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Coherent propagation of quasiparticles in topological spin liquids at finite temperature
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The appearance of quasiparticle excitations with fractional statistics is a remarkable defining trait of
topologically ordered systems. In this work we investigate the experimentally relevant finite-temperature regime
in which one species of quasiparticle acts as a stochastic background for another, more energetically costly
species that hops coherently across the lattice. The nontrivial statistical angle between the two species leads
to interference effects that we study using a combination of numerical and analytical tools. In the limit of
self-retracing paths, we are able to use a Bethe lattice approximation to construct exact analytical expressions for
the time evolution of the site-resolved density profile of a spinon initially confined to a single site. Our results
help us to understand the temperature-dependent crossover from ballistic to quantum (sub-) diffusive behavior as
a consequence of destructive interference between lattice walks. The subdiffusive behavior is most pronounced in
the case of semionic mutual statistics, and it may be ascribed to the localized nature of the effective tight-binding
description, an effect that is not captured by the Bethe lattice mapping. In addition to quantum spin liquids,
our results are directly applicable to the dynamics of isolated holes in the large-U limit of the Hubbard model,
relevant to ultracold atomic experiments. A recent proposal to implement Z2 topologically ordered Hamiltonians
using quantum annealers provides a further exciting avenue to test our results.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are a fascinating phase of
matter characterized pragmatically by the absence of long-
range order down to temperatures much smaller than the char-
acteristic interaction energy in the system. In magnetic materi-
als, this behavior is facilitated by strong quantum fluctuations
within a macroscopically degenerate manifold of classical
states resulting from frustration between the constituent mag-
netic moments. Such materials often host emergent gauge
fields and pointlike, fractionalized quasiparticle excitations
with anyonic statistics [1]. These exotic properties make
QSLs interesting from a fundamental perspective, as well as
having potential applications in the storage and processing of
quantum information [2,3].

Experimentally, quantum spin liquid candidate materials
(for a review, see Refs. [4,5]) exhibit broad continua in in-
elastic neutron scattering indicative of fractionalization of the
emergent quasiparticles (spinons) [6–8]. Although suggestive,
this feature is not specific to QSLs, and it is desirable to
have more concrete experimental signatures of QSL behavior.
In this paper, we focus on nonzero temperatures, where a
finite density of excitations—obeying anyonic statistics—are
thermally excited. We take the stance that, rather than being a
hindrance, finite-temperature behavior can in fact offer a num-
ber of signatures of fractionalization and anyonic statistics,
and thence of quantum spin liquid behavior [9–13].

Specifically, we are interested in understanding the role
of fractional statistics on the interplay between quasiparticle
excitations in the intermediate temperature range where one
species of quasiparticle (visons) is thermally excited and acts

as a stochastic background for another species (spinons),
which are conversely sparse and hop coherently across the
lattice. This is indeed a situation relevant to several realistic
Hamiltonians for quantum spin liquids, where there is a
large separation between the energy costs of different species
of quasiparticles (one can think, for example, of quantum
spin ice [14], Kitaev materials [15], and valence bond sys-
tems [16]).

We consider, for simplicity, the case of hardcore bosonic
quasiparticles that have no mutual interactions but obey non-
trivial mutual statistics, as is the case, for instance, in Z2

models such as Kitaev’s toric code [2], or valence bond
states that are represented by short-range dimer models on
nonbipartite lattices.

In the toric code, the spinons and visons are mutually
semionic, i.e., their statistical angle is θ = π . Namely, the
thermally excited visons act as a static, stochastic π -flux
background for the spinons, which hop coherently on the sites
of a square lattice. Realistic Hamiltonians may require the
inclusion of further effects, for instance, due to interactions
between the quasiparticles, or dynamical hopping terms for
the visons, which we ignore in our discussion. For compar-
ison, we also briefly consider the case where the statistical
angle is smaller, θ = 2π/n, with n = 3, 4, . . ., as well as
the limiting case of continuous fluxes, corresponding, respec-
tively, to Z3,Z4, and compact U(1) lattice gauge theory,
relevant to doped Mott insulators, fractional quantum Hall
effects, and vortex liquids [17–20].

The central result of our work is an analytical solution
within the self-retracing path approximation in which the ef-
fect of the visons is to constrain the worldlines of the spinons
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to live on a Bethe lattice. Specifically, we derive analytical
expressions for the spinon density profile as a function of
space and time that agree quantitatively with the behavior of
the U(1) model, capturing the short-time ballistic propagation,
the crossover to quantum diffusive behavior, and the non-
Gaussian nature of the density profile.

