave the

degeneracy in each of two helical state groups intact since the
pseudospin rotational symmetry around z remains; however,
they make the relation T Eu

c = {T A1u/A2u
c + T B1u/B2u

c }/2 only an
approximation. Since in Sr2RuO4, |t ′′′|/t ∼ η/t is small, we
expect T Eu

c ≈ {T A1u/A2u
c + T B1u/B2u

c }/2 to hold, as seen in Fig. 1.
One conclusion of the above analysis is that the chiral

pairing states are never stabilized by the t ′′′ induced terms.
A similar conclusion was obtained in Ref. [25] for a different
interaction model within a mean-field analysis.

Since the relative stability between chiral and helical states
will be affected by other SOC induced terms, which will be
analyzed in detail in Sec. III D, it is important to understand
the SOC dependence of δF in Eq. (15). Following Ref. [25],
we go back to the original Hamiltonian before the U trans-
formation in terms of actual spin. To linear order in η/t , the
change of the GL free energy due to nonzero SOC is given
by δF = 2η〈L · S〉, where the average 〈· · · 〉 is evaluated in
a mean field pairing state obtained at zero SOC. From the
analysis of δH̃K (k) in pseudospin space, we know that δF is
invariant under pseudospin rotations about z; it is also invari-
ant under actual spin rotations about z since the pseudospin
and actual spin z directions are the same. Therefore, in 〈L · S〉,
〈LxSx + LySy〉 ≡ 0. Hence,

δF = 2η〈LzSz〉 = iη{n↑↑
12 − n↓↓

12 − n↑↑
21 + n↓↓

21 }, (16)

where n↑↑
12 ≡ ∑

i〈c†
i1↑ci2↑〉 are the single-particle density ma-

trices off-diagonal in the orbital index. At zero order in η,
the mean field Hamiltonian for the chiral pairing states are
symmetric with respect to spin ↑↔↓. Consequently, the linear
in η term in δF vanishes and δF ∼ O(η2). On the other hand,
for the four helical pairing states, δF ∼ O(η) in general, if
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the superconducting order parameters on the α and β bands
are not identically zero when η = 0. This linear dependence
has been emphasized in Ref. [25].

We calculate the η dependence of δF for our model in
weak-coupling RG. In the case of J = 0, we actually find that
δF ∝ (η/t )2 rather than ∝η/t . This comes from a complete
decoupling between the α + β and γ bands when J = J ′ =
η = 0, which makes all the density matrices in Eq. (16)
identically zero and invalidates the above argument for the
linear in η dependence (for details see Appendix B). When
J �= 0, the three bands are coupled and, indeed, we find the
leading η/t dependence of δF linear, as shown in Fig. 5.

To summarize, the presence of g(k) and η induces a
pseudospin SU(2) symmetry breaking term in the GL free
energy, given in Eq. (15), which lifts the degeneracy among
different p-wave states. This term always favors helical states
over the chiral states. It is invariant under the pseudospin
rotations along z that preserves the degeneracy between A1u

and A2u, and that between B1u and B2u. The splitting between
the two helical state groups is δTc ∝ t ′′′η/t , to leading order in
t ′′′/t and η/t . In the special case of J = J ′ = 0, the splitting
is ∝t ′′′η2/t2. Interestingly, the necessary ingredients, t ′′′ and
η, for the splitting identified here are the same as those
responsible for a spin Hall effect discussed in Ref. [37],
suggesting that the two may be intimately connected.

D. SOC induced terms due to finite J = J′ but with g(k) ≡ 0

In this section, we analyze the pseudospin rotational break-
ing terms due to finite J and η, while keeping g(k) ≡ 0.

1. Pseudospin SU(2) breaking terms

When J �= 0, applying the U transformation in Eq. (11) to
Ṽ in Eq. (9) changes the form of Ṽ and leads to

˜̃V ≡ U†ṼU = ˜̃V inv + ˜̃V J + ˜̃V J ′ , (17)

where ˜̃V inv = U† (ṼU + ṼU ′ ) U = ṼU + ṼU ′ is still pseu-
dospin SU(2) invariant. The other two terms are

˜̃V J = U†ṼJU = −J
∑

i

{[
Sx

i2Sx
i3 + Sy

i1Sy
i3 + Sz

i1Sz
i2

]
− [

Sx
i1Sx

i2 + Sx
i1Sx

i3 + Sy
i1Sy

i2 + Sy
i2Sy

i3 + Sz
i1Sz

i3 + Sz
i2Sz

i3

]}
,

(18a)

˜̃V J ′=U†ṼJ ′U= J ′

2

∑
i,σ �=σ ′

⎧⎨
⎩−

∑
a �=b={1,2}

−
∑

a �=b={2,3}
+

∑
a �=b={1,3}

⎫⎬
⎭

× a†
iaσ a†

iaσ ′aibσ ′aibσ . (18b)

