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Helicity of magnetic vortices and skyrmions in soft ferromagnetic nanodots
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Static magnetization configurations of thin soft ferromagnetic films and nanodots, coupled to a hard antidot
matrix with out-of-plane magnetization, are studied by micromagnetic simulations and analytical calculations.
When the antidot matrix produces sufficient stray fields, having radial symmetry, these nanostructures support the
formation of topologically nontrivial magnetic configurations—vortices and skyrmions in nanodots and films,
respectively. It is demonstrated that the studied nanostructure reveals an additional degree of freedom—the
helicity of the vortex or skyrmion—which can be tuned on demand by a variation of the material parameters
and geometry. The variation of helicity γ is not abrupt. In addition to Neel-like (radial) vortices and skyrmions
(γ = 0, π ), it is possible to achieve unconventional configurations with an intermediate helicity γ �= 0, ±π/2, π ,
which transform to common Bloch-like configurations (γ = ±π/2) in the limit of negligible stray fields from
the matrix. We present an analytical model, which allows us to calculate the stability region of pure Neel-like
states, outside which unconventional magnetization states with intermediate helicity are realized.
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I. INTRODUCTION

Magnetic nanostructures can reveal a considerable variety
of different static magnetization configurations. Control of
static magnetic states opens a route to significantly modify dy-
namical properties of nanostructures, such as response to qua-
sistatic and microwave magnetic fields, spectrum and spatial
profiles of spin-wave modes, interaction with spin-polarized
or pure spin current, etc. Among other magnetic configu-
rations, a great attention is paid to topologically nontrivial
magnetization states, like skyrmions [1–3], vortices [4,5],
chiral domain walls [6,7], magnetic bobbers [8], Bloch points
[9–11], Hopfions [12,13], and others. Magnetic skyrmions
were recently proposed for application in future generation
of magnetic memory devices [3,14,15]. Magnetic vortices,
although being intensively studied for the two past decades,
still attract a significant research interest in relation with
applications in spin-transfer-torque devices [16–18].

Here we consider two-dimensional nontrivial magneti-
zation textures, the most prominent examples of which
are vortices and skyrmions. The main characteristic of a
two-dimensional magnetization texture is the π2-topological

*Corresponding author: verrv@ukr.net

charge [19,20], also often called the “skyrmion number,”
which counts how many times magnetization distribution
wraps the unit sphere. In addition to the topological charge,
other characteristics of two-dimensional magnetization tex-
tures, namely, the polarity, vorticity, and helicity, are widely
used [21,22]. The easiest way to understand these character-
istics is to consider a circularly symmetric magnetization tex-
ture centered in the coordinate origin (r = 0), use polar coor-
dinate system r = (r, χ ), and express magnetization in terms
of the spherical polar and azimuthal angles θ (r) and φ(r, χ )
as M/Ms = (sin θ cos φ, sin θ sin φ, cos θ ). Then, polarity is
simply the direction of the magnetization in the texture center,
p = Mz(r = 0)/Ms = cos θ (r = 0). The azimuthal angle of
magnetization can be expressed as φ(r, χ ) = vχ + γ (r). Here
v is the vorticity (also called “the winding number”), which
defines how many times magnetization rotates in the texture
plane when passing one turn around the texture core. For
vortices and skyrmions the vorticity is usually equal to v = 1.
Finally, γ is the helicity, which determines the angle between
the radial direction and in-plane part of magnetization, as
depicted in Fig. 1(a). More general definitions can be found
in the Appendix.

In most previous works only magnetization textures with
certain helicities have been studied. Indeed, a magnetic vortex
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FIG. 1. (a) Schematic picture of a magnetic topological soliton
state showing the definition of the helicity γ . Examples of commonly
studied two-dimensional magnetization textures are the (b) com-
mon (Bloch) vortex (helicity γ = π/2), (c) radial vortex (γ = 0),
(d) Bloch skyrmion (γ = π/2), and (e) Neel skyrmion (γ = 0).

in a circular magnetic nanodot has closed-flux Bloch-like
structure, which minimizes its demagnetization energy [4,23].
An example of such a vortex is shown in Fig. 1(b). For
Bloch-like vortices the helicity is constant and is equal to
γ = ±π/2, where the sign determines the sense of rotation
of magnetization, clockwise or counterclockwise. Radial vor-
tices [Fig. 1(c)], for which γ = 0, π , can be stabilized by the
interfacial Dzyaloshinskii-Moriya interaction (IDMI) [24,25],
or in vertical stacks of nanodots with antiferromagnetic inter-
layer exchange coupling [26,27]. Other vortices having γ �=
0,±π/2, π are often called “unconventional vortices” [28].
Such kind of vortices can be stabilized by the introduction of
specific boundary conditions, like a connection to magnetic
nanowires [28]. Also, an unconventional structure of a vortex
is realized in thick magnetic dots, but it was found that in
this case the vortex magnetization configuration and, conse-
quently, its helicity are thickness dependent [28–30].

The situation with skyrmions is similar. IDMI in ultrathin
films favors the formation of Neel skyrmions characterized
by γ = 0, π [Fig. 1(e)] [31–33]. Bulk Dzyaloshinskii-Moriya
interaction in B20 compounds [34,35], as well as dipolar inter-
action in magnetic dots having perpendicular anisotropy and
no DMI [36,37], lead to the stabilization of Bloch skyrmions
[Fig. 1(d)]. Skyrmions with other helicities were predicted
in systems with comparable bulk and interfacial DMI [38].
Also, they were observed in multilayer structures with IDMI
in which, however, they are realized only in a few layers of
the multilayer stack, while common Neel skyrmions exists in
the rest of layers [39–41]. There is only one observation of
such “unconventional” skyrmions in single layers, which was
achieved by a delicate tuning of IDMI with electric field [42].

Recently, we have proposed an alternative method for the
stabilization of magnetic skyrmions and vortices [43,44]. It
is based on the exploiting of the radial magnetic field, which
could be created, e.g., by an antidot matrix. This approach
allows one to stabilize magnetic skyrmions and their non-
topological counterparts in soft ferromagnetic films having
neither DMI nor perpendicular magnetic anisotropy, just by
dipolar and interlayer exchange coupling to a perpendicularly
magnetized hard antidot matrix [44]. Simultaneously, in the
application to soft magnetic nanodots, radial stray fields from
an antidot matrix allow for significant reduction of the mini-
mal size and thickness of dots, where magnetic vortices can
be stabilized in Ref. [43].

In addition, the radial stray fields can stabilize magneti-
zation configurations with arbitrary helicity γ . In this paper
we systematically study the variation of helicity of magnetic
vortices and skyrmions stabilized by dipolar fields of radial
symmetry. It will be shown that, by the variation of geometry
and material parameters, it is possible to vary the helicity on
demand, achieving, thus, an additional degree of freedom of
topological magnetization textures.