Using numerical simulations, we highlight the importance
of the localized nature of the eigenstates of the underlying
effective Hamiltonian for the spinons. In the Z2 case, the
spinons exhibit a crossover from ballistic to subdiffusive be-
havior at some characteristic time that depends on the density
of visons. For the U(1) model, the crossover is instead from
ballistic to quantum diffusive propagation, as predicted by the
Bethe lattice mapping, with only minor subdiffusive correc-
tions becoming evident at the largest times in our simulations.
We attribute this difference to the distinct localization prop-
erties of the two models; the intermediate-time behavior of
both models may be ascribed to an increasing fraction of states
reaching their localization length as time progresses. Weaker
localization in the U(1) model implies that a negligibly small
fraction of states have reached their localization length over
the timescales of our simulations, and we correspondingly
observe a regime in which the particle exhibits approximately
diffusive behavior.

Our results connect directly to the propagation of holes in
the large-U , large-spin limit of the Hubbard model [21–23]
and hence to the behavior of related cold atomic sys-
tems [24]. The hole density profile may be probed directly
in experiment owing to recent developments in quantum
gas microscopy [25–30]. As the hole moves throughout the
spin environment, it permutes the spins. This “interaction”
with the spin environment leads to dissipationless decoher-
ence [31,32]—the propagation of the hole is significantly
slowed, despite there being no transfer of energy between
the hole and the spins. Our system therefore provides a new
setting in which to observe dissipationless decoherence. Addi-
tionally, our Bethe lattice calculation extends the Brinkman–
Rice argument in Ref. [22] in a way that agrees well with the
numerical results therein to significantly larger distances and
timescales.

Furthermore, it was recently proposed in Ref. [33] that
the toric code and similar Z2 spin liquid Hamiltonians may
be realized using quantum annealers (e.g., the commercially
available D-Wave machines [34]) as emulators of topological
states. The implementation strategy works in the limit of
a large star constraint and a perturbative transverse field,
namely, the limit relevant to the physics explored in this
paper. The use of quantum annealers in this respect promises
to provide new avenues to benchmark and explore the type
of phenomena that we have uncovered in a setting where
Hamiltonian parameters, initial conditions, and time evolution
can be explored to an exquisite level of accuracy in system
sizes that are beyond the reach of other numerical methods.

The paper is structured as follows. In Sec. II we introduce
the Hamiltonian and its perturbative limit that will be the
focus of this paper. Specifically, we show that our Hamiltonian
maps onto an effective bond-disordered tight-binding model,
where temperature controls the strength of the disorder. We
further show that the motion of a single spinon through a
sea of static visons may then be determined by enumerat-

ing lattice walks. The generating functions pertaining to the
self-retracing approximation of walks on a Bethe lattice are
derived and presented in Sec. III. These functions are then
used in the calculation of our exact results in Sec. IV, which
we compare with numerical simulations in Sec. V. Finally, in
Sec. VI we draw our conclusions and present an outlook for
this work.

II. MODEL

In this section we introduce the model and explain how
various system observables may be calculated by enumerating
certain classes of lattice walks.

For concreteness, we will focus our attention on a Z2 lattice
gauge theory perturbed by a small transverse magnetic field h
in the z direction, written in terms of spins σ i which live on
the bonds (labeled by the index i) of a square lattice with N
sites (labeled by the index s) wrapped around a cylinder

H = −J
∑

s

As − h
∑

i

σ z
i . (1)

The star operator As = ∏
i∈s σ x

i , and i ∈ s denotes the spins
on the four bonds surrounding the lattice site s. The coupling
constant J (�h) is positive. The model may, however, also be
defined on other two-dimensional lattices, and we will later
broaden the scope of this work to include the case where
the spins live instead on a kagome lattice (see Appendix A).
Treating the magnetic field h perturbatively, we arrive at
the following ring-exchange Hamiltonian in the ground-state
sector

H (0)
eff = −J

∑
s

As − 5

16

h4

J3

∑
p

Bp , (2)

up to a constant energy shift that arises due to virtual creation
and annihilation of quasiparticle pairs. The plaquette operator
Bp = ∏

i∈p σ z
i , where i ∈ p denotes the four spins surrounding

the plaquette p. Therefore, the toric code Hamiltonian [2] is
generated perturbatively and splits the macroscopic degener-
acy of the ground-state sector.

The ground state of the effective model (2) is charac-
terized by eigenvalues +1 for all (commuting) operators As

and Bp (and has a topological degeneracy that is, however,
immaterial for the purpose of the present work). Excitations
correspond to states in which plaquette operators Bp and/or
star operators As have negative eigenvalues. We will refer
to the energetically costly star defects as spinons and to the
lower-energy plaquette defects as visons (h4/J3 � J , since
J � h, by construction).