The U transformation shifts the SOC induced effect of
spin rotational symmetry breaking from the kinetic energy
part of the Hamiltonian to the interaction part. Note that the
kinetic energy part becomes pseudospin SU(2) invariant after
the transformation. Since each term of the original interaction
V in Eq. (7) is SU(2) spin rotational invariant, we can identify
the pseudospin SU(2) rotational symmetry breaking terms in

˜̃V as

δ˜̃V = −2J
∑

i

[
Sx

i2Sx
i3 + Sy

i1Sy
i3 + Sz

i1Sz
i2

]
+ J ′ ∑

i,σ �=σ ′

∑
a �=b={1,3}

a†
iaσ a†

iaσ ′aibσ ′aibσ . (19)

In this equation the J ′ term alone does not lift the degen-
eracy among different p-wave pairing states. This can be
proved within weak-coupling RG and RPA approximations
by examining diagramatic contributions to helical and chiral
states at each order in interaction. There is a one-to-one
correspondence between the two contributions that contain J ′,
if J = 0. This result is consistent with Ref. [24], where a direct
perturbation, up to second order in both interaction and SOC,
shows that the SOC induced terms to the effective interaction
in the Cooper pairing channel necessarily depend on J when
g(k) ≡ 0. We have also verified the above conclusion in our
numerical weak-coupling RG and RPA calculations. There-
fore, within linear order in J (= J ′), we can drop the J ′ term
in Eq. (19).

2. GL free energy terms due to δ
˜

˜V

δ˜̃V in Eq. (19) does not completely break the pseudospin
SU(2) rotational symmetry. Mirror reflections about the xz
and yz planes, denoted as MŜ

xz and MŜ
yz respectively, leave

δ˜̃V invariant. This holds even if the J ′ term in Eq. (19) is
taken into account. MŜ

xz and MŜ
yz are therefore symmetries

of the whole microscopic Hamiltonian. In Table I, the only
terms compatible with these symmetries are f SOC,1

2 , f SOC,4
2 ,

and f SOC,5
2 . Therefore, in general, the GL free energy due to

δ˜̃V is given by

δF = a1 f SOC,1
2 + a4 f SOC,4

2 + a5 f SOC,5
2

= 2a1 + a4 + a5

4

[
f SOC,1
2 + f SOC,4

2 + f SOC,5
2

]
+ 2a1 − a4 − a5

4

(
f SOC,1
2 − f SOC,4

2 − f SOC,5
2

)
+ a4 − a5

2

(
f SOC,4
2 − f SOC,5

2

)
, (20)

where {a1, a4, a5} are three coefficients that shift the Tc

away from T 0
c . In δF , ( f SOC,1

2 + f SOC,4
2 + f SOC,5

2 ) is trivial
and shifts the Tc of all p-wave pairing states equally. To
leading order in J/U , {a1, a4, a5} ∝ J .1( f SOC,1

2 − f SOC,4
2 −

1The leading order contribution to δF in a weak-coupling theory

comes from a second order perturbation result, δF = 〈˜̃V inv G̃4 δ˜̃V 〉,
which is second order in ˜̃V but first order in J/U . Here, 〈· · · 〉 means
being averaged in a mean-field p-wave pairing state obtained at
J = 0, and G̃4 is the four-point Green’s function defined for the
normal state Hamiltonian after the U transformation, H̃K given in

Eq. (12). Note that the first order perturbation contribution, 〈δ˜̃V 〉, is
identically zero for a p-wave pairing state because the interaction

δ˜̃V is purely on-site. However, because the pseudospin rotational

symmetry property of δF is completely dictated by δ˜̃V , in the main
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FIG. 2. J/U dependence of the splitting between helical and
chiral p-wave pairing states in weak-coupling RG. t ′′′ = 0 and η =
0.1t . The splitting is linear in J/U at small J/U . Note that the two
helical states, {A2u, B2u}, are almost degenerate with the chiral state,
which is accidental and not robust to band parameter changes.

f SOC,5
2 ) splits the chiral state away from helical ones, while

( f SOC,4
2 − f SOC,5

2 ) breaks the degeneracy among the four heli-
cal p-wave states, splitting them into two groups, {A1u, B1u}
and {A2u, B2u}. Within each group the two states are con-
nected by MŜ

xz and MŜ
yz, and therefore remain degenerate.

In terms of the components of the order parameter matrix
�̂, f SOC,4

2 − f SOC,5
2 = (−1/2){[�∗

↑↑,x�↓↓,x − �∗
↑↑,y�↓↓,y] +

c.c.}. This term was identified in Refs. [24,28] using a direct
expansion in the SOC, while our analyses here are based on
symmetries of the model.

