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Skewness and critical current behavior in a graphene Josephson junction
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In this work, the DC Josephson effect is investigated for a superconductor-graphene-superconductor junction
in both short- and long-junction regimes. The electric transport properties are calculated while taking into
account the contribution of the discrete and continuous energy spectrum. In our approach, the phase dependence
of the critical current is calculated at arbitrary temperature and doping level, which generalizes previous results.
We show that critical current Ic and skewness S exhibit critical points as a function of graphene doping EF , which
can be explained by Klein resonances in graphene. We give a general characterization of S vs Ic curves while
fixing temperature or doping level. When the temperature dependence of Ic is analyzed, we find differences with
respect to conventional Josephson junctions, given that there is a relevant doping effect. In the long-junction
regime with EF far away from the Dirac point, the Ic vs T curve may exhibit an exponential decay law, which
has been measured recently. We report the temperature dependence of S in the whole range of temperature,
and our approach allows us to account for skewness suppression in the vicinity of the Dirac point, which is in
agreement with recent experiments. We mention some effects which can be attained in Josephson junctions with
well-defined edges and for transparency values below unity of the graphene-superconductor interfaces.
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I. INTRODUCTION

The Josephson effect in superconductor-graphene-
superconductor (SGS) junctions has been investigated by
several authors [1–5], who demonstrated that graphene as
a weak link can support a dissipationless supercurrent. For
junctions in the short limit, current transport is mediated
mainly by discrete Andreev levels through successive
Andreev reflections [6]. In the opposite long-junction
regime, the contribution of the continuum must be included.
One of the main features of the Josephson junction
is the current-phase relation (CPR) [7], which gives
information about the coupling between superconductors
and superconducting properties and can be used as a merit
figure for Josephson devices. The CPR can be forward
skewed, and its deviation of sinusoidal behavior is measured
by a dimensionless parameter named skewness S. A recent
review [8] summarized the advances in understanding CPR in
graphene Josephson junctions.

The fact that for potential barriers in graphene, we can have
a perfect transmission or Klein tunneling [9] for incident elec-
trons with energies below barrier height suggests that an anal-
ysis of CPR in SGS junctions is necessary. It is well known
how transmission resonances appear in nonsuperconducting
graphene systems with barriers [10,11] and quantum wells
[12]. The role of Klein and non-Klein processes and their
respective contribution to transmission has been analyzed [13]
in double-barrier systems where electrostatic-based barriers
take into account Klein processes. There are different trans-
mission processes that involve propagating and evanescent
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states, from discrete and continuous energy spectra, which can
mediate supercurrent transport across the junction.

The Josephson effect has been measured in the ballistic
regime [3,5,14–17]; there are Fabry-Pérot interference effects
in graphene, which lead to critical current oscillations as a
function of gate voltage. Other works considered long junc-
tions [18–20], for which the temperature dependence of Ic and
some current phase relationships were analyzed but only some
doping values were considered. Recent progress includes the
experimental measurement of skewness [14,21], showing how
S oscillates as a function of EF and the full temperature
dependence of S. Several authors discussed the temperature
dependence of the critical current [18–20]. Recently, some
experiments [15] with encapsulated graphene gave guidelines
to clarify the discussion of ballistic junctions; within a certain
temperature range, an exponential decay of the critical current
for long junctions [15] has been measured, similar to the result
for conventional Josephson junctions.

In Josephson junctions the competition between Klein and
non-Klein processes has not been studied; this work shows
how nanoribbon bound states can influence the Josephson
supercurrent, and an explanation of concavity changes in
the critical current as a function of doping is given and
related to Klein resonances. Our model accounts for skew-
ness suppression near the Dirac point where other mod-
els fail [14]. Our approach allows us to consider both
short- and long-junction regimes at arbitrary temperature and
doping, thereby giving a complete description of CPR in
graphene Josephson junctions. Our analysis clarifies Ic vs
T dependence and the parameter values for which behavior
changes; in the long-junction regime Ic temperature depen-
dence obeys an exponential decay law in the low range of
temperature, which resembles the temperature behavior of
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SNS (S: superconductor, N: normal metal) junctions. For low
transparency values of GS interfaces, Ic exhibits oscillations as
a function of doping, and junctions with zigzag edges exhibit
a different behavior at low doping values.