The paper is organized as follows. In Sec. II we introduce
magnetic nanostructures, which can be used for the stabi-
lization of magnetic skyrmions and vortices by dipolar stray
fields, and present examples of magnetization textures with
arbitrary helicity, which are realized in these nanostructures.
Also, we discuss why the helicity matters, how it can af-
fect properties of the magnetization state, and how it can
be detected experimentally. Then, in Sec. III we present an
analytical model, which sheds light on the nature of uncon-
ventional states with intermediate helicities (not Bloch or Neel
ones) and allows us to calculate the boundary of stability
of pure Neel (radial) states, beyond which unconventional
magnetization states are realized. Phase diagrams of magnetic
vortices and skyrmions, showing the regions of parameters
where different states are realized, with emphasis on their
helicity, are presented and discussed in Sec. IV. Finally,
conclusions are given in Sec. V.

II. NANOSTRUCTURES UNDER STUDY AND
UNCONVENTIONAL MAGNETIZATION TEXTURES

The main idea of the stabilization of magnetic skyrmions
and unconventional vortices in soft magnetic films and dots
is the application of magnetic fields having radial symmetry
[43,44]. Here we describe one possible approach, which, with
some modifications, allows us to achieve stabilization of both
vortices and skyrmions.

The basic nanostructure for the enhancement of the stabil-
ity of magnetic vortices is shown in Fig. 2(a). It is a layer of
hard magnetic material with out-of-plane magnetization and
the thickness tHL, having an antidot (a hole) of the diameter
dad. Inside the antidot there is a soft magnetic nanodot of the
thickness td and diameter dd. The dot is grown on the same
substrate as the hard magnetic layer, resulting in asymmetric
vertical position of the dot respective to the hard layer. We
assume that the direct exchange coupling between the dot and
hard layer is absent in this nanostructure, that is the case, e.g.,
if the dot diameter is smaller than the antidot diameter, as it
is shown in Fig. 2(a). The main impact of the hard layer is
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FIG. 2. (a) A sketch of the patterned nanostructure, in which
a soft magnetic nanodot is biased by the stray fields produced
by an antidot (hole) in a hard magnetic layer with out-of-plane
magnetization. (b) Distribution of the stray fields in the antidot;
arrow length corresponds to the field magnitude; color corresponds
to the field radial component Br . In this example, the maximum
of the radial field component is Br,max ≈ 0.5 T (tHL = 30 nm, dad =
80 nm, MHL = 106A/m). Panel (c) shows the modification of the
nanostructure, in which a soft disk is in direct contact with a hard
layer. (d) Nanostructure for the stabilization of skyrmions, where a
soft magnetic film is exchange coupled to the antidot matrix.

the creation of magnetostatic stray fields inside the antidot
and in its vicinity. The distribution of these fields is shown in
Fig. 2(b). It is clear that the stray fields are radially symmetric
and have radial Br and perpendicular Bz components. The
radial component is zero only at the central plane and reaches
a maximum close to the top and bottom surfaces of the hard
layer (see color scale). That is why it is important to place the
dot close to the top or bottom of the hard layer.

In addition to the nanostructure shown in Fig. 2(a), we
study a similar structure in which the dot and antidot diam-
eters are the same, so that the dot is exchange coupled to
the antidot matrix at its lateral edges [Fig. 2(c)]. Practical
realization of the cases of presence or absence of the exchange
coupling depends on the fabrication technology. As it will be
shown below, this coupling at the lateral edges has an evident
effect on the helicity of the magnetic vortices.

Finally, by placing a continuous soft magnetic film un-
derneath a hard layer with an antidot [Fig. 2(d)], we create
the nanostructure, in which magnetic skyrmions and nontopo-
logical solitons can be stabilized [44]. In this structure, the
interlayer exchange coupling ensures that the magnetization
of the soft layer is perpendicular to the plane in the area of
direct contact to the hard layer (except for a small area near
the antidot edge). Thus, it allows us to realize magnetization
textures with opposite or same out-of-plane magnetizations
in the core and at the periphery, i.e., skyrmions and their

nontopological counterparts. Simultaneously, we note that the
magnetic nanostructures, shown in Figs. 2(c) and 2(d), are
almost the same from the point of the helicity, as it is shown
below in Sec. IV.

As we have already noted, the structures shown in Fig. 2
are not unique for the stabilization of magnetic skyrmions in
soft magnetic layers and enhancement of the vortex stability
in small soft magnetic dots. The key ingredient for the sta-
bilization of these magnetization textures is the strong radial
component of the stray field of the matrix. Such kind of fields
can be, obviously, created in other ways. For example, the
stray fields of radial symmetry can be created by the tip of a
magnetic force microscope, resulting in the observation of un-
conventional vortices in soft magnetic dots, which, however,
disappear as soon as the tip is removed [45–47].

The magnetization configurations in all the nanostruc-
tures were studied using the MUMAX3 micromagnetic solver
[48]. As a soft magnetic material (dot or film) we choose
permalloy Ni80Fe20, having the saturation magnetization of
Ms = 8.1 × 105A/m and the exchange stiffness A = 1.05 ×
10−11 J/m. Parameters of the hard magnetic layer were set
as Ms = 106 A/m, A = 2 × 10−11 J/m, and the uniaxial out-
of-plane magnetic anisotropy constant Ku = 7 × 105 J/m3 for
the structures with soft magnetic dots [Figs. 2(a) and 2(c)]
and Ku = 9 × 105 J/m3 for the structure with continuous soft
film [Fig. 2(d)]. These parameters correspond to FePd, FePt,
and CoPt multilayers of different composition [49,50]. Strictly
speaking, the main important characteristic of the hard layer
for the studied case is the value of Ms, because the stray
fields created by the hard layer are proportional to Ms. The
out-of-plane anisotropy should be simply strong enough to
guarantee a stable out-of-plane magnetization state of the
hard layer in zero external magnetic field. For the case of
exchange-coupled soft magnetic film, the anisotropy of the
hard layer should overcome demagnetization energy of both
hard and soft films, and the uniaxial anisotropy constant was
chosen larger (see details in Ref. [44]). The minimal required
anisotropy constant, in a general case, depends on the antidot
lattice geometry [51,52]. Our simulations have confirmed
stable quasiuniform out-of-plane magnetization of the hard
layer in zero bias magnetic field (after the magnetization
saturation in the out-of-plane direction) in the whole studied
range for chosen material parameters. The variation of mag-
netic state diagrams with a variation of material parameters is
discussed in Sec. III. The cell size in simulations was chosen
to be 2.5 × 2.5 × 1.5 nm3 for antidots having diameters larger
than 70 nm and 1.25 × 1.25 × 1 nm3 for smaller antidots.
To avoid edge effects we set periodic boundary conditions
with the period of 400 nm, which is large enough to avoid
any interdot interaction. Below we look at the magnetization
configurations, which are realized at zero external field after
it gradual decreases from the perpendicular saturation (in the
+z direction).