Again, it is important to understand the SOC dependence
of δF in Eq. (20). For that we go back to the original
Hamiltonian written in terms of the actual spin. As mentioned
previously, the linear order in η/t contribution to the GL free
energy comes from δF = 2η〈L · S〉, where S is the actual
spin operator, not pseudospin. However, 〈L · S〉 ≡ 0 because
of the three remaining mirror reflection symmetries in the
pseudospin space, {MŜ

xz,MŜ
yz,MŜ

xy}, which imply the same
symmetries for the actual spin, since the {x, y, z} directions
are identical in the pseudospin and actual spin spaces. On the
other hand, these symmetries do not prohibit a second order
in η/t term, δF ∝ 〈(2η L · S)2 · · · 〉, where · · · here stands
for η independent operators that have a dimension of energy
inverse. Therefore, in Eq. (20), the GL expansion coefficients
{a1, a4, a5} ∝ (η/t )2 to leading order in η/t .

3. Numerical results

We confirm the above conclusions with weak-coupling
RG calculations, where the details of the calculation follow
Refs. [18,26]. Figure 2 shows the numerical results of the
splitting between helical and chiral states as a function of J/U
for fixed η/t = 0.1. At J/U = 0, all p-wave pairing states are

text we simply focused on δ˜̃V , rather than the more complicated˜̃V inv G̃4 δ˜̃V
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FIG. 3. η/t dependence of the splitting between helical and
chiral states in weak-coupling RG. t ′′′ = 0 and J/U = 0.06. The
splitting is ∝(η/t )2 to leading order in η/t . Again, due to the
near-degeneracy between the {A2u, B2u} and chiral states for these
band parameters, the quadratic dependence of the splitting in η/t is
difficult to discern.

degenerate, even though η �= 0, consistent with the conclusion
obtained in Sec. III B. At finite J/U , the degeneracy between
chiral and helical states is lifted. The four helical states are
split into two groups of two degenerate states. The splitting
of Tc between the chiral states and the {A1u, B1u} group is
indeed ∝J/U to leading order, as predicted. Interestingly, the
other group, {A2u, B2u}, remains almost degenerate with the
chiral states even at finite J/U , which is, however, not robust
to changes of normal state band dispersions.

Figure 3 shows our weak-coupling RG results for the
SOC dependence of |λHe| − |λCh|. Within numerical errors,
|λHe| − |λCh| ∝ (η/t )2, in agreement with the above analyti-
cal analysis.

A summary of the main results obtained in this section
is: finite J = J ′ and η induce pseudospin rotational breaking
terms in the GL free energy as given in Eq. (20), which
lift the degeneracy among different p-wave pairing states.
The splitting of Tc between different p-wave states is δTc ∝
(J/U ) η2/t , to leading order in J/U and η/t . The degener-
acy between A1u and B1u, and that between A2u and B2u,
remains due to pseudospin mirror reflection symmetries in
the xz and yz planes. The terms in Eq. (20) can favor either
chiral or helical states, depending on the magnitudes of the
two coefficients, (2a1 − a4 − a5)/4 and (a4 − a5)/2, which
in turn depend on the normal state band structures. If a1 <

min{a4, a5}, then (2a1 − a4 − a5)/4 < −|a4 − a5|/4 and the
chiral states are stabilized.

E. Results for both g(k) �= 0 and J �= 0

When both g(k) and J = J ′ are nonzero, the SOC induced
GL free energy is given by the sum of Eqs. (15) and (20).
However, the GL free energy expansion coefficients for each
f SOC, j
2 are different from those in Eqs. (15) and (20) because

of additional contributions that depend on both t ′′′ and J . The
degeneracy among all p-wave pairing states is lifted except
the one between the two chiral states with opposite chirality
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FIG. 4. J/U dependence of the splitting between different helical
and chiral p-wave states. t ′′′ = 0.01t and η = 0.1t . The splitting
at small J/U is dominated by the linear in t ′′′ effect discussed in
Sec. III C, which always stabilizes helical states.

within the Eu representation, as seen in Fig. 4. Because of the
near-degeneracy seen in Fig. 2, the splitting between A2u (or
B2u) and chiral states is dominated by the t ′′′ term at small
J/U . An implication is that, with both J and t ′′′ present, the
dominant p-wave pairing state in the small J/U and t ′′′/t
parameter space regime will be always helical, rather than
chiral, regardless of whether the splitting, |λHe| − |λCh|, for
the other two helical states, {A1u, B1u}, is ∝AJ/U with a
positive slope A > 0, as seen in Fig. 4, or with A < 0. When
t ′′′/t becomes larger, the splitting between {A2u, B2u} and
chiral states can pick up a significant J/U linear dependence
because of cross dependent terms.