Let us then consider the two spinon sector, relevant for the
intermediate temperatures of interest, T � h, J . The magnetic
field h makes the spinons dynamical

H (2)
eff = 4J − h

∑
〈ss′〉

(b†
sσ

z
ss′bs′ + H.c.) , (3)

where 〈ss′〉 denotes neighboring sites on the square lattice,
and σss′ is the spin on the bond connecting sites s and s′.
Since the magnetic field is applied perpendicular to the x
axis, the vison configuration remains precisely static [35].
The operators bs , b†

s are hardcore bosons representing the
spinon excitations, which live on the sites of the lattice [36].
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Crucially, each spinon hopping event is accompanied by a spin
flip in the σ x basis. For a given vison configuration, and when
considering gauge-invariant quantities, we can hence map (3)
onto a nearest-neighbor tight-binding model

H (2)
eff ({φss′ }) = 4J − h

∑
〈ss′〉

(b†
seiφss′ bs′ + H.c.) , (4)

where the Peierls phases φss′ are determined by the positions
of the visons—each vison contributes a π flux, threading the
plaquette on which it resides [37].

We consider temperatures T � h, such that the quantum
coherence of the spinons is not significantly affected; note that
this includes both the regime T � h4/J3 and T > h4/J3, so
that the density of visons nv spans the full range 0 � nv <

1/2. We are further interested in the study of intermediate
times where perturbation theory may be applied, namely,
t � J/h2. At times comparable to J/h2 one must include next-
nearest-neighbor hopping processes in the effective Hamilto-
nian (4). Such processes remove the chiral symmetry of the
effective Hamiltonian on bipartite lattices and thus may lead
to modifications of the resulting long-time dynamics.

The motion of spinons in our model is equivalent to a quan-
tum particle propagating through a background of randomly
placed Z2 fluxes. In this work, we also briefly consider for
comparison the generic cases of other values of the threaded
fluxes, 2π/n, n = 3, 4, . . ., and, in particular, the limiting
case of the so-called continuous-flux model, in which the
fluxes φ threading the plaquettes are drawn from the uniform
distribution over φ ∈ [0, 2π ). Analogously to the random Z2

flux model, the model with random 2π/n fluxes arises from a
Zn lattice gauge theory in a similar finite-temperature regime
where the flux excitations are thermally populated while the
elementary charge excitations remain coherent. Likewise, the
continuous-flux model describes the motion of a charged
particle through an incoherent U(1) gauge field.

A. Single-particle Green’s function

One quantity of interest is the single-spinon [38] on-site
Green’s function for the effective Hamiltonian (3), defined by

Gii(t ) = 〈〈bi (t )b†
i (0)〉〉 , (5)

where the double angled brackets 〈〈 · · · 〉〉 refer to both the
quantum expectation value and thermal averaging over vi-
son (flux) configurations. The on-site Green’s function gives
us access to the finite-temperature single-particle density of
states ρ(ω) for spinons. The form of Gii(ω) within the self-
retracing path approximation is well known in the context of
the t-Jz model [21,39–41]. We include its derivation using the
method of generating functions for the sake of completeness.
Our methodology may then be generalized to determine the
off-diagonal elements of the Green’s function, Gi j (t ), with
i �= j. These quantities are not on their own gauge invariant
and must be multiplied by the phases corresponding to a given
lattice path connecting sites i and j in order to construct a
gauge-invariant quantity [19].

Formally expanding e−iHt governing the time evolution
in (5) as a power series in time, we are able to convert
the problem into a summation over discrete lattice paths γ

[42], where the particle moves one lattice spacing per step.

Integrating out the vison configurations, we arrive at

Gii(t ) =
∞∑

	=0

(iht )	

	!

∑
γ∈
(	)

e−Aγ /ξ 2(T ) , (6)

where 
(	) is the set of all paths of length 	 that begin
and end at the site i, and Aγ = ∑

p Ap(γ ) is the “area”
enclosed by γ : each plaquette p contributes an area Ap(γ ) =
[1 − (−1)wp(γ )]/2 if it is encircled a total of wp(γ ) times by
the path γ . In the continuous-flux model, a given plaquette
contributes only if wγ = 0.

The length scale ξ (T ) appearing in the exponential,

ξ 2(T ) = 1

− ln tanh[5βh4/(16J3)]
, (7)

corresponds approximately to the average distance be-
tween visons, ∼n−1/2

v , in the dilute-vison limit, where nv ∼
e−10βh4/16J3

. Note that ξ → 0+ for high temperatures, corre-
sponding to the vison-dense limit, nv → 1/2. At any nonzero
temperature, paths that enclose a large area with respect
to ξ 2 are exponentially suppressed [43], a manifestation of
the Aharonov–Bohm effect. Recall that the zero-temperature
(nv = 0) dynamics of the spinon is equivalent to a free quan-
tum particle at all times t . The limits of infinite time and zero
temperature therefore do not commute.