We expect that the Josephson effect in nanostructures with
well-defined edges between graphene-superconductor inter-
faces will become relevant in nanoelectronics. Our approach
allows us to consider zigzag or armchair edges at graphene-
superconductor interfaces. Most research on the SGS Joseph-
son effect does not make a distinction between armchair and
zigzag, which can give some different features. Nanoribbons
with armchair and zigzag edges were synthesized a few years
ago [22,23], and recently, there have been advances in large-
scale production of zigzag nanoribbons [24,25], which are
promising for nanoelectronics.

In Sec. II we introduce the theoretical approach used in
this work; the electric transport properties at finite temperature
are calculated through Green’s function formalism, which
generalizes and extends previous results [18–20]. An integral
expression for the current can be obtained for the zigzag
case, where the phase dependence is given explicitly. For
the armchair case the Dyson equation is solved numerically.
We consider in some cases nonideal graphene-superconductor
interfaces, which can be modeled through the hopping param-
eter between interfaces. Section III A shows that Ic and S as a
function of EF exhibit critical points, which are correlated.
We employ a model based on Klein tunneling to explain
Ic behavior and the local maxima and minima that arise in
skewness. For nonideal interfaces, we show that the edge
effect is noticeable, where curves are out of phase, and for low
doping values the critical current exhibits amplitude differ-
ences. In Secs. III B and III C the temperature dependence of
the critical current and skewness is analyzed in both short- and
long-junction regimes, where different features arise when
graphene doping is varied.

II. THEORETICAL MODEL

Although graphene is not a superconductor, we can model
the superconducting regions with the honeycomb lattice struc-
ture. Between superconductors, there is phase difference ϕ,
and the weak link length is L, which is much smaller than
its width (see Fig. 1). We consider translational invariance
along the y axis. The length L is determined by the location
of the superconducting leads, which are deposited on the
graphene film; the ellipsis indicates that we are not restricted
to any particular junction length. For simplicity, we consider
a geometry in which graphene-superconductor interfaces have
armchair or zigzag edges. The current transport is transverse
to the edges. Figure 1 illustrates an armchair edge, but both
edge types are considered in our model.

The coupling between normal and superconducting
graphene regions is modeled through the Hamiltonian ap-
proach, which takes into account the different dispersion
processes. The normalized hopping parameters between in-
terfaces PL = tL/h̄vF , PR = tR/h̄vF are related to interface
transparency through

TL(R) = 4PL(R)

(1 + PL(R) )2
; (1)

FIG. 1. The Josephson SGS junction, with edges transverse to
the current transport direction along the x axis. The diagram illus-
trates that along the y axis, graphene-superconductor interfaces have
armchair edges, but zigzag edges are also considered in this work.
The normalized hopping values for the left and right interfaces are
PL and PR, respectively. There is a phase difference of ϕ between
superconductors, and the junction length is L. The dashed lines
represent that structure extends along the y axis and that in general
the junction width W is larger than L. The three dots mean that we
do not focus on ultrashort Josephson junctions.

by varying the parameter PL(R) in our model we consider im-
perfect interfaces. T must be distinguished from the effective
transmission throughout the junction, which is proportional
to the Josephson supercurrent. The Fermi vector mismatch
between normal and superconducting regions can be modeled
as a potential barrier, V0 = EFS − EF .