Some of the conclusions derived in Secs. III C and III D
still hold when both t ′′′ and J are present. For example, the
leading SOC dependence of the splitting between different p-
wave pairing states is linear due to the g(k) induced terms,
as shown in Fig. 5. These terms are ∝t ′′′η/t2 to leading order
in t ′′′/t .
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FIG. 5. η/t dependence of the splitting between helical and chi-
ral p-wave states in weak-coupling RG. t ′′′ = 0.1t and J/U = 0.11.
The leading SOC dependence is linear at small η/t .

FIG. 6. Phase diagram obtained within RPA for different J/U
and U/t . The RPA breaks down in the “NA” regime. The three
intraorbital hoppings in Eq. (6) are εxz(yz)(k) = −2t cos kx(y) −
2t⊥ cos ky(x) − μ, εxy(k) = −2t ′(cos kx + cos kx ) − 4t ′′ cos kx cos ky

− 2t ′′′′(cos 2kx + cos 2kx ) − μ. We choose the band parame-
ters, (t, t⊥, t ′, t ′′, t ′′′, t ′′′′, μ, η) = (1, 0.1, 0.8, 0.3, 0.05, −0.015,

1.075, 0.2), such that the resulting Fermi surfaces fit recent ARPES
data [17].

IV. STABILITY OF CHIRAL p-WAVE PAIRING

The analysis of Sec. III shows that, within the current 2D
three-band model with an on-site Kanamori-Hubbard inter-
action, the dominant pairing is always helical, rather than
chiral, at small J/U and U/t where p-wave pairing is favored
within the weak-coupling approximation [18,29,31]. On the
other hand, at large J/U , pseudospin singlet pairing takes over
[18,29,31]. Therefore we expect the phase diagram, in the
parameter space spanned by J/U and U/t , to be dominated
by helical p-wave and singlet pairing states for physical band
parameters describing Sr2RuO4, where interorbital hybridiza-
tion between dxz and dyz orbitals can not be neglected. This
expectation is confirmed by our RPA calculations, which
give the phase diagram shown in Fig. 6. Details of the RPA
calculation follow those found in Refs. [29,30]. The RPA
breaks down for U/t � O(1) due to an instability inherent in
this approximation, 2 but can give reliable results even beyond
the weak-coupling regime, U/t � 1 [38]. In Fig. 6, there is
no trace of chiral pairing even at an intermediate value of
J/U . In this phase diagram, the helical state order parameter
realized is d(k) = x̂kx + ŷky (A1u), and the s and dx2−y2 wave
order parameters belong to the irreducible representation A1g

and B1g, respectively, of the D4h group. However, they are not
simple lowest harmonic functions, but are highly anisotropic,
similar to those found in Refs. [18,29]. In each phase of
the phase diagram, the ratio of the gap magnitude on differ-
ent bands depends on both J/U and U/t . However, unlike

2The eigenvalue of the effective interaction in the Cooper pairing
channel, λ, diverges where RPA breaks down and for Fig. 6, we cut
off the phase diagram at (t/U )2|λ| = 0.2. The boundary is insensitive
to the choice of a cutoff [provided it is �O(1)], since λ diverges
rapidly in this region
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Ref. [18] where the α + β always dominate when the favored
pairing symmetry is helical, we find that the dominant band in
the helical phase is γ when both J/U and U/t are small, while
it changes to α + β at larger J/U or U/t .

Since chiral p-wave pairing states have been previously
found in various numerical calculations using the same model
[18,24,29,30], we comment on these. In Ref. [24], the domi-
nant pairing instability was calculated by solving Eliashberg
equations with an effective pairing interaction derived from a
perturbation theory up to second order in the bare interaction.
Chiral p-wave was found to be the dominant channel when the
Eliashberg equations were solved only for the γ band, while
the coupling between γ and α + β bands due to the effective
interaction was neglected. However, this coupling can have
significant effects on the ratio between the gap magnitudes
of the two sets of bands [18,29], which in turn can impact
the relative stability between helical and chiral p-wave pairing
states. This can explain the difference between our numerical
results and those in Ref. [24]. Ref. [18] is a weak-coupling
RG calculation, where chiral p-wave states have been found
near J/U = 0 with a nonzero t ′′′/t = 0.01. However, this is
inconsistent with our analytical analyses of the t ′′′ effect in
Sec. III C and also inconsistent with our numerical results in
Fig. 6. Reference [29] is an RPA calculation based on the same
model. The phase diagrams obtained in the weak-coupling
limit are similar to those in Ref. [18]. In particular, there is
a significant portion of the phase diagram at small J/U and
U/t , where chiral p-wave pairing dominates. However, we
note that Eq. (S13) of Ref. [29] takes the real part of the
effective interaction. In the presence of SOC, this suppresses
the t ′′′ induced terms that we have identified in Eq. (15),
which favors helical over chiral states. This may explain the
discrepancy between our RPA phase diagram in Fig. 6 and
those in Ref. [29]. In Ref. [30], a similar RPA calculation was
performed at relatively large U for different Fermi surface
geometries. Chiral p-wave pairing has been found only at
large SOC for the Fermi surface geometry where the γ band
touches the zone boundary. However, in that calculation, the
interorbital hybridization t ′′′ was set to zero, which completely
leaves out the terms in Eq. (15). Physically we do not ex-
pect this hybridization to be vanishingly small, given that
it is between orbitals on two next-nearest neighboring sites.
Including a small t ′′′ = 0.01t suppresses the chiral p-wave
pairing, giving way to helical states. We have verified this with
RPA calculations in a parameter regime that overlaps with
those of Ref. [30] and found results that are consistent with
our analytical analysis. Furthermore, we find the stability of
chiral p-wave in this parameter regime requires fine-tuning,
in that a small change in parameters renders this phase unsta-
ble.