From the ordinary generating function g(x; a) =∑
n,m gnmxnam for walks γ ∈ 
(	), where the generating

variables x and a are associated with path length n and
area enclosed m, respectively, one can observe that Gii(t ) is
equal to the corresponding exponential generating function
g̃(x; a) ≡ ∑

n,m gnmxnam/n! via

Gii(t ) = g̃
(
iht ; e−1/ξ 2)

. (8)

The effect of changing temperature is to alter the relative
weight of the different lattice walks, classified according to
the area that they enclose. At zero temperature, all paths
of a given length contribute with equal weight, while at
infinite temperature only those paths that enclose precisely
zero area contribute. We expect that the latter result describes
the limiting behavior for high temperatures, T > h4/J3.

B. Density evolution

Motivated by the study of finite-temperature dynamical
spin-spin correlators, we would like to quantify the propaga-
tion of a pair of spinons after being created locally on adjacent
sites. As a first approximation, we solve the single-particle
problem, which we are able to treat analytically. In particular,
we calculate (i) the site-resolved density profile for short
times, ht = O(1), accessible, for instance, in ultracold atomic
experiments, and (ii) the asymptotic moments of the density
distribution, 〈r2k (t )〉, which characterize the behavior of the
spinon profile over a large range of intermediate timescales.

The (gauge-invariant) probability for the spinon to move
from site 0 to site s in a time t in the presence of a given vison
(flux) configuration {φp} is given by

Ps({φp}; t ) = 〈{φp}|b0(0)b†
s (t )bs (t )b†

0(0)|{φp}〉 (9)

= |〈{φp}|bse
−iHt b†

0|{φp}〉|2 . (10)
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In a similar manner to Gii(t ), we are able to write the transfer
probability Ps in terms of summation over outward (γ ) and re-
turn (γ ′) lattice paths. After integrating over the possible flux
configurations {φp} with the appropriate Boltzmann weight,
the probability reads

Ps(t ) =
∞∑

	,	′=0

(−1)	
(iht )	+	′

	!	′!

∑
γ∈
s (	)

γ ′∈
s (	′ )

e−Aγ∪γ ′ /ξ 2
, (11)

where 
s(	) is the set of all paths of length 	 that connect the
sites 0 and s, and Aγ∪γ ′ is the area enclosed by the closed path
γ ∪ γ ′. Knowledge of Ps(t ) for all sites s gives us complete
information about the density distribution ρ(r, t ) as a function
of time.

C. Interpretation

We have shown that in both instances the problem of de-
termining single-spinon motion in a sea of thermally excited
visons may be mapped onto the combinatorial problem of enu-
merating discrete lattice walks. At precisely zero temperature,
the system is free of vison excitations, ξ = ∞, and all paths
of a given length contribute with equal weight [44]. In this
limit, the effective Hamiltonian is simply a two-dimensional
tight-binding model with nearest-neighbor hopping, and the
spinon propagates ballistically. Conversely, at temperatures
which are high with respect to the energy cost for vison
creation, T > h4/J3, the hopping amplitudes are maximally
binarily disordered, and only walks that enclose exactly “zero
area” (as defined previously) contribute. (Note that the notion
of zero enclosed area trivially extends to the case of fluxes of
magnitude 2πm/n, with m, n ∈ N, threading the plaquettes.)
We focus primarily on this high-temperature limit in order to
contrast with the known behavior at T = 0.

Exact enumeration of all such zero-area paths on a generic
lattice with coordination number z is a very tall order. In
order to tackle this problem, we discuss a limit where the
problem becomes analytically tractable. Namely, we consider
perfectly self-retracing paths [21], which necessarily satisfy
Aγ = 0. As we shall see, this is a particularly relevant subset
of walks the smaller the threaded fluxes are, particularly for
the continuous U(1) flux case. For comparison, in Sec. V
we also solve numerically for the time evolution generated
by effective Hamiltonians of the form (4) using a high-order
Suzuki–Trotter decomposition [45]. We will also discuss the
lower temperature regime T � h4/J3 in the context of these
simulations.

III. SELF-RETRACING PATHS: GENERATING
FUNCTIONS

A perfectly self-retracing path corresponds to a lattice walk
with no closed cycles in which every link on the “outwards”
path is retraced in the opposite direction on the “return” path.
More precisely, there is a one-to-one mapping between self-
retracing paths on a lattice Lz with coordination number z,
and closed walks on a Bethe lattice Bz with branching ratio
z − 1, as shown for the case z = 4 in Fig. 1.