Magnetization configuration of the soft magnetic dot
(layer) depends on the geometry of both the dot (layer) and the
antidot matrix. One can achieve a quasisingle domain state,
a vortex (skyrmion) state, or more complex magnetization
configurations by varying the geometric parameters [43,44].
In Fig. 3 we present several examples of possible vortex
states, which were observed at remanence in the nanostructure
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FIG. 3. Remanent magnetization configuration of the 90-nm-
diameter dot without direct contact to the antidot matrix [nanos-
tructure shown in Fig. 2(a)]: (a) unconventional vortex having the
averaged helicity γ̄ = 0.43π which is realized at the hard matrix
thickness tHL = 9 nm, (b) unconventional vortex with γ̄ = 0.2π

(tHL = 21 nm), and (c) radial vortex (tHL = 34.5 nm); dot thickness
in all the panels is td = 3 nm. (d) Position-dependent helicity γ (r) of
the vortices, shown in the panels (a)–(c); the dashed line shows the
limiting case of a Bloch vortex.

[Fig. 2(a)] having different thickness of the antidot matrix. A
matrix of a large thickness produces the radial stray fields,
which are strong enough to stabilize the radial vortex state
[Fig. 3(c)] having the in-plane magnetization component
aligned to the stray field direction. When decreasing the
matrix thickness the vortex magnetization becomes more and
more curled, and the vortices become intermediate between
the radial and Bloch vortices, as shown in Figs. 3(a) and
3(b). A noticeable feature of these unconventional vortices
is that the angle between the in-plane magnetization and
the radial direction is not the same everywhere within the
dot. In other words, the helicity of these vortices is position
dependent, γ = γ (r). It has a maximum near the vortex core
and decreases towards the dot edges, as shown in Fig. 3(d).
We will characterize such textures by the averaged helicity γ̄ ,
defined in the Appendix [Eq. (A4)].

It should be emphasized that we do not observe a pure
Bloch vortex with the helicity γ = ±π/2 in the presence of
the antidot matrix until it creates nonzero radial stray fields
in the dot (the averaged radial component disappears only
if the dot is placed at the central plane of the matrix). We
note also that the magnetization configurations with clockwise
and counterclockwise rotation are degenerated in the magnetic
energy and the realization of one of them is a random process;
i.e., the vortices with helicities γ (r) and −γ (r) can appear
with equal probability in the considered case. If the static
magnetization of the matrix is reversed, MHL = −MHLez, the
radial vortex will have inward structure (γ = π ), while the
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FIG. 4. The displacement of vortices with different helicity un-
der applied in-plane magnetic field: (a) minor hysteresis loops
(without reaching the vortex annihilation) and (b) trajectories of the
vortex core; the circle denotes the dot boundary, and panels (c)–(e)
correspond to magnetization distributions of a dot under applied
field; numbers 0–3 denote the point at the trajectories, shown in
panel (b). Dot thickness td = 3 nm, diameter dd = 90 nm, the hard
layer thickness tHL = 9 nm (c), tHL = 21 nm (d), and tHL = 34.5 nm;
corresponding averaged helicity of vortices is γ̄ = 0.43π (c), γ̄ =
0.2π (d), and γ̄ = 0 (e).

degenerated unconventional vortices will be characterized by
the helicities γ (r) and [π − γ (r)], respectively.

It should be noted that γ is not an artificial parameter,
characterizing magnetic vortices and other textures. Different
helicity results in a different response to an external force,
a different spectrum of spin-wave modes, etc. Just as an
illustration in Fig. 4 we present trajectories of the vortex
cores under applied in-plane external magnetic field and
corresponding minor hysteresis loops (i.e., we do not reach
the vortex annihilation field; features of the vortex annihila-
tion and nucleation in such nanostructures are described in
Ref. [43]). It is known that a common Bloch vortex moves in
the perpendicular to the applied field direction in the dot plane
[4]. From Fig. 4 one can see that, in contrast, the radial vortex
moves parallel to the field, while unconventional vortices
move at a certain angle to the field direction and the larger
the averaged helicity of the vortex the larger this angle. This
behavior can be naturally understood recalling that the vortex
movement is governed by the Zeeman energy, which promotes
a larger part of the vortex to have magnetization aligned
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FIG. 5. Example magnetization configurations with an interme-
diate helicity, which are realized in the nanostructures shown in
Figs. 2(c) and 2(d): (a) magnetic vortex with γ̃ = 0.28π in the soft
dot having lateral contact with a hard matrix (dd = 100 nm, td =
3 nm, tHL = 9 nm) and (b) magnetic skyrmion having γ̃ = 0.08π in
the soft film, exchange coupled to the hard matrix (dad = 200 nm,
soft layer thickness tSL = 3 nm, tHL = 21 nm). Top, in-plane view;
bottom, x-z cross section.

to the field direction. Importantly, the vortex trajectories are
almost straight lines, although unconventional vortices have
position-dependent helicity. This means that the angle of the
vortex motion is determined by the averaged helicity. Addi-
tionally, this displacement of a vortex under applied magnetic
field could be used for the experimental characterization of
the vortex helicity.

The response of a magnetic vortex and other magnetic
textures to an in-plane external field is not the only process
affected by the helicity. For example, it was shown in Ref. [53]
that interaction of magnetic skyrmions with spin current also
depends on the helicity, resulting in helicity-dependent motion
of skyrmions driven by the spin current. Also, if using a
vortex or skyrmion as magnetization configuration of the
fixed layer in a spin-transfer-torque oscillator, the distribution
of spin-polarized current becomes naturally dependent of
their helicity. This spin-polarized current can create different
torques affecting the magnetization of the free layer as it was
shown using an example of a free layer in the skyrmion state
[54]. Finally, one can expect that the helicity of magnetization
textures affects the spin-wave spectrum and spatial profiles of
spin-wave modes, as well as nonlinear magnetization oscilla-
tions [55].

Similar unconventional magnetic configurations with a
position-dependent intermediate helicity were observed in
other nanostructures, shown in Fig. 2. The presence of ex-
change interaction with the matrix at the lateral edges of a
soft magnetic dot [Fig. 2(c)] creates a certain out-of-plane
tilt of the dot magnetization near these edges [Fig. 5(a)],
while the in-plane magnetization component resembles the
unconventional vortices shown in Fig. 3. In a soft magnetic
film coupled to a hard antidot matrix, in a certain range of
parameters, we observe unconventional magnetic skyrmions,
the structure of which is characterized by position-dependent
helicity [Fig. 5(b)]. Full diagrams of magnetization config-
urations of the studied nanostructures, showing the regions
of realization of magnetization textures with intermediate
helicities, are shown below in Fig. 6.

Thus, all considered nanostructures demonstrate the same
qualitative features. First, in a certain range of the magnetic
and geometric parameters pure radial (Neel) configuration can
be realized. Second, pure Bloch states are not observed until
a soft magnetic dot (film) is biased by radial stray fields.
And third, the helicity is position dependent in unconventional
textures with intermediate helicities.