Given the difficulty of stabilizing a chiral p-wave state
within the current model, we wonder what ingredients can
favor a chiral p-wave state if we go beyond this model. There
are at least two possibilities to consider: (1) three-dimensional
effects on the normal state Fermi surface; (2) longer range
off-site interactions.

In a 3D model with the same on-site Kanamori-Hubbard
interaction, like the one used in Ref. [31], two additional
interorbital hybridization terms appear in the normal state
Hamiltonian, txz,xy (tyz,xy) between dxz (dyz) and dxy orbitals,

in addition to the t ′′′ that we have already considered. The
two interlayer hybridizations txz,xy and tyz,xy, combined with
the finite SOC, can mix an out-of-plane component kz(x̂, ŷ)
in the d(k) vector of the chiral p-wave pairing state within
the Eu representation [14,39,40], which shifts the Tc of the
chiral p-wave state. However, this mixing is small because
of its dependence on small parameters η/t and tz/t , where
tz ≡ max{|tyz,xy|, |txz,xy|}. The mixing vanishes if either η = 0
or tz = 0 so that, to leading order in η/t and tz/t , it is ∝ηtz/t2.
The resulted critical temperature shift from the mixing can
be estimated by a second order nondegenerate perturbation
theory and the result is δTc/Tc ∝ (ηtz/t2)2. Detailed discus-
sions can be found in Appendix C. This shift is negligible
compared to the effects of other SOC induced terms on Tc

that we discussed in Sec. III. Therefore we ignore the possible
mixing in the following.

Then we can easily generalize our 2D analyses to the
3D model. If we set all interorbital hybridizations and J to
zero, the same derivations as in Sec. III B lead to the same
conclusion that all p-wave pairing states remain degenerate
even with η �= 0. Note that in this case there is no mixing be-
tween the in-plane and out-of-plane pairings because the full
pseudospin SU(2) symmetry is still preserved. SOC induced
terms by each interorbital hybridization can be analyzed
similarly following Sec. III C. The two additional hybridiza-
tions, txz,xy and tyz,xy, add two additional terms to the δH̃K (k)
in Eq. (14) that are ∝txz,xy sin kz/2 cos kx/2 sin ky/2 · · · and
∝tyz,xy sin kz/2 cos ky/2 sin kx/2 · · · , respectively [31]. How-
ever, the leading order GL free energy from these two terms
vanish in δF = 〈δH̃K (k)〉 after the k average, since we have
ignored a possible mixing of the out-of-plane pz pairing
component, and the odd kz dependence of those two terms
can not be compensated by any other term in the mean field
Hamiltonian of a px or py pairing state. Therefore, to linear
order in txz,xy/t or tyz,xy/t , which are expected to be even
smaller than t ′′′/t , we can drop those additional hybridizations
in the normal state Hamiltonian. Then the analyses of the t ′′′
and J induced terms are identical to those in Sec. III C and
III D. Therefore the conclusions obtained in the 2D analysis
can be directly applied to the 3D model. In other words, the
three-dimensional effect of the FS does not help stabilize a
chiral p-wave pairing state, consistent with the 3D weak-
coupling RG numerical results obtained in Ref. [31], where
helical states have been found to dominate over chiral p-wave
pairing at J/U all the way up to J/U = 0.2.