Fractal lattices in general are a useful tool for obtaining ex-
act solutions and have recently been used in a similar context
to calculate the spectrum of itinerant excitations in quantum

r

s(c)

(b)(a)

FIG. 1. Mapping from the square lattice, (a), to the Bethe lattice
with coordination number z = 4, (b), used for the calculation of the
spinon density profile. Each site on the square lattice is mapped onto
multiple sites on the Bethe lattice, as indicated by the colored circles.
An example of a perfectly self-retracing round trip (r → s → r)
on the square lattice is shown in (c). The nonreversing base path
connecting r and s is represented by the thick black line, while the
self-retracing excursions that decorate the base path on the outward
(return) trip are shown as thick blue (red) lines. Such a walk encloses
precisely zero area and contributes to the high-temperature expansion
of the transition probability Pr→s(t ).

spin ice at zero temperature [46,47], where gauge field effects
lead to a configuration space which is well approximated by
the Husimi cactus graph. Examples of perfectly self-retracing
walks, and classes of walks which are not captured by the
self-retracing path approximation are shown in Fig. 2. The
latter are analogous in spirit to the Trugman path [48] in the
context of single-hole propagation in the t-J model. Since the
paths that are not accounted for only become relevant at long
times, one may expect that this approximation works well for
the dynamics of the system at the intermediate timescales of
interest, at least for the continuous-flux model.

In this section we will derive the generating functions for
walks on a Bethe lattice with branching ratio z − 1, which
are necessary to describe analytically the form of the density
profile in the limit of high temperature (high flux density).

A. Closed walks

We first consider the ordinary generating function
T (z)

0 (x) = ∑
n t (z)

n xn for closed walks on a Bethe lattice Bz

with branching ratio z − 1, where, by definition, t (z)
n is the

number of closed walks that begin and end at the same site,
which may be used to define the root node (or origin) of the
Bethe lattice. This generating function is directly related to the
single-particle density of states. Note that the lack of closed
cycles implies that all closed walks on Bz are necessarily self-
retracing and further permits the following decomposition of
the generating function:

T (z)
0 (x) = 1 + zx2T (z)

0 (x)T (z)
1 (x) , (12)

where T (z)
k (x) is the generating function for walks beginning

and ending at a depth of k on the lattice (always remaining at
a depth �k). This is because any (self-retracing) path can be
decomposed as
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(a) (b) (c)

FIG. 2. Three examples of closed lattice walks γ , which be-
gin and end on the black circle. A perfectly self-retracing path—
the only type of path included in the Bethe lattice mapping—is
shown in (a). In (b) and (c) the walk includes closed cycles, which
have the potential to be non-self-retracing. In general, a walk γ

contributes to the lattice path expansion at high temperatures if
〈exp(i

∑
〈i j〉∈γ φi j )〉{φi j } = 1. In the case of π fluxes threading the

plaquettes, a walk in which the loop (b) is traversed an even number
of times in the same direction leads to a nonzero contribution,
〈e2niφ〉Z2

= 1. Such a path with winding number w = 2n (n ∈ Z�=0)
is not self-retracing and so is not captured by the Bethe lattice map-
ping. For continuous fluxes, however, such non-self-retracing paths
of the form (b) with nonzero winding number w = 2n are not present
in the lattice path expansion after averaging over flux configurations,
since 〈e2niφ〉U(1) = 0. Paths that self-intersect multiple times, as in (c),
can be traversed in multiple ways in the reverse direction, only one of
which is self-retracing. All other paths are not accounted for by the
Bethe lattice mapping, whereas they do, however, contribute to the
continuous-flux case. For these reasons we expect the Bethe lattice
mapping to better approximate the continuous-flux model where a
significantly larger fraction of permitted lattice walks are correctly
enumerated.

(i) the trivial walk,
(ii) (a) hopping to one of the z nearest neighbors,

(b) performing a self-retracing walk that begins and
ends at depth k = 1,

(c) hopping back to the origin,
(d) performing a self-retracing walk that begins and

ends at the origin.
A similar argument can be made for all subsequent depths
with k � 1, such that the generating functions decompose as

T (z)
k (x) = 1 + (z − 1)x2T (z)

k (x)T (z)
k+1(x) . (13)

One can therefore express the original generating function
T (z)

0 for paths beginning and ending at the origin, as an infinite
continued fraction

T (z)
0 (x) = 1

1 − zx2

1 − (z − 1)x2

1 − (z − 1)x2

1 − . . .