The current is calculated from perturbed Green’s functions
for the SGS junction. We start from nonperturbed Green’s
functions for graphene regions; these Green’s functions are
obtained from asymptotic solutions of the Bogoliubov–de
Gennes–Dirac Hamiltonian [26]. The equilibrium-perturbed
Green’s function for the SGS junction is obtained by solving
the Dyson equation. The current between the two regions, left
L and right R, is given by

I = e

h

∫ ∞

−∞

∫ kc

−kc

Tr[A]dkydE , (2)

with

A = σ̌z[�̃LRG̃+−
RL (E , ky) − �̃RLG̃+−

LR (E , ky)], (3)

where σ̌z = σ̂z
⊗

I , with σ̂z being the Pauli matrix and
⊗

be-
ing the tensor product which arises due to Nambu and sublat-
tice space. �̃LR, �̃RL are self-energies which connect the left
and right regions, and their structure depends on the interface,
zigzag or armchair edges. In equilibrium, the Keldysh Green’s
functions G̃+−

RL (E , ky) and G̃+−
LR (E , ky) are proportional to the

Fermi-Dirac distribution function, which guarantees that for
the DC Josephson effect only Green’s perturbed equilibrium
functions are necessary. Equation (2) takes into account the
contributions of discrete Andreev levels and the continuous
spectrum; propagating and evanescent states are included in
the calculation with a cutoff value kc. Therefore, this is a
robust method to calculate the current through a junction;
additionally, by solving the Dyson equation, we consider the
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general case in which the order of perturbation series is taken
up to infinity.

For an SGS Josephson junction with a zigzag edge, it is
possible to obtain an integral expression for the current as

I (ϕ) = 8e

h
P2

L P2
R sin ϕ

∫ ∞

0

∫ kc

−kc

H (E , ky, ϕ)dkydE , (4)

where

H (E , ky, ϕ) = �2

�2
[2 f (E ) − 1]Im

[
dedh

D1D2(ϕ)

]
, (5)

D2(ϕ) = −1 − 2P2
L G(E , ky ) cos ϕ + F (E , ky), (6)

f (E ) is the quasiparticle Fermi-Dirac distribution, Im denotes
the imaginary part, and the quantities de, dh, D1, G(E , ky ),
and F (E , ky) are defined in Appendix. Equation (4) is a
general expression for the current-phase dependence which
complements previous works [2]; it is valid in both short- and
long-junction regimes and for different values of doping and
temperature. The result exhibits a nonsinusoidal dependence;
the sin ϕ factor is accompanied by a nontrivial dependence on
the phase difference given by Eq. (6).

In the tunnel limit the factor D2(ϕ) is ϕ independent, and
therefore, sinusoidal behavior is recovered. We characterize
CPR of the graphene Josephson junction through two param-
eters: the critical current Ic = I (ϕmax), which corresponds to
the maximum value of the current, and skewness S, which
gives information about the ϕmax shift with respect to the
π/2 value. Following the convention of other theoretical and
experimental works, S is calculated via

S = 2ϕmax

π
− 1. (7)

For a tunnel Josephson junction CPR has sinusoidal behav-
ior (S = 0); by contrast, for systems with high-transmission
states, CPR tends to have a sawtooth (S = 1) shape. Usually,
graphene superconductor interfaces have high transmittance.
Therefore, S values are expected to be higher for SGS sys-
tems in comparison with those obtained for SNS Josephson
junctions. The presence of high-transmission states in the SGS
junction results in a skewed forward CPR.

III. RESULTS AND DISCUSSION

A. Critical current and skewness behavior

Figure 2(a) plots Ic as a function of graphene doping
for different transparency values of graphene-superconductor
interfaces, considering both armchair and zigzag edges; the
critical current values are normalized to I0 = e�0/h̄, with
�0 = �(T = 0). For transparent interfaces, T = TL = TR =
1, we find that Ic increases monotonically, and the current
curve exhibits inflection points, similar to previous results for
short junctions in the ballistic regime [27]. There are two types
of inflection points which give information about concavity
change; in our analysis we name positive to negative concavity
change type I and the opposite one type II. Figure 2(a)
shows that type I inflection points are located at values whose
difference is a number close to π .