Another possibility is to consider longer-range off-site
interaction models [23,41]. Reference [23] considered such
a model with attractive nearest neighbor interactions, and, in-
deed, chiral p-wave pairing states were found to be stabilized
in some regime of the pairing interaction parameter space.
However, the solutions were obtained under the assumption
that the p-wave pseudospin triplet channel is favored over
singlet channels. In Ref. [41], the authors studied a nearest
neighbor version of the Kanamori-Hubbard interaction model,
and found that p-wave pseudospin triplet states are more
stable than singlet channels for certain choice of interaction
parameters; on the other hand, the relative stability among dif-
ferent p-wave pairing states has been completely ignored by
simply assuming that chiral p-wave pairing states are favored
over helical states. In both cases, further investigations beyond
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the assumptions made here would be needed to establish the
stability of chiral p-wave states.

V. CONCLUSIONS

We have conducted a thorough study of the effect of
SOC on the relative stability of different p-wave pairing
states for a widely used microscopic model for Sr2RuO4.
Our analysis combines a general GL free energy expansion
with an analytical study of the symmetry of the microscopic
model Hamiltonian. We give the most general form of the
SOC induced quadratic GL terms that break the pseudospin
SU(2) rotation symmetry, identify the relevant GL terms for
the microscopic model, and examine their effects on lifting
the degeneracy among different p-wave pairing states. The
analytical results are further supported by our weak-coupling
RG and RPA numerical calculations.

A theme that emerges from this study is that the breaking
of SU(2) rotation symmetry in pseudospin space can be quite
different from that in the actual spin space; this was also
pointed out in Ref. [24]. The former depends on not only the
presence of SOC but also other ingredients of the microscopic
Hamiltonian, which in the current model are the interorbital
hybridization t ′′′, Hund’s coupling J , and/or pair hopping.
The additional dependence on t ′′′ and J significantly reduces
the splitting among different p-wave states for Sr2RuO4 since
both t ′′′/t and J/U are small. In the parameter space regime
relevant to Sr2RuO4, with finite but small t ′′′/t and small
J/U , we find that the finite t ′′′ effect tends to dominate and
always stabilizes helical states over the chiral ones. We have
also generalized our analysis to a 3D model and shown that
the existence of interorbital hybridizations, in addition to the
t ′′′ that already exists in 2D models, does not help stabilize
the chiral p-wave pairing states, in agreement with the recent
numerical study [31]. On the other hand, including longer-
range interactions may or may not make the chiral states more
favorable and requires further investigation.

Our analysis has resolved some conflicts among different
results on the relative stability between helical and chiral
p-wave pairing states in the literature. Since the analysis is
largely based on the symmetries of the model and independent
of how the model is treated, it also serves as a guide for
future studies, both analytical and numerical. Furthermore, the
analysis presented here can be adapted to study the effect of
SOC on other multiorbital pseudospin triplet superconductors.

An outstanding issue in Sr2RuO4 is to reconcile theory
with the observations of broken time-reversal symmetry [1,3]
and a jump in the shear modulus c66 [42]. Although a chiral
p-wave state can explain both, here we discuss possible alter-
native explanations with helical states.

Given the small splitting among different helical states
found here and in previous works [18,29,31,43], a possibility
to consider is a pair of accidentally or nearly degenerate
helical states. If the two states are close enough to degeneracy,
such a pair can lead to either coexistence of different helical
state domains [14,44] or a homogeneous time reversal break-
ing state [44–46], depending on microscopic interactions. A
previous analysis of quartic GL terms [47] suggests that a
homogeneous time reversal symmetry breaking state is almost
impossible unless the system is very near or right at the degen-

eracy point. Moreover, except right at the degeneracy point,
this scenario requires two phase transitions with different Tc,
which is not observed experimentally. Nevertheless, if two al-
most degenerate helical orders do form a homogeneous state,
this can lead to a jump in c66 if the two mixed representations
are {A1u, B2u} or {A2u, B1u} [43]. However, within the models
studied in this paper, our analysis in Sec. III suggests that
residual symmetries in pseudospin space do not naturally lead
to a degeneracy between A1u (A2u) and B2u (B1u).

In the case of coexistence of domains, time reversal break-
ing is possible at domain walls where two different helical
order parameters coexist. However, since the order parameter
mixing is local, the resulted coupling to external probes, such
as light in a Polar Kerr measurement [3] and the shear strain
εxy in an ultrasound measurement [42], is also local, which
makes it unlikely to be able to account for the experiments.
So a theoretical explanation of both broken time-reversal
symmetry and a jump in c66 is highly constrained. Further in-
vestigations, both experimentally and theoretically, are needed
to better assess the possibility of reconciling the experiments
with helical ordered states.