III. ANALYTICAL MODEL

In order to explain the observed features we developed
an analytical model. We consider magnetic energy of a soft
magnetic dot as a functional of its magnetization, analysis of
which allows us to find possible stationary solutions (magneti-
zation configurations) and analyze stability of these solutions.
In this section only the case of a soft magnetic dot, with
or without contact to the matrix at the lateral edges, is con-
sidered. Regarding the problem of the magnetization texture
helicity, the case of magnetic skyrmions in a soft magnetic
film is almost equivalent to the case of a dot with exchange
coupling at the lateral edges. In the model we consider only
the magnetization of the soft magnetic dot, assuming that the
magnetization in the hard layer is fixed—it is uniform and it is
directed perpendicularly to the layer plane, MHL = pMHLez,
where p = ±1 corresponds to the magnetization direction
“up” or “down,” MHL is the saturation magnetization of the
hard layer, and ez is the out-of-plane unit vector. This assump-
tion is valid if the out-of-plane magnetic anisotropy of the
hard layer is sufficiently strong. The hard layer is considered
as continuous uniform ferromagnetic—although some of the
hard materials are, in fact, multilayers (e.g., FePt), for the
calculation of stray fields produced by the antidot these details
do not matter. In addition, we assume that the thickness of a
soft magnetic dot is of the order of or smaller than the material
exchange length, so that the magnetization distribution of the
soft layer can be considered uniform along the thickness z
coordinate. Finally, we neglect the difference between radii
of the dot and antidot in the case of absence of direct contact
between them, setting Rd = Rad = R.

The magnetic energy of a soft magnetic dot consists of the
exchange, Zeeman, and dipolar contributions:

W [M(r)] = Wex + WZ + Wdip. (1)

For the derivation of explicit expressions of each con-
tribution, it is convenient to describe magnetization of
the dot in terms of polar and azimuthal angles, M(r) =
Md[sin θ cos φ, sin θ sin φ, cos θ ], which both depend on two-
dimensional radius vector r in the dot plane, θ = θ (r), φ =
φ(r). Md here is the saturation magnetization of the soft dot.
Then, the energy of the nonuniform exchange is derived as

Wex = td
μ0M2

dλ2

2

∫
[(∇θ )2 + (∇φ)2 sin2 θ ] dr, (2)

where λ is the exchange length of the dot material.
The term WZ corresponds to the energy of the dot mag-

netization in an external magnetic field. In our case this total
magnetic field, acting on the dot, consists of the stray fields,
produced by the antidot matrix, and the external magnetic
field itself. Stray fields of the antidot have two components,
radial Br and perpendicular Bz [see Fig. 2(b)]. The latter is
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approximately uniform within the antidot, except for a small
area near the antidot boundaries (see Ref. [44]), and can
be compensated by an external perpendicular field. In the
following we consider the situation when the total out-of-
plane magnetic field acting on the dot is absent, that simplifies
further consideration. Simultaneously, we note that the pres-
ence of a nonzero total perpendicular field (e.g., if external
field is zero) insignificantly affects the helicity of magnetic
vortices, as was confirmed by micromagnetic simulations.

The radial component of the antidot stray fields can be
expressed as Br = pμ0MHL fβ (r)/2. In the approximation of
an infinitely thin soft ferromagnetic layer, placed exactly at
the bottom of the matrix, the dimensionless function is

fβ (r) = 2

πk

√
R

r

[
K (k)

(
1 − k2

2

)
− E (k)

]∣∣∣∣∣
z=t̃HL

z=0

, (3)

where k2 = 4rR/[(r + R)2 + z2], and E (k) and K (k) are com-
plete elliptic integrals (details of the calculation of the stray
fields can be found in supplementary materials of Ref. [44]).
In the range r � R this expression can be approximated as

fβ (r) = r

2R
[1 − (1 + β2)−3/2], (4)

where β = t̃HL/R is the antidot aspect ratio. Thus, the radial
component of the stray fields increases linearly with increas-
ing of the distance from the antidot center. The value of Br

increases faster approaching the antidot boundary and reaches
a maximum at r = R. A finite thickness of the soft magnetic
layer leads to modifications of Eq. (3) (an explicit expression
cannot be derived in this general case); however, until tSL �
tHL, the difference is small and can be neglected.

In the case of a dot placed within the antidot as shown in
Fig. 2(a), the same expressions (3) and (4) can be applied.
However, a part of the hard layer produces zero radial stray
fields, averaged over the dot thickness, since it is located
at the same vertical position as the dot. This effect can
be approximately accounted for by the introduction of the
“effective thickness” t̃HL of the hard layer. For thin dots, when
td � tHL, the best approximation is t̃HL = tHL − td. Naturally,
in the case of a soft magnetic film placed underneath the
matrix [Fig. 2(d)] no effective thickness should be introduced
and t̃LH = tHL. The same relation is valid, e.g., if an antidot is
filled by a nonmagnetic material of the thickness equal to the
hard layer thickness, and a dot is placed on top of it.

Using the above expressions for the radial stray fields of
the antidot, the dot Zeeman energy is expressed as

WH = −ptd
μ0MdMHL

2

∫
fβ (r) sin θ cos[φ − χ ]dr. (5)

The dipolar energy, in a general case, is a nonlocal functional
of the magnetization, and can be expressed via tensorial
magnetostatic Green’s function [56] Ĝ(r, r′) as

Wdip = −td
μ0M2

d

2

∫
dr

∫
dr′m(r) · Ĝ(r, r′) · m(r′), (6)

where m(r) = M(r)/Md is the normalized magnetization dis-
tribution of a dot. Usage of this general expression, however,
does not allow us to perform further qualitative and quantita-
tive analysis. Therefore, we use the following approximation.

In a general case, the dipolar energy can be divided into two
parts, related to the surface magnetic charges M · n, where n
is the unit vector normal to the surface, and contribution from
the volume magnetic charges (∇ · M). The contribution from
the surface charges at the dot top and bottom surfaces can be
approximated simply as

Wdip,s = td
μ0M2

d

2

∫
cos2 θdr, (7)

which describes the in-plane shape anisotropy of a thin dot.
This local approximation of the part of the magnetostatic
energy is valid for thin dots with aspect ratio td/R � 1, and
characteristic sizes of magnetization textures larger than the
dot thickness. In our case of dots with thickness less than the
material exchange length these conditions are satisfied. For
the calculation of the contribution from the volume charges
and surface charges at the dot lateral edges we assume that
the solutions we are searching for are radially symmetric,
i.e., θ = θ (r) and φ = χ + γ (r). This is a natural assumption
because of radial symmetry of the nanostructure. Then, using
explicit expressions for the Green’s function in a polar coor-
dinate system [57], one can find that the magnetostatic energy
is determined only by the radial magnetization component
mr . This can be easily understood because in the circularly
symmetric case the component mχ creates neither volume
charges (∇ · M ∼ ∂r[rmr]) nor surface charges at the lateral
edges M · er . Thus, the second part of the dipolar energy can
be written as

Wdip,v = −td
Md

2

∫
sin θ cos[φ − χ ]Bdip,rdr, (8)

where

Bdip,r (r) = μ0Md

∫
Grr (r, r′) sin θ (r′) cos[φ(r′) − χ ′] dr′

(9)
is the radial component of dipolar (demagnetization) fields
of the dot, and Grr is the rr component of the tensorial
magnetostatic Green’s function [57].