An analysis of Klein tunneling in graphene systems with a
potential barrier showed that transmission probability is equal

FIG. 2. (a) Critical current and (b) skewness as a function of
graphene doping EF for both armchair (arm) and zigzag (z-z) edges
of graphene. The junction length is such that L/ξ ≈ 1.593. The solid
and dashed lines represent the values given by Eqs. (8) and (9). The
dotted lines correspond to the location of the maxima and minima
of Ic for the nonideal case. The inset in (a) illustrates the behavior
when TL = 1 and TR = 0.33, where the zigzag case exhibits different
behavior.

to unity for particular values of the incident wave number
[11]. For normal incidence and zero excitation energy, the
resonance condition reduces to

EF

ET h
= nπ, n = 1, 2, . . . , (8)

with ET h = h̄vF /L being the Thouless energy. Values pre-
dicted by Eq. (8) are represented as solid lines in Fig. 2. The
Josephson junction must inherit certain properties of graphene
resonant structures; therefore, the critical current behavior can
be explained by Klein resonances. The type I point is related
to the Klein resonance condition (8); the derivative dIc/dEF

has a maximum where for values of EF /ET h in the vicinity
of the critical point, the transmission probability is equal to
unity. Equation (4) takes an integral over excitation energy
and wave number considering the different modes that satisfy
the Klein resonance condition. The type II point is related to
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the condition in which probability transmission is zero for
ky = 0; thus, the derivative dIc/dEF has a minimum. The
monotonic increment of Ic is explained by the inclusion of
more normal modes as EF is increased; therefore, the resulting
curve exhibits inflection points.

Figure 2(b) plots S as a function of EF /ET h for different
transparency values at graphene-superconductor interfaces.
The different curves exhibit oscillations as a function of
graphene doping; we can explain local maxima for S through
Klein resonances given by Eq. (8), where states with high
transmission probability can produce a forward deviation of
sinusoidal behavior and therefore a higher S value. For T = 1,
we can observe from Fig. 2(b) that qualitatively, S behavior is
the same for both edge types, and the period of oscillations is
close to π ; there is a shift in maxima and minima locations,
and the differences are due to an average over energy and
transversal wave number. Our model accounts for S suppres-
sion in the vicinity of the Dirac point, which was not explained
by other models [14]; therefore, our results are in agreement
with experimental results [14,21].

For nonideal interfaces T = 0.89, quasibound states of
the nanoribbon play a role, and their associated quantization
conditions are relevant [28]. In this situation, the critical
current curve has a transition from inflection points to local
maxima and minima, where the period is near π . The dotted
lines in Fig. 2(a) correspond to the location of the first local
maxima and minima of Ic, which are depicted to make a
comparison with predictions of Klein resonances (solid lines).
The armchair and zigzag curves are out of phase; the reason is
that the armchair quantization condition of quasibound states
is equivalent to Eq. (8), while for the zigzag case the following
is obtained:

EF

ET h
= nπ

2
, n = 1, 3, 5, . . . ; (9)

values predicted by Eq. (9) are represented as dashed lines
in Fig. 2 and correspond to the location of local maxima of
the critical current and skewness for the zigzag case. The
predictions of Eqs. (8) and (9) give values close to the location
of maxima and minima, as can be seen in Fig. 2. The critical
current oscillations are a signature of ballistic transport in
the Josephson junction; in this work we are able to explain
the behavior exposed on the basis of Klein resonances and
quantization conditions of bound states. The skewness also
exhibits an oscillating behavior where the location of maxima
and minima can be explained by Eqs. (8) and (9); for nonideal
interfaces in comparison with the transparent case, the curves
are narrower. The characteristics of graphene-superconductor
interfaces are crucial, where for nonideal interfaces, the curves
are out of phase for zigzag and armchair edges.

We can observe in Fig. 2 that critical points of the Ic and
S curves are correlated, which is because of the contribution
of high-transmission states. For ideal interfaces T = 1, the
inflection points of the Ic curve are correlated with maxima
and minima of the S curve (see Fig. 2), where concavity
changes in Ic determine the type of critical point in S. For
the nonideal case T = 0.89, local maxima of the Ic curve are
a consequence of high-transmission states and therefore are
associated with local maxima in the S curve.

FIG. 3. The density of states as a function of energy and su-
perconducting phase difference ϕ for both armchair and zigzag
edges. The phase values indicated correspond to the critical phase
values which maximize supercurrent. The junction length is such that
L/ξ ≈ 1.593. T is the transparency value at graphene superconduc-
tor interfaces. In (a)–(d) EF /�0 = 2.125.