(14)

The self-similar nature of Bz implies that T (z)
k (x) = T (z)

k+1(x)
for k � 1 (on an infinite lattice), and the continued fraction
can be written in closed form [choosing the sign in front of
the square root such that T (z)

0 (x) → 1 as x → 0],

T (z)
0 (x) = 2(z − 1)

z − 2 + z
√

1 − 4(z − 1)x2
, (15)

consistent with, e.g., the results of Ref. [49]. For z = 4 (cor-
responding to the square lattice at high temperatures), this

FIG. 3. Example of a path from r to s on the Bethe lattice B4,
which maps to a nonreversing walk of length 	 on the square lattice.
For any given two sites on the square lattice, there are multiple
nonreversing walks that connect the two sites, enumerated by the
generating function Cs(x).

expression evaluates to

T (4)
0 (x) = 3

1 + 2
√

1 − 12x2
= 1 + 4x2 + 28x4 + · · · (16)

= (17)

where the diagrams denote the types of self-retracing walk
that contribute at each order.

B. Open walks

We now generalize this result to include open walks. Con-
sider a walk that begins at site r and ends at site s onBz, where
r and s are separated by a total of 	 bonds on the Bethe lattice.
We denote the corresponding generating function as Trs(x) [by
symmetry, Trs(x) = Tsr (x)]. We will for convenience draw the
Bethe lattice as in Fig. 3, the links between r and s (inclusive)
forming a backbone, and refer to s as being to the right of
r, such that s = r + 	. The walk from r → s may then be
decomposed in the following way:

(i) (a) hopping to one of the z − 1 nearest neighbors of r
not equal to r + 1,

(b) performing a self-retracing walk that begins and
ends at depth k = 1,

(c) hopping back to r,
(d) performing a walk from r to s.

(ii) (a) hopping to the “right” of r to site r + 1,
(b) performing a walk from r + 1 to s.

The walk from r + 1 to s is then decomposed in a simi-
lar fashion. Therefore, in terms of the individual generating
functions,

T (z)
rs (x) = (z − 1)x2R(z)(x)T (z)

rs (x)︸ ︷︷ ︸
(i)

+ xT (z)
r+1 s(x)︸ ︷︷ ︸

(ii)

, (18)

where R(z)(x) is the generating function for self-retracing
walks that begin and end at a depth of k � 1. The labels (i)
and (ii) refer to the corresponding steps in the above physical
decomposition. From our previous analysis of T (z)

0 (x), we
know that

R(z)(x) = 1

1 − (z − 1)x2

1 − (z − 1)x2

1 − . . .

= 1 −
√

1 − 4(z − 1)x2

2(z − 1)x2
, (19)

064428-5



HART, WAN, AND CASTELNOVO PHYSICAL REVIEW B 101, 064428 (2020)

where again the sign of the square root is chosen to give
R(z)(x) → 1 in the limit x → 0. The recursion relation (18)
can then be solved to find an expression for T (z)

rs (x) in closed
form:

T (z)
rs (x) = [xR(z)(x)]	T (z)

ss (x) . (20)

The function T (z)
ss (x) which terminates the recurrence relation

is simply T (z)
0 (x) derived in the previous section, i.e., enumer-

ating the number of perfectly self-retracing paths that begin
and end at the same point on the Bethe lattice. We therefore
arrive at the final result:

T (z)
rs (x) =

(
1 −

√
1 − 4(z − 1)x2

2(z − 1)x

)	

× 2(z − 1)

z − 2 + z
√

1 − 4(z − 1)x2
(21)

≡ S(z)(x)	 T (z)(x) . (22)

By virtue of the symmetry of the Bethe lattice, T (z)
rs (x) de-

pends only on the length 	 of the path separating the sites r
and s, not on the specific choice of path.

C. Constrained closed walks

We now further generalize to the case of closed, self-
retracing walks on the original lattice Lz on which the spinon
hops in real space. In order to calculate Ps(t ), we are required
to enumerate the number of perfectly self-retracing paths that
visit the sites 0 → s → 0. Any such path can be decomposed
as follows:

(i) a nonreversing base path connecting 0 and s onLz, and
(ii) self-retracing excursions which decorate the base path.
The base path must be common to both outward (0 → s)

and return (s → 0) paths, while the self-retracing excursions
can differ between the two paths. In this way, the return
path completely “erases” the outwards path and the path is
overall perfectly self-retracing, therefore enclosing precisely
zero area. The base paths must be nonreversing, since imme-
diate reversal of the base path corresponds to a self-retracing
excursion, which would lead to double counting of such a
path. An example of a self-retracing round trip between two
sites is shown in Fig. 1.