Possible magnetization configurations of the dot corre-
spond to local or global minima of the energy functional
W [M(r)]. Magnetization configurations which minimize the
energy functional can be found as solutions of the correspond-
ing Euler-Lagrange equations. In this paper we are looking
only at the function φ(r, χ ), the Euler-Lagrange equation for
which yields

λ2∇(sin2 θ∇φ) =
(

pMHL

2Md
fβ (r) + Bdip,r[θ, φ]

μ0Md

)

× sin θ sin(φ − χ ). (10)

It is clear that this equation has simple solutions φ = χ and
φ = χ + π , which correspond to the radial vortex. Simulta-
neously, the function φ = χ ± π/2, which describes a Bloch
vortex, is not a solution of Eq. (10). Moreover, Eq. (10) has
no solutions with a constant helicity, φ = χ + γ , except for
the radial vortex solution. All other possible solutions are
characterized by position-dependent helicity γ = γ (r). That
is exactly what was observed in the simulations.

The reason for such behavior is the presence of radial stray
fields created by the antidot matrix. As soon as it disappears
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[MHL = 0 in Eq. (10)], the Bloch vortex becomes a solu-
tion, since demagnetization field Bdip,r = 0 for this solution
(moreover, the Bloch vortex is the only stable solution among
circularly symmetric ones in this case). The observation of
radial and unconventional vortices, but not Bloch vortices
in the presence of radial stray fields, is analogous to the
behavior of a single-domain thin magnetic dot in an out-
of-plane magnetic field. Indeed, the magnetostatic energy is
quadratic in magnetization components and acts similarly to
shape or material anisotropy, defining “easy direction” m =
±eχ . Radial stray fields are perpendicular to this direction. In
this case it is known that a sufficient external magnetic field
can align magnetization in its direction, but any small field
tilts magnetization from the easy-plane direction. In our case,
a sufficient radial stray field can stabilize the radial vortex,
but the Bloch vortex (“easy-axis direction”) cannot be realized
until the stray fields are removed completely.

In the following we formulate a criterion, when a radial
vortex is achieved, and when an unconventional vortex with
position-dependent helicity is observed. This can be done by
the finding of the boundary of stability of the radial vortex
respective to the curling of magnetization. Of course, it could
happen that in a certain range of parameters both radial and
unconventional vortices are metastable, and the realization
of one of them depends on the magnetic prehistory of the
nanostructure. In our method, when the vortices are achieved
after gradual decrease of external magnetic field starting from
out-of-plane saturation, the formation of radial vortices is fa-
vored at the initial stage of the field decrease. Therefore, if the
radial vortex is stable, we always observe it. Unconventional
vortices are observed if the radial one becomes unstable. Also,
we will see below (Sec. IV) that the helicity changes gradually
near the boundary of radial vortex stability, meaning that the
bistability region, if it exists, is small.

Usage of a general expression for the magnetostatic energy
(8) is not straightforward due to its nonlocal nature. Instead,
we model the effect of demagnetization by the approximate
local term

Wdip,v = td
μ0M2

d

2
D

∫
sin2 θ cos2(φ − χ )dr. (11)

This term describes an “effective anisotropy” in the azimuthal
χ direction. Similarly to the exact expressions Eqs. (8) and
(9), this term is a square function of sin θ and cos(φ − χ ).
In the limiting case θ = π/2 and φ − χ = γ = const the
exact expression coincides with the approximate one that
allows us to determine the coefficient D. Within the range
of small dot aspect ratios td/R � 1 it is approximately valid,
D ≈ 2td/R.

We also assume that the polar magnetization angle distri-
bution θ (r) does not change with the transition from the radial
to the unconventional vortex solution, i.e., that the vortex
core remains of the same size. It is a natural assumption, as
the function θ (r) is mainly determined by competing of the
in-plane shape anisotropy and exchange energy, which are
commonly larger than the Zeeman energy of stray fields and
the nonlocal part of the magnetostatic energy.

Solutions corresponding to the radial vortices are φ = χ

and φ = χ + π . Although they are both stationary solutions
of Eq. (10), it is clear that for the magnetization of the matrix

in the up direction, p = +1, only the first solution could be
stable, while for opposite matrix magnetization p = −1 only
the solution φ = χ + π is stable. A general solution for the
unconventional vortex can be written as φ = χ + γ (r) or
φ = χ + π + γ (r), respectively. As we consider the problem
of radial vortex stability respective to small perturbations,
we set |γ (r)| � 1. Also, it is convenient to introduce a new
variable μ(r) = γ (r) sin θ (r) that is useful for the determina-
tion of boundary conditions (see below). It is clear that the
stabilities of the solutions μ = 0 and γ = 0 are equivalent
(at the points where sin θ = 0 the parameter γ cannot be
determined).

Finally, we introduce dimensionless coordinate ξ = r/R.
With all the above defined assumptions we can reduce the
energy functional W [M] to the normalized functional of the
function μ(ξ ):

W̃ [μ(ξ )] =
∫ 1

0
�(μ)dξ, (12)

where

�(μ) =
[

1

2
(μ′)2 − μμ′cotθθ ′ + 1

2
μ2cot2θ (θ ′)2

+
(

A

2 sin θ
f̃β (ξ ) − B

)
μ2

]
ξ . (13)

Short notation μ′ = dμ/dξ stands here for the derivative; the
coefficients

A = MHLR2

2Mdλ2

(
1 − 1

(1 + β2)3/2

)
, B = 2tdR

λ2
(14)

describe normalized strength of the Zeeman and magneto-
static energy, respectively; and the function

f̃β (ξ ) = fβ (ξR)

(
1 − 1

(1 + β2)3/2

)−1

(15)

gives the normalized profile of the radial stray fields produced
by the antidot. The approximation f̃β (ξ ) ≈ ξ/2 is valid in the
range of small ξ [see Eq. (4)].

Boundary conditions for the function μ(ξ ) are clear. In
the dot center μ(0) = 0. Conditions at the dot lateral edge
depend on the presence or absence of direct contact to the
matrix. In the latter case a free boundary condition is realized,
μ′(1) = 0. In the former case, exchange coupling to the matrix
fixes the dot magnetization at the lateral edge to the direction
equal or close to the matrix magnetization direction, so we
can set μ(1) = 0. In contrast to the function μ(ξ ), bound-
ary conditions for γ (ξ ) are not so clear, since it is simply
undefined for out-of-plane magnetization, which takes place
at the dot center and, in the case of contact to the matrix,
at the lateral edges. We note that in the nanostructure with
continuous soft magnetic film [Fig. 2(d)] one should use the
strong pinning boundary condition μ(1) = 0, since interlayer
exchange coupling fixes the film magnetization outside the
antidot. Of course, there could be a certain distance between
the area of perpendicular magnetization and the antidot edge
(domain-wall width), but it is small and affects insignificantly
the results presented below.
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The Euler-Lagrange equation for the functional (12) is
derived as

μ′′ + μ′

ξ
=

(
A f̃β
sin θ

− 2B − (θ ′)2 + 1

ξ
cotθθ ′ + cotθθ ′′

)
μ.