We can examine the local density of states integrated
over the transversal wave number ky as a function of energy
and superconducting phase difference ϕ, which is shown
in Fig. 3. The left and right columns correspond to the
armchair and zigzag edges, respectively. Each density plot
indicates the critical phase values which maximize supercur-
rent and transparency values for ideal (T = 1) and nonideal
(T = 0.89) interfaces. The density plots give information
about the phase dispersion of quasibound states, which allows
performing an analysis of the current. The doping value
considered is EF /� = 2.125, in which Ic exhibit the first local
maxima and minima [dotted lines in Figs. 2(a) and 2(b)]. For
T = 1 [Figs. 3(a) and 3(b)], we can observe that density
plots exhibit qualitatively the same behavior, in contrast to
T = 0.89 [Figs. 3(c) and 3(d)], in which the differences be-
tween zigzag and armchair cases are clear. The latter explains
the change from the monotonic to oscillating behavior of
Ic. The phase dispersion analysis of Fig. 3 can explain why
Fig. 3(c) corresponds to local maxima in Fig. 2(a) while
Fig. 3(d) is associated with local minima. The above can be
seen from the following relation for the supercurrent [6,29]
carried by quasibound states:

In(ϕ) = 2e

h̄

∂En

∂ϕ
. (10)

Furthermore, we can see from Fig. 2(a) that behaviors for both
types of edges are similar and the current amplitude is bigger
for the armchair edge. However, for nonideal interfaces, the Ic

behavior is different, where the current exhibits local maxima
and minima and curves for armchair and zigzag edges are
out of phase with each other. We consider contributions of
both evanescent and propagating modes; the relative weight
depends on the junction length L, doping level, and the
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hopping parameter through interfaces. Low current values
are obtained when doping is located at the Dirac point (zero
doping) because in this case the transport is mediated mainly
by evanescent states. For ideal interfaces, there are amplitude
differences between short- and long-junction regimes, and
behavior near the Dirac point is different, but in general,
critical current curves have a universal behavior, where the
locations of inflection points are the same.

Some authors [2,5,14] pointed out that there is a dis-
crepancy between experimental and theoretical values of the
critical current. In addition to this, we must mention that
in Josephson junctions with well-defined edges, our results
show that there are differences in amplitude between the
armchair and zigzag cases, where values are greater for the
armchair edge with transparent interfaces. When low values
of transparency TR = 0.33 are considered, the critical current
is higher for the zigzag edge [see the inset in Fig. 2(a)], and it
is achievable in the whole range of doping. Figure 2(a) shows
that for low doping values EF /ET h < 2 and T = 0.89; Ic is
higher for the zigzag case. It is worth mentioning that our
results for the zigzag case in the short limit are in agreement
with the value S = 0.25 predicted for a ballistic Josephson
junction [27] with the doping level located at the Dirac point.
For armchair interfaces, our calculations predict S values
higher than previous results [19,20] in both short- and long-
junction regimes.

B. Skewness vs critical current behavior

Figure 4(a) shows S vs Ic for short-, intermediate-, and
long-junction regimes, with doping EF /� = 10. In compar-
ison with previous work [19], our results extend the tem-
perature range, and it is possible to obtain higher S values
near zero temperature. For larger junctions the curve slope
increases, which is expected due to coherence loss. Only for
lower Ic values could the behavior be linear [19]. Therefore,
experiments must be realized in the lower-temperature range,
with the purpose being to observe the nonlinear behavior
in which S has higher values. Additionally, our calculations
indicate that for lower doping values the S vs Ic curve has
higher slope values because of critical current decreases. The
results are strongly affected by states in the continuum where
S and Ic behavior with temperature changes. The continuous
spectrum strongly influences the current-phase relation where
transmission values for dispersion processes at graphene su-
perconductor interfaces can be significantly different from
those obtained for discrete Andreev levels.