The connection between the Bethe lattice and the original
lattice comes from the number of base paths that the particle
may take to get between the origin and the site s. Suppose
that we know the generating function for the number of
nonreversing paths that connect the origin (0) and some other
site s on the original lattice Lz, which we denote by

Cs(x) =
∞∑

	=0

c(s)
	 x	 . (23)

The generating function for fully self-retracing paths that
connect 0 → s → 0 can then be constructed in the following
way from the three elementary generating functions S(z)(x),
T (z)(x), and Cs(x), defined in (22) and (23). We will hence-
forth drop the explicit dependence of these generating func-
tions on the coordination number z for notational convenience.
Using generating variables x and y to count the number of

steps taken on the outwards and return trips, respectively,

Ps(x, y) =
∞∑

	=0

c(s)
	 S(x)	T (x)S(y)	T (y) (24)

= T (x)T (y)Cs[S(x)S(y)] , (25)

i.e., for each base path, and at each step, a self-retracing
excursion may take place, enumerated by the functions S(x)
and T (x). As required, the generating function Ps(x, y) is
symmetric under exchange of forwards and backwards walks
(i.e., x ↔ y).

D. Nonreversing walks

Equation (25) shows that the number of nonreversing base
paths on the original lattice, enumerated by Cs(x), is a crucial
ingredient in determining the transition probability Ps(t ). Our
final task, therefore, is to determine explicitly the generating
function Cs(x) (for an arbitrary site s), a general method for
which is presented here. We will introduce the strategy for
the square lattice, with the generalization to the triangular and
honeycomb lattices (relating to the quasiparticle excitations
on the kagome lattice) deferred to Appendix A.

Since the nonreversing constraint depends only on the
previous step in the lattice walk, it may be enforced using
z × z matrices [50]. Let us introduce the generating variables
x, δ, and ε, which count the length of the walk and the number
of steps taken in the direction of the (for the square lattice,
orthonormal) lattice vectors e1 and e2, respectively. At each
step, there are four possible directions that the particle may
choose from: δ, ε, ε−1, and δ−1. However, for all but the initial
step of the walk, the direction which immediately reverses the
previous step is forbidden. This may be enforced using the
matrix

N = x

⎛
⎜⎜⎝

δ ε ε−1 0
δ ε 0 δ−1

δ 0 ε−1 δ−1

0 ε ε−1 δ−1

⎞
⎟⎟⎠ , (26)

and the initial condition N0 = x diag(δ, ε, ε−1, δ−1). The row
index corresponds to the previous step and the column index
to the current step. At each step, the length of the path is
advanced by 1, and matrix multiplication ensures that all
possible combinations of steps are accounted for. The zero
entries enforce the nonreversing constraint—any path that
immediately reverses its direction is given a coefficient of
zero. The initial matrix N0 imposes that the initial step is
unconstrained. Thence the elements of the matrix N0N	−1 give
the paths of length 	 that are consistent with the nonreversing
constraint. The full generating function N(x; δ, ε) for nonre-
versing paths is therefore given by the sum over all matrix
elements and all possible path lengths 	 (including also the
trivial walk of zero length):

N(x; δ, ε) = 1 +
∑
i, j

∞∑
	=1

[N0N	−1]i j (27)

= 1 +
∑
i, j

[N0(1z − N )−1]i j , (28)

where 1z is the z × z identity matrix. Evaluating the inverse
of the matrix 1z − N , we arrive at the following explicit
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expression for the generating function for nonreversing walks
on the square lattice:

N(x; δ, ε) = 1 − x2

1 + 3x2 − x(δ + δ−1 + ε + ε−1)
, (29)

consistent with Ref. [50]. This generating function and its
counterparts for the other two-dimensional lattices considered
in Appendix A represent a central object in this work since
they give access to the family of generating functions Cs(x)
for all sites s, and hence contain complete information about
the spinon density profile after a quench in the magnetic field
strength.

Noting that

N(x; δ, ε) =
∑
s∈Lz

δs1εs2Cs(x) , (30)

the function Cs(x), with s = ∑
i siei, may be extracted fromN

by singling out the terms in (30) proportional to δs1εs2 . This
may be accomplished using the transformation

Cs(x) =
ˆ π

−π

dθ

2π

ˆ π

−π

dφ

2π
N(x; eiθ , eiφ )e−is1θ−is2φ . (31)

Substituting in for the generating function N(x; δ, ε), we
arrive at the following simplified expression:

Cs(x) = (1 − x2)

2π2x

ˆ π

0
dθ

ˆ π

0
dφ

cos(s1θ ) cos(s2φ)

t − cos θ − cos φ
, (32)

where we have defined t = (1 + 3x2)/2x. This integral
may be evaluated by exploiting an equivalence with the
Green’s function of two-dimensional tight-binding models
with Hamiltonian H . Consider

G(w) =
∑

k

|k〉〈k|
w − E (k)

, (33)

which satisfies (w − H )G = 1. The states |k〉 are eigenstates
of H with energies E (k). Taking matrix elements of G(w)
with respect to sites |l〉, |m〉,

G(w; l, m) ≡ 〈l|G(w)|m〉 (34)

= 1

π2

¨ π

0

∏
i dki cos[ki(li − mi )]

w − E (k)
. (35)

Hence, when H corresponds to a two-dimensional tight-
binding model on the square lattice with E (k) = cos kx +
cos ky, we observe the equivalence of (32) and (35) up to
prefactors, making the identifications (k1, k2) ↔ (θ, φ), w ↔
t , and si ↔ li − mi.