Note added. Recently, Ref. [30] was updated with addi-
tional calculations on the effects of the interorbital hybridiza-
tion t ′′′. Their new results are consistent with our analysis.
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APPENDIX A: SOC INDUCED GL FREE ENERGY TERMS
AT QUADRATIC ORDER FOR 2D MODELS

As mentioned in the main text, the remaining symme-
try group in the presence of SOC is DL̂+Ŝ

4h ⊗ U (1)C for a
2D model. To derive all possible GL free energy terms at
quadratic order for the pseudospin triplet pairing states, we
contract the rank-4 tensor, (dμ

i )∗dν
j , to a scalar such that it is

invariant under all symmetry operations of the above group.
For 2D models, the xy-plane mirror reflection symmetry of
DL̂+Ŝ

4h , denoted as MŜ
xy, is operative only on the pseudospin

since there is no kz. MŜ
xy requires that, in (dμ

i )∗dν
j , either

{μ, ν} = {x, y} or μ = ν = z.
For the case of {μ, ν} = {x, y}, there are only four possible

independent contractions, given in Table III. With μ = ν = z
the only possible contraction is∑

i j={x,y}
δi j

(
dz

i

)∗
dz

j = ∣∣dz
x

∣∣2 + ∣∣dz
y

∣∣2
. (A1)

Linear combinations of the four terms from Table III and
the one in Eq. (A1) gives the five terms in Table I of the main
text. The above SOC induced free energy terms can be also
rewritten in terms of the order parameter matrix �̂. Rewriting
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TABLE III. All possible contractions of (dμ
i )∗dν

j that are in-

variant under the DL̂+Ŝ
4h ⊗ U (1)C group for {μ, ν} = {x, y}. For 2D

models, {i, j} = {x, y}.

Different contractions Results∑
μνi j={x,y} δμiδν j (dμ

i )∗dν
j

∑
i j={x,y}(d

i
i )∗d j

j∑
μνi j={x,y} δμ jδνi (dμ

i )∗dν
j

∑
i j={x,y}(d

j
i )∗di

j∑
μνi j={x,y} δμνδi j (dμ

i )∗dν
j

∑
i j={x,y}(d

j
i )∗d j

i∑
μνi j={x,y} δμiδi jδ jν (dμ

i )∗dν
j |dx

x |2 + |dy
y |2

the five terms in Table I using Eq. (1) and linearly recombining
them gives the five independent terms in Table IV, from which
we see that order parameter products other than �̂†�̂, such as
�̂σi�̂ and �̂σi�̂σ j , also appear in the free energy expansion,
due to the broken pseudospin SU(2) symmetry [34].

APPENDIX B: SOC DEPENDENCE OF THE SPLITTING
BETWEEN HELICAL AND CHIRAL STATES WHEN

J = J′ = 0

The η dependence of δF for the 2D model at J = J ′ = 0
is calculated in weak-coupling RG and shown in Fig. 7. As
mentioned in the main text, we find that the splitting between
helical states has a quadratic dependence on η for small η at
J/U = 0. This result can be understood as follows. When both
η = 0 and J ′ = J = 0, the two-particle effective interaction
has no coupling between α + β bands, which consist of the
dxz and dyz orbitals, and the γ band, if only intraband pairing
is considered as in the weak-coupling RG [18]. Then the
pairing lives purely on the γ band since that band has a
larger density of states. Therefore, at zero order in η, all
the off-diagonal density matrices in Eq. (17) are identically
zero. As a consequence, δF ∼ O(η2). However, in general,
we expect the three bands to be coupled even when η = 0 if
the pair hopping J ′ �= 0. In that case, δF picks up a linear in η

term, as seen in Fig. 5. The η linear term is likely to dominate
over the η2 term since its estimated J/U for Sr2RuO4 is about
0.1 (see Ref. [18] and the references therein). Note that even
a small J/U can strongly couple the three bands together
such that order parameter magnitudes on the three bands are
comparable [18]. This is largely because the normal state

TABLE IV. All possible SOC induced GL free energy terms at
quadratic order in �̂ for the pseudospin triplet pairing states in a 2D
model. �̂x is the part of the order parameter matrix �̂ that transforms
like kx under the spatial D4h group. The trace Tr is performed in the
pseudospin space. Note that, in this table, f SOC,E

2 is allowed because
the pseudospin Pauli matrix σz is even under the xy-plane mirror
reflection MŜ

xy.

GL terms Expressions in terms of �̂

f SOC,A
2 Tr[�̂†

xσz�̂xσz] + Tr[�̂†
yσz�̂yσz]

f SOC,B
2 Tr[�̂†

yσx�̂yσx] − Tr[�̂†
xσy�̂xσy]

f SOC,C
2 Tr[�̂†

xσx�̂xσx] − Tr[�̂†
yσy�̂yσy]

f SOC,D
2 Tr[�̂†

xσx�̂yσy] − Tr[�̂†
yσy�̂xσx]

f SOC,E
2 i {Tr[�̂†

xσz�̂y] − Tr[�̂†
yσz�̂x]}
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FIG. 7. η/t dependence of the splitting between helical and
chiral p-wave pairing states in weak-coupling RG. t ′′′ = 0.1t and
J = 0. The splittings are ∝(η/t )2 to leading order in η.

density of states of the α + β bands is comparable to that of
the γ band.