In Fig. 4(b) each curve shows the behavior of S as a func-
tion of Ic when temperature is constant, and the doping value
is varied for a short junction, L/ξ ≈ 0.1992, with an armchair
edge. The different curves exhibit a slightly skewed oscillating
behavior, which can be explained by observing how for the
ideal case T = 1, the S and Ic curves in Fig. 2 depend on
the parameter EF /ET h. The oscillations seen in Fig. 4(b) are
more pronounced when the temperature is decreased since
in the proximity of zero temperature the biggest deviation of
sinusoidal behavior is expected.

C. Temperature behavior

Figures 5(a) and 5(b) plot the critical current as a function
of temperature for both armchair and zigzag edges in the

FIG. 4. Skewness as a function of critical current for an SGS
junction. In (a) for each curve doping is constant, EF /�0 =
10, and temperature changes; three different cases are depicted,
L/ξ ≈ 0.3984, 0.6997, 1.593. In (b) for each curve temperature is
constant T/Tc = 0, 0.05, 0.1, 0.2, EF changes, and L/ξ ≈ 0.1992.
The junction has an armchair edge.

short- and long-junction regimes, respectively. For the short
junction L < ξ , with EF located at the Dirac point, the be-
havior obtained qualitatively resembles results for SIS (S: su-
perconductor, I: insulator) tunnel junctions and conventional
superconductor-constriction-superconductor (ScS) junctions
[7,30]. In this case the behavior is mainly influenced by
evanescent states; therefore, the results of classical Josephson
junctions with short normal regions are expected. In contrast,
for EF /� = 10 [see the inset in Fig. 5(a)] the behavior ex-
hibits a concavity change, which can be explained by modes
that appear when doping is increased. For the long-junction
regime L > ξ [see Fig. 5(b)], a concavity change is also
present, and the Ic temperature dependence does not exhibit
a “plateau” at low temperatures; in this case the continuum is
more relevant and influences CPR, where Ic decreases and S
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FIG. 5. Temperature dependence of critical current and skewness
for an SGS Josephson junction with transparent interfaces T = 1.
Both types of edges armchair (arm) and zigzag (z-z) are considered.
In (a) L/ξ ≈ 0.398, and EF /�0 = 0; the inset illustrates the case
EF /�0 = 10. In (b) L/ξ ≈ 1.593, and EF /�0 = 1; the inset illus-
trates the case EF /�0 = 0. In (c) the skewness behavior is plotted
for the zigzag edge at the Dirac point for different junction lengths.

increases. The latter reflects the fact that sinusoidal behavior
is suppressed as states with high transparency are included.
Conversely, the evanescent states have an opposite effect on
both Ic and S, where evanescent states have a tendency to
sinusoidal behavior and are more relevant in the short-junction
regime since they possess a decay length.

The temperature dependence of S is illustrated in Fig. 5(c);
in both the short- and long-junction regimes S exhibits a con-
cavity change. The maximum S value that can be attained at
zero temperature depends on doping, edge type, and junction
length. For long junctions, S decays more rapidly with tem-
perature, which can be explained by the fact that the normal
modes’ transmission probability diminishes as junction length

FIG. 6. Temperature dependence of (a) the critical current and
(b) skewness for an SGS Josephson junction with a zigzag edge.
The exponential decay law is evaluated for the long-junction case,
L/ξ = 3.636.

increases and, as has been pointed out by other authors [14],
the population of continuum states decreases. The temperature
dependences of Ic and S at finite doping are in agreement with
measurements in a recent work [14] on the ballistic Josephson
junction with hBN encapsulated graphene.

Figure 6 shows, in a semilogarithmic plot, the temperature
dependence of the critical current in the long-junction regime
(L/ξ ≈ 3.636); the linearity obtained for certain doping val-
ues means an exponential decay law, which was measured
recently [15]. This result is in agreement with those obtained
for conventional SNS junctions at low temperatures. For
doping values near the Dirac point, the exponential decay is
not maintained. Figure 5(c) shows that in the long-junction
regime skewness decays more rapidly.

IV. CONCLUSIONS

In this work we have given a general characterization of
the current phase relationship for short- and long-junction
regimes. We showed that critical current and skewness exhibit
critical points as a function of graphene doping. The location
of these critical points was explained and related to resonance
conditions due to Klein tunneling and nanoribbon quasibound
states, and we showed that critical current and skewness
curves are correlated. When the continuum contribution is
taken into account, the skewness values are always positive
in both short- and long-junction regimes.