(16)
It has stationary solution μ = 0 for both fixed and free
boundary conditions at ξ = 1, which describes the radial
vortex (Neel skyrmion). This stationary solution corresponds
to a minimum of the functional, if two conditions, Legen-
dre’s and Jacobi’s, are satisfied [58]. Legendre’s condition
requires that ∂2�/∂μ′2 > 0, and is always satisfied in our case
(∂2�/∂μ′2 = ξ ). The second condition considers solutions of
Jacobi’s equation for the functional W [μ]. Since the func-
tional (13) is a quadratic form of μ and μ′ and we consider
the stability of the stationary state μ = 0, Jacobi’s equation,
which describes the second variation of the functional, is the
same as the Euler-Lagrange equation (16). Jacobi’s condition
is satisfied if this equation, accompanied by the boundary
conditions for the function μ, has no nontrivial [μ(ξ ) �= 0]
solutions for any ξ̃ ∈ (0, 1]. This condition is equivalent to the
condition of absence of solutions with negative eigenvalues
(unstable solutions) at the interval ξ ∈ [0, 1].

Equation (16) contains the function θ (ξ ), which is un-
known. However, the last term, containing the derivative θ ′,
is local and acts only in the core region and, in the case
of a dot in contact with the matrix, close to the dot lateral
edges. Similarly, a difference between the function (1/ sin θ )
and 1 exists only in these small regions. Moreover, it could
be shown that these local terms act oppositely: The first term
destabilizes the stationary solution μ = 0, while the second
one stabilizes it. Therefore, it would not produce a large error
if one disregards these local terms and simplifies Eq. (16) to

μ′′ + μ′/ξ − (A f̃β (ξ ) − B)μ = 0. (17)

Unfortunately, Eq. (17) cannot be solved analytically even
using the approximation f̃β (ξ ) ≈ ξ/2. Instead, we solve it
numerically, and find the relation between the parameters
A = Ã(B, β ), at which Jacobi’s condition starts to fails, i.e.,
at which Jacobi’s equation has a nontrivial solution for ξ̃ = 1.
For the fixed boundary condition at the dot lateral edge, this
function, found numerically, is nicely fitted by the dependence

Ã ≈ 0.8(B − 6.3)
√

B − Cβ, (18)

where

Cβ = −15 + 18 exp[−1.5β2]. (19)

Returning to the initial material and geometrical parameters,
the condition of radial vortex stability appears as

MHLR2

Mdλ2

(
1− 1

(1 + β2)3/2

)
>1.6

(
2tdR

λ2
−6.3

)√
2tdR

λ2
−Cβ.

(20)

If this condition is not satisfied, the radial vortex is unstable
and an unconventional vortex state with intermediate helicity
is realized.

From this equation we can analyze what factors lead to
the stabilization or destabilization of the radial vortex state.
First is the ratio MHL/Md, higher values of which lead to a
more stable radial vortex state. This ratio, in fact, describes the

relative strength of the radial stray fields created by the matrix
in comparison to the internal fields in the dot, in particular, ef-
fective demagnetization fields. The second stabilization factor
of the radial vortex is a decrease of the dot thickness, since
demagnetization fields, acting contrary to the radial state, are
proportional to the dot thickness-to-radius aspect ratio [see
Eq. (11)]. A smaller ratio R/λ (smaller dots or larger material
exchange length) is also a stabilization factor of the radial
vortex state. This is due to a position-dependent helicity of the
intermediate vortex state creating an additional increase of the
exchange energy, and the energy increases with R decreasing.
Finally, the dependence on the antidot aspect ratio β is not so
evident from Eq. (20). The term in the left-hand side of the
condition describes increased stability of the radial vortex at
larger β, because it corresponds to larger antidot stray fields.
Simultaneously, at a fixed value of MHL[1 − (1 + β2)−3/2],
which corresponds to a fixed strength of the radial stray fields
close to the dot center, a decrease of β stabilizes the radial
vortex state. This happens because the radial fields of the
antidot with small aspect ratio β have stronger “tails” close to
the antidot boundaries, while the stray fields of antidots with
β � 2 are much closer to the approximation Eq. (4).

Unfortunately, in the case of free boundary conditions at
the dot lateral edge we were unable to find such a simple
relation as Eq. (18). Therefore, in the next section we use
the function Ã(B, β ), which describes a boundary of Jacobi’s
condition fulfillment, extracted from numerical solution of
Jacobi’s equation. However, for a sufficiently thick hard ma-
trix, when the antidot aspect ratio β > 2 and has no effect on
the stability condition, the following simple condition of the
vortex state stability can be derived:

A > Ã ≈ 0.8B
√

B + 5. (21)

For the case B 
 1, which corresponds to thick and/or large
radius dots, this condition becomes almost the same as in the
case of fixed boundary conditions. This happens because of
the large demagnetization energy for such dots, in comparison
to which the effect of the exchange at the lateral dot edges
becomes less important. Simultaneously, in the opposite case
of smaller dots (not large parameter B), the strength of radial
stray fields, required for the stabilization of the radial vortex,
is larger for the free boundary conditions than for the fixed
one (larger value of Ã at given B). In other words, the pres-
ence of exchange coupling to the matrix at the lateral edges
increases the stability of the radial vortex, and this effect is
more pronounced for smaller and thinner dots. The reason for
this additional stabilization is that exchange coupling to the
matrix fixes the dot magnetization at the lateral edges and,
thus, suppresses a gain for a curled vortex state coming from
the contribution to the demagnetization energy from surface
charges at the edges.

IV. TRANSITION OF HELICITY OF VORTICES
AND SKYRMIONS

In this section we present and discuss full diagrams of
remanent states of the studied nanostructures, obtained from
micromagnetic simulations. First, we fix the thickness of the
soft dot or layer to td = tSL = 3 nm and vary the thickness of
the hard layer and diameter of the antidot. In the case of a
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FIG. 6. Diagrams of remanent states, showing regions of the realization of the single-domain quasiuniform state, radial vortex or Neel
skyrmions, and unconventional vortices and skyrmions, the helicity of which is shown by color scale; solid lines represent analytically
calculated boundaries of the Neel-like state stability. (a) Soft magnetic dot without exchange coupling to the matrix [structure shown in
Fig. 2(a)]. (b) Soft magnetic dot with exchange coupling at the lateral edges [Fig. 2(c)]. (c) Soft ferromagnetic film, coupled to the hard layer
by exchange interaction [Fig. 2(d)]. Thickness of the dot and soft layer td = tSL = 3 nm.

soft magnetic dot without contact to the matrix [nanostructure
Fig. 2(a)], the diameter of the dot is 10 nm smaller than the
antidot diameter.