APPENDIX C: SOC INDUCED GL FREE ENERGY TERMS
AT QUADRATIC ORDER FOR 3D MODELS

For a 3D model that depends on kz, in addition to the
basis functions given in Table II, an out-of-plane pairing
component, with the basis function d(k) = ẑkz for the A1u and
d(k) = kz (x̂, ŷ) for the Eu representation, is also allowed by
symmetry [14,39,40]. In the presence of SOC and interlayer
coupling, in general, the vector d(k) of the Eu (but not the
A1u; see below) representation is a mixture of the in-plane and
out-of-plane pairing components, which leads to more GL free
energy terms at quadratic order in �̂.

To obtain these GL free energy terms, we follow the 2D
derivations outlined in Appendix A. The only difference is
that, for 3D models, the xy-plane mirror reflection, ML̂+Ŝ

xy ,
now operates on both the k and pseudospin. Besides the terms
in Table I, we also get

f SOC,6
2 = ∣∣dz

z

∣∣2
, (C1a)

f SOC,7
2 = ∣∣dx

z

∣∣2 + ∣∣dy
z

∣∣2
, (C1b)

f SOC,8
2 =

∑
j={x,y}

[(
dz

j

)∗
d j

z + c.c.
]
, (C1c)

f SOC,9
2 =

∑
j={x,y}

i
[(

dz
j

)∗
d j

z − c.c.
]
. (C1d)

f SOC,6
2 and f SOC,7

2 describe the free energy contributions
from the d(k) = ẑkz and d(k) = kz (x̂, ŷ) pairings, respec-
tively. They exist even without SOC. However, f SOC,6

2 and
f SOC,7
2 are irrelevant to our current discussions since the Tc

of the out-of-plane pairings are expected to be much smaller
than that of the in-plane components for Sr2RuO4, which is
highly quasi-2D. The other two GL terms, f SOC,8

2 and f SOC,9
2 ,

describe the coupling between the in-plane d(k) = ẑ (kx, ky )
and out-of-plane d(k) = kz (x̂, ŷ) components within the same
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Eu representation. Their appearance requires finite SOC to
break the full psedospin rotational symmetry. Note that such
a coupling does not exist for the A1u representation.

The mixing of the out-of-plane component to the in-plane
chiral p-wave pairing state in Eu leads to a shift of the Tc

away from its zero SOC value, T 0
c . On the other hand, the

helical p-wave states are unaffected by the mixing; therefore,
the degeneracy among different p-wave states is in general
lifted due to the shift. Hence it is important to understand
the magnitude of this shift, and compare it to the effect of
other SOC induced GL terms on Tc that we have discussed in
Sec. III of the main text.

To that end, we first analyze the dependence of the GL
coefficients associated with f SOC,8

2 and f SOC,9
2 , a8 and a9,

on small parameters of the model that we consider [31].
Spin rotation symmetry breaking requires that, to leading
order in η, {a8, a9} ∝ η/t . Since the terms in f SOC,8

2 and
f SOC,9
2 transform like kxkz or kykz under spatial rotations,

the two GL coefficients necessarily come from a k space

average 〈· · · kxkz〉 or 〈· · · kykz〉, which is nonzero only if
the kxkz or kykz dependence is compensated by interlayer
hopping terms such as tyz,xy sin kx/2 sin kz/2 cos ky/2 or
txz,xy sin ky/2 sin kz/2 cos kx/2. As a consequence, to lead-
ing order in tyz,xy/t and txz,xy/t , {a8, a9} ∝ tz/t , where tz =
max{|tyz,xy|, |txz,xy|}. Combing the η/t and tz/t dependence,
we have {a8, a9} ∝ T 0

c (η tz )/t2, where T 0
c is a characteristic

pairing temperature scale for zero SOC.
Now consider the Tc shift of the chiral p-wave pairing

state due to the mixing. As mentioned above, we expect that,
for Sr2RuO4, the Tc of the in-plane and out-of-plane pairing
components in the Eu representation, Tc,in and Tc,out, satisfy
Tc,in � Tc,out. So the Tc shift of the in-plane chiral p-wave
pairing state due to the mixing can be well estimated from a
second order non-degenerate perturbation theory, i.e., δTc ≈
max{|a8|2, |a9|2}/(Tc,in − Tc,out ), which leads to δTc/Tc ∝
(η tz )2/t4. This shift is negligible compared with the contri-
butions from other SOC induced terms that we have discussed
in the main text, since η/t ∼ 0.1 and |tz/t | � 0.1 for Sr2RuO4.
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