We have calculated the temperature dependence of the
critical current and skewness. The critical current exhibits a
behavior with concavity change, except at very low doping
values in the short-junction regime, where the curve shows a
temperature behavior similar to that observed in conventional
SIS and ScS junctions. For long junctions we showed that the
critical current exhibits an exponential decay law.

We obtained the relationship between skewness and the
critical current by fixing doping or temperature. When doping
is constant, the behavior is nonlinear, and the slope of the
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curve depends on junction length. We showed that when
temperature is constant, skewness oscillates as a function of
critical current, and its oscillations are more pronounced when
the temperature is decreased.

The effect of nonideal interfaces was included; we found
that when interfaces have transparency below unity, the zigzag
case displays critical current and skewness curves which have
a similar behavior and are out of phase with respect to those
obtained for the armchair case. The reason is the interplay
between Klein resonances and standard quantum tunneling.

Our approach based on the perturbed Green’s function
of the Josephson junction takes into account the different
contributions of quasibound states, evanescent states, and the
continuum to the electric transport properties. The formal-
ism allows us to determine the full doping and temperature
dependence of the skewness and critical current; the results
were obtained without restriction of junction length. The
above makes a comparison with recent experimental results
[14,15,21] possible. Contrary to other theoretical approaches,
we can obtain skewness behavior for low doping values [14].
The exponential temperature decay law of the critical current
was measured recently [15] and is in agreement with our
results. The relation between the skewness and critical current
obtained in this work can help to explain a recent experimental
result [21]. The skewness is a feature of graphene Josephson
junctions that has been little studied; motivated by recent
experimental works [14,21], we expect that our research may
contribute to the understanding of the current phase relation
of graphene Josephson junctions. Overall, the SGS Josephson
junction has different characteristics with the advantage of
tunability of the graphene monolayer; the ballistic transport
was possible with hBN encapsulated graphene. Therefore,
we expect that new experiments on Josephson junctions with
well-defined edges will arise in the low-doping regime to test
some results of our work.
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APPENDIX: JOSEPHSON CURRENT FOR AN
SGS JUNCTION

The current between two regions, L and R, is given in
general by Eq. (2); in the SGS system self-energies model
coupling between superconducting and normal graphene re-
gions, which have a well-defined edge. PL and PR are hopping
parameters between superconductor and graphene regions
(see Fig 1). The description involves a Nambu representation
together with a sublattice structure, which leads to a 4 × 4
matrix structure for Green’s functions and self-energies. For
the zigzag case, the self-energies can be written as

�̃
†
RL = �̃LR = pL(R)

(
σ T

1 0

0 −σ T
1

)
, σ1 =

(
0 1

0 0

)
, (A1)

with pL(R) = h̄vF PL(R); instead, for the armchair case we can
factorize the self-energy in Eq. (2) since

�̃RL = �̃LR = pL(R)

(
σ̂x 0

0 −σ̂x

)
, σ̂x =

(
0 1

1 0

)
. (A2)

The indices L and R stand for the two graphene superconduc-
tor interfaces in the SGS system. In equilibrium, we can use

G̃+−
RL(LR)(E , ky) = [

G̃a
RL(LR)(E , ky) − G̃r

RL(LR)(E , ky)
]

f (E ),
(A3)

where f (E ) is the Dirac-Fermi distribution for quasiparticles.
With the above property and Eqs. (A1) and (A2), the current
given by Eq. (2) can be written for the armchair and zigzag
cases as

Iarm = 2epL

h

∫ ∞

0

∫ −kc

−kc

Re
{
Gr

LReeBA(E , ky) + Gr
LReeAB(E , ky) + Gr

LRhhBA(E , ky) + Gr
LRhhAB(E , ky)