Micromagnetic diagrams are shown in Fig. 6. For the
smallest diameter antidots or thin hard layers the remanent
state of the soft magnetic dot or layer is a quasi-single-domain
state. It is a consequence of insufficient stray fields to stabilize
the vortex or skyrmion in such nanostructures [43,44]. The
minimal dot diameter, in which the vortex state is observed,
is 50 nm for both cases of presence or absence of exchange
coupling to the matrix. Interestingly, in the case of soft mag-
netic film coupled to the antidot matrix, the minimal antidot
diameter for skyrmion stabilization is smaller; it is 40 nm.
This happens because the skyrmion is not localized exactly
under the antidot. Magnetization of the soft layer changes also
in a small region outside the antidot that reduces the exchange
energy of essentially nonuniform magnetization distribution
due to a larger “effective size” of the magnetization variation.

Outside the quasi-single-domain region the remanent state
of a soft magnetic dot or film is a vortex or skyrmion,
respectively. In full agreement with theoretical prediction, in
the case of a sufficiently thick matrix and small diameter dots
(antidots) we observe the radial vortex and Neel skyrmions,
and a thicker matrix supports formation of a Neel-like state in
larger dots (antidots). Unconventional vortices and skyrmions
with intermediate helicities are observed within the last re-
gion of parameters. Importantly, the helicity of the vortex
(skyrmion) changes gradually with geometrical parameters
(see color scale in Fig. 6). It is small, |γ̄ | � 1, near the bound-
ary of the Neel-like state stability and approaches |γ̄ | → π/2,
but never reaches the pure Bloch state |γ | = π/2 in the
presence of the matrix. Thus, by choice of the geometrical and
material parameters one can achieve the vortex or skyrmion
state with an arbitrary desirable helicity.

One can conclude from Fig. 6 that the averaged helicity
of skyrmions, realized in a soft magnetic film, is smaller
compared to the helicity of vortices in a dot with exchange
coupling to the matrix at the lateral edges [compare panels
(b) and (c)]. This is another consequence of the fact that
magnetization of the soft magnetic layer is not exactly out of

plane in a certain area outside the antidot. In this area radial
stray fields are the most strong (the maximum is at the antidot
edge), forcing the in-plane projection of the film magnetiza-
tion to have radial direction. This “edge region” contributes to
the averaged helicity of skyrmions [see definition Eq. (A4)],
making its value lower.

In Fig. 6 we also show the boundary of stability of the
radial vortex (Neel skyrmion) obtained from the analytical
model. One can see very good description of simulations
data by the model. In particular, simulations show an evident
enlargement of the stability range of the radial vortex state
due to the presence of exchange coupling to the matrix at
small dot diameters, in a full agreement with theoretical
predictions. Simultaneously, we can note that the effect of
exchange coupling to the matrix on the boundary between
the vortex and single-domain state is much less pronounced.
Thus, one can use the developed model to predict properties
of nanostructures made of other materials. For example, it
is clear that using the hard layer made of a ferromagnet
with lower magnetization requires larger thickness of the
antidot matrix for the stabilization of the radial vortex (Neel
skyrmion). Simultaneously, the shift of the boundary between
these states is not governed by the simple relation MHL[1 −
(1 + β2)−3/2] = const, which describes scaling of the radial
stray fields in the antidot center [see Eq. (4)], because at
low aspect ratios of antidots the “tails” of stray fields at the
periphery are also important [coefficient Cβ in Eq. (20)].

Next we consider the effect of the dot thickness. As was
obtained within the developed analytical model, a decrease
of the dot thickness should favor the formation of the radial
vortex state, since the demagnetization energy, acting contrary
to the radial vortex stability decreases with the dot thickness
faster than Zeeman energy of magnetization in radial stray
fields, proportional to t2

d and td, respectively [see Eqs. (5)
and (11)]. That is exactly what micromagnetic simulations
show, as demonstrated in the diagram of states at fixed hard
layer thickness in Fig. 7. One can note that the dependence of
critical dot thickness for the radial to unconventional vortex
transition on the dot radius is quite weak, somewhat more
pronounced in the case of exchange coupling to the matrix.
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FIG. 7. Diagrams of remanent states of a soft magnetic dot
without contact to the antidot matrix, showing the dependence on
the dot thickness. Symbols, micromagnetic simulations; solid line,
analytical calculation of the boundary between the radial and inter-
mediate vortex states; dashed line, analytical calculations assuming
the presence of the direct exchange contact of the dot and matrix.
Thickness of hard layer tHL = 30 nm. Notation of symbols is the
same as in Fig. 6.

In the case of a soft magnetic film underneath the hard
matrix the variation of the skyrmion helicity is the same.
The only issue one should be aware of is that the presented
model is valid if the interlayer exchange interaction is strong
enough to guarantee out-of-plane magnetization direction of
the soft magnetic layer away from the antidot. At a certain
film thickness, depending on the interlayer exchange strength,
this condition breaks, and instead of skyrmions more complex
magnetization textures are realized. For the studied materials
this critical thickness is about 5 nm [44]. Additionally, from
Fig. 7 one can conclude that the smaller dot thickness allows
for the stabilization of vortices in the dots with smaller diam-
eters, that is described in detail in Ref. [43].

V. SUMMARY

We studied magnetization configurations of soft ferromag-
netic dots and films, coupled by the dipolar interaction and,
possibly, by interlayer exchange, to a hard matrix magnetized
out of plane and having an antidot (circular hole). These
nanostructures support the formation of nontrivial magnetiza-
tion textures—vortices and skyrmions, respectively. Depend-
ing on the geometry and material parameters of the patterned
films, the radial vortex (Neel skyrmion) or unconventional
vortex (skyrmion) can be achieved in the soft magnetic dot
(film). The latter unconventional textures are characterized by
the position-dependent helicity γ (r). Simultaneously, com-
mon Bloch vortices or skyrmions cannot be achieved in these
nanostructures until the hard matrix produces nonzero radial
stray fields, averaged over the dot (film) thickness. These
stray fields play a crucial role in the stabilization of nontrivial
magnetization textures, as well as in the determination of the
helicity of textures.

The averaged helicity of the vortices and skyrmions, stabi-
lized by the stray fields of radial symmetry, gradually changes

from Neel-like state γ = 0, π to Bloch-like state γ → ±π/2
in the limit of negligible stray fields created by the antidot
with the variation of geometrical and material parameters.
Therefore, the proposed nanostructures with the bias by the
stray fields of radial symmetry reveal an additional degree
of freedom—the helicity of the vortex (skyrmion), which can
be tuned on demand by a proper choice of the nanostructure
parameters. The helicity of magnetization texture affects its
interaction with external magnetic fields, spin-polarized and
pure spin currents, and other dynamical characteristics.