− Gr
RLeeAB(E , ky) − Gr

RLeeBA(E , ky) − Gr
RLhhAB(E , ky) − Gr

RLhhBA(E , ky)
}
[2 f (E ) − 1]dkydE (A4)

and

Izig = 2epL

h

∫ ∞

0

∫ −kc

−kc

Re
{
Gr

LReeBA(E , ky) + Gr
LRhhBA(E , ky) − Gr

RLeeAB(E , ky) − Gr
RLhhAB(E , ky)

}
[2 f (E ) − 1]dkydE . (A5)

Re indicates the real part. The Green’s functions G̃r
RL(LR) are 4 × 4 matrices, where ee (hh) denotes electron (hole) submatrices

in Nambu space and A (B) designates the sublattice graphene space. The nonlocal perturbed Green’s functions G̃r
RL(LR) can be

obtained through the algebraic Dyson equation

G̃RL =G̃RR�̃RLg̃LL, (A6)

G̃LR =g̃LL�̃LRG̃RR, (A7)

where G̃RR is the perturbed Green’s function of the SGS system and g̃LL is the nonperturbed Green’s function of the left
superconductor. To obtain G̃RR it is necessary to solve two successive Dyson equations similar to Eqs. (A6) and (A7) at x = 0
and x = −L (see Fig. 1), where the input functions are the nonperturbed Green’s functions for left and right superconductors
and the graphene nanoribbon, which were obtained previously [26].

The Dyson equation is solved numerically for the armchair case due to a more complex matrix structure. The zigzag case
has more zero matrix components, which allows us to obtain an analytical expression for the nonlocal Green’s functions. As an
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example, we write the expression for the perturbed nonlocal Green’s function G̃r
LR in the limit of a heavily doped superconductor;

we obtain

G̃r
LR(E , ky) =

(−i

h̄v

)2

pL

⎛
⎜⎜⎜⎜⎝

−1 0 0 0
1
�

E 0 −�
�

eiϕ 0

0 0 −1 0
�
�

e−iϕ 0 − 1
�

E 0

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎣I − P2

L

D2

⎛
⎜⎜⎜⎝

Je 0 −K 0

1 0 0 0

−K 0 Jh 0

0 0 −1 0

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

�
�

She−iϕ − Th
1
�

E 0 − 1
�

ESh + �
�

Theiϕ 0

0 0 0 0
�
�

Tee−iϕ − Se
1
�

E 0 − 1
�

ETe + �
�

Seeiϕ 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

Je −1 −K 0

0 0 0 0

−K 0 Jh 1

0 0 0 0

⎞
⎟⎟⎟⎠, (A8)

where we have defined the auxiliary quantities

ke(h) = s±
[
Ẽ2

± − k2
y

]1/2
, eiαe(h) = ke(h) + iky

Ẽ±
, Ẽ± = (EF ± E )/h̄vF , s± = sgn(EF ± E ), (A9)

ce(h) = e∓iαe(h) (1 − e±2ike(h)L )

1 + e∓2iαe(h) e±2ike(h)L
, de(h) = e±ike(h)L(1 + e∓2iαe(h) )

(1 + e∓2iαe(h) e±2ike(h)L )
, (A10)

Je(h) = ce(h) − P2
R

D1
d2

e(h)

(
P2

Rch(e) + E

�

)
, K = P2

R

D1

�

�
dedh, (A11)

Se(h) = �

�
e∓iϕP2

L Je(h) + P2
L K

E

�
, Te(h) = 1 + E

�
P2

L Je(h) + P2
L K

�

�
e±iϕ, (A12)

D1 = −1 − 2P2
R

E

�

ce + ch

2
− P4

Rcech, (A13)

F = 2K
�

�
, G = − E

�
(Je + Jh)P2

L + P4
L (K2 − JeJh), (A14)

D2(ϕ) = −1 − 2P2
L F cos ϕ + G.a (A15)

The current through the junction is obtained by inserting Eq. (A8) and other similar expressions for G̃r
RL into Eq. (A5), which

leads to Eq. (4). The result shows that ϕ dependence is nonsinusoidal because the behavior is affected by a factor that depends on
the phase difference. In the tunnel limit the factors D1, D2(ϕ) are equal to the unity; therefore, a sinusoidal behavior is recovered.
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