We developed an analytical model to describe the transi-
tion from the radial (Neel) state to an unconventional one.
The model shows that the Neel-like state is favored by the
following factors: (i) a larger ratio of the matrix saturation
magnetization to the dot (film) magnetization MHL/Md, (ii)
smaller diameters of the dots (antidots), (iii) an increase of the
hard layer thickness, and (iv) a decrease of the dot thickness.
All of them are a consequence of the interplay between the
Zeeman energy of magnetization in the radial stray fields of
the antidot matrix and demagnetization energy of nonuniform
magnetization configuration. Additionally, the presence of the
exchange coupling with the matrix at the dot lateral edges
also increases the range of the radial vortex stability, since
it suppresses the penalty of the edge magnetic charge contri-
bution of the demagnetization energy for the Neel-like state.
Helicity of the magnetic skyrmions in soft magnetic films
coupled to a hard antidot matrix behaves the same as that of
vortices in the dots with contact to the matrix, provided by the
sufficient interlayer exchange to guarantee the stable out-of-
plane magnetization state of the film away from the antidot.
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APPENDIX: TOPOLOGICAL CHARACTERISTICS
OF VORTICES AND SKYRMIONS

Here we briefly review topological characteristics of two-
dimensional magnetization textures, show in which textures
the helicity is important, and give a more general definition
of the helicity, which is applicable to the textures showing no
circular symmetry.

The standard topological analysis is based on the intro-
duction of different topological charges, defined by the map-
ping of the coordinate space onto the order-parameter space
(or its significant subspaces, like degeneracy space MD; see
Refs. [19,20]). For ferromagnets, the order-parameter space is
the two-dimensional unit sphere of the normalized magneti-
zation |m|2 = 1, where m = M/Ms. The number of times that
the magnetization covers the unit sphere while going along
the coordinate space defines the π2 topological charge Q.
Mathematically, the topological charge can be calculated as

Q = 1

4π

∫
m ·

(
∂m
∂x

× ∂m
∂y

)
dr. (A1)

The topological charge Q is naturally characteristic for mag-
netization textures in easy-axis ferromagnets, in which mag-
netization is uniform far from the origin. In this case, Q
is an integer number. The states with different values of Q
cannot be transformed into each other by any local continuous
transformation [20,21,59].

Magnetization distribution of skyrmions can be consid-
ered as a stereographic projection of the unit sphere onto a
two-dimensional plane. In other words, skyrmion distribution
covers the unit sphere one time, and, therefore, the topological
charge of skyrmions is Q = ±1. For this reason Q is often
called “the skyrmion number.” For a uniform magnetization
distribution, naturally, Q = 0, meaning that it is topologically
trivial. More complex states with higher topological charge,
e.g., biskyrmions having Q = ±2, have been observed re-
cently in experiments and attract also significant research
interest [60–63]. The skyrmion number, of course, can be
calculated for any magnetization texture, not obviously having
uniform magnetization far from the origin. For example,
for common magnetic vortices in easy-plane ferromagnets
[shown in Figs. 1(b) and 1(c)] it is equal to Q = ±1/2, i.e.,
magnetization distribution of a vortex covers only a half of
the unit sphere |m|2 = 1.

The standard vortices in all ordered media are defined
as topological textures with nonuniform order parameter far
from the origin (formally, at r → ∞). Such structures can
be realized in systems with continuous degeneracy, when
the ground state corresponds to the values of the order pa-
rameter from the degeneracy space MD. For example, in
an easy-plane ferromagnet (e.g., ferromagnetic film, which
demonstrates natural easy-plane shape anisotropy) all in-plane
magnetization directions are degenerate, so the degeneracy
space MD is the circle mz = 0 at the unit sphere |m|2 = 1.
The classification of vortices is based on the mapping of
the order-parameter distribution along a closed contour in
the coordinate space into the degeneracy space MD. This
mapping is described by the topological charge, the values of
which are elements of the so-called fundamental homotopy

group π1 of MD. In general, the mathematical properties of
these groups can be quite complicated [19,20], but in the case
of ferromagnetic vortices they are much simplified. In this
case the π1 topological charge just defines how many times
magnetization rotates in the easy plane MD when passing a
closed contour far from the vortex core. The π1 topological
charge can be calculated as [20,21,64]

v = 1

2π

∮
lz=0

ez · (l × dl ) = 1

2π

∫
∂φ

∂χ
dχ, (A2)

where l is the unit vector tangential to the integration path and
ez is the unit vector along the hard axis of the magnet (the
polar axis). The quantity v is called “the winding number,” or
“vorticity.” Naturally, vorticity is an integer number, v ∈ Z,
as required by the continuity of magnetization distribution.
The definition of vorticity Eq. (A2) can be also applied to
skyrmions and other two-dimensional textures as well. For
simple symmetric structures the vorticity appears in the sim-
ple relation between polar magnetization and polar coordinate
angles, φ = vχ + γ . Vortices and skyrmions are character-
ized by the vorticity v = +1; uniform magnetization distri-
bution has, naturally, v = 0. Winding number v = −1 is re-
alized, for instance, in other interesting topological objects—
antivortices [65,66] and antiskyrmions [67,68]. Textures with
higher winding numbers, |v| � 2, can be easily imagined,
but we are not aware of their experimental realization. Also,
we would like to note that the vorticity can be nonzero for
nontopological textures having topological charge Q = 0. For
example, the nontopological counterpart of the skyrmion (a
“skyrmion with reversed core”), which can be also stabilized
by dipolar stray fields [44], has v = +1 and Q = 0.

Now let us discuss in more detail the last characteristic of a
two-dimensional topological texture, the parameter γ , which
can be considered as an initial angle of in-plane magneti-
zation, φ = vχ + γ . It should be noted that this parameter
has a principal sense only for textures with the winding
number v = +1. Indeed, by rotating the coordinate system
at an angle ψ (χ = χ ′ + ψ , φ = φ′ + ψ), the parameter γ

changes if v �= 1. Moreover, choosing ψ = γ /(1 − v) one
gets the relation φ′ = vχ ′. Thus, for v �= 1, the parameter γ

defines the rotation of the magnetization texture in its plane as
whole, but not the internal structure of a texture, and can be
eliminated by a proper choice of the coordinate system.

The only exceptions are textures with the winding number
v = +1, in which γ cannot be eliminated and has a sense
of the helicity of the magnetization texture. The geometrical
meaning of the helicity in this case is the angle between the
radial direction and the in-plane magnetization component
[Fig. 1(a)]. In simple magnetization textures this angle is
constant, and we can define the helicity simply as

γ = arcsin
mχ

mIP
, (A3)

where mIP =
√

m2
r + m2

χ is the in-plane component of magne-
tization. This case stands, for example, for Bloch and Neel
skyrmions and vortices, shown in Figs. 1(b)–1(e). In a more
general case, however, the angle between radial direction
and the in-plane magnetization component can be coordinate
dependent, and the helicity, defined by the equation above,
becomes also coordinate dependent, γ = γ (r, χ ). In this more
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general case we can introduce the averaged helicity of the
texture:

γ̄ = arcsin

[ ∫
mχdr∫
mIPdr

]
= arcsin

[∫
sin(φ − χ ) sin θdr∫

sin θdr

]
.

(A4)

This definition is used in Sec. IV of the main text. An
alternative way to describe the helicity of the topologi-
cal magnetization textures was used in Ref. [69], where
γ was defined at r = rs, where rs is the vortex/skyrmion
radius.
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