As shown in, e.g., Refs. [51,52], the Green’s function
G(w; 0, 0), which is related to the spinon return probability
P0(t ), is given exactly by

G(w; 0, 0) = 2

πw
K

(
2

w

)
, (36)

where K is the complete elliptic integral of the first kind. This
result gives rise to the generating function

C0(x) = 2

π

(
1 − x2

1 + 3x2

)
K

(
4x

1 + 3x2

)
. (37)

The Green’s functions for general sites l, m (and therefore Cs

for a general site s) can also be obtained explicitly using the

recursion relations presented in Refs. [51,52]. This procedure
is used later in Sec. IV C 1 to construct the spatially resolved
spinon density profile.

IV. ANALYTICAL RESULTS

Now that we have presented all of the preliminary results,
we focus on understanding the high-temperature limits of the
physical quantities introduced in Sec. II that may be inferred
from the generating functions for self-retracing walks.

A. Single-spinon density of states

As noted in Sec. II A, the single-spinon Green’s function
Gii(t ) may at high temperatures be expressed in terms of
the exponential generating function T̃ (z)(x) corresponding to
closed walks on the Bethe lattice Bz, which, by construction,
enclose zero area. The exponential generating function can
be constructed from the ordinary generating function T (z)(x)
derived in Sec. III A using the transformation

T̃ (z)(x) =
˛

C

dw

2π i

exw

w
T (z)

(
1

w

)
. (38)

The contour C can be shrunk around the branch cut
in (1/w)T (z)(1/w) that lies along the real axis between
−2

√
z − 1 < �(w) < 2

√
z − 1 [53], which gives rise to the

expression

G(z)
ii (t ) =

ˆ 2
√

z−1

−2
√

z−1

du

2π
eihtu z

√
4(z − 1) − u2

z2 − u2
, (39)

or, equivalently, to the Brinkman and Rice [21] density of
states

ρ(ω) =
{

z
2πh

√
4(z−1)−ω2/h2

z2−ω2/h2 for |ω| < 2
√

z − 1h ,

0 otherwise ,
(40)

for single-particle excitations.
In the case of the square lattice, for example, this re-

sult predicts that the support of ρ(ω) is narrowed by 13%
from |ω| < 4h at zero temperature to |ω| < 2

√
3h at “infinite

temperature” and that ρ(ω) vanishes like |2√
3h ∓ ω|1/2 at

the positive/negative band edge as opposed to a steplike
singularity typical for massive, free quantum particles in two
dimensions. The Bethe lattice mapping does not account
for the Lifshitz tails nor any singular behavior near ω = 0
that has been predicted theoretically [54–56] and observed
numerically [57] in similar models. These differences arise
from the neglect of loop diagrams as shown in Fig. 2—when
a lattice path includes a closed loop, there are two ways in
which the loop can be traversed, whereas the Bethe lattice
approximation leads to a coefficient of 1. Nevertheless, the
mapping does capture many of the salient features of the
high-temperature density of states. For example, one may
use (40) to understand the behavior of the density of states
with increasing temperature for Majorana fermions in the
Kitaev honeycomb model [58].

B. Single-spinon Green’s function

Analogous to the on-site Green’s function, the generating
function Ti j (x) is related (for i �= j) to the off-diagonal matrix
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elements of the Green’s function Gi j = 〈〈bi (t )b†
j (0)〉〉 at high

temperature. As noted previously, such a quantity is not on
its own gauge invariant and must be multiplied by the phases
corresponding to a given lattice path γ connecting the sites i
and j, i.e.,

G(z)
i j (t | γ ) ≡ 〈〈

ei
∑

〈αβ〉∈γ φαβ bi (t )b†
j (0)

〉〉
. (41)

Converting to the corresponding exponential generating func-
tion using (38), the contour can again be shrunk around the
branch cut on the real axis between −2

√
z − 1 < �(w) <

2
√

z − 1, and we arrive at the expression

G(z)
i j (t | γ ) = [4(z − 1)]1−	/2

ˆ π

0

dφ

2π
eiht2

√
z−1 cos φ

×�
{

ei	φ sin φ

(z − 2) cos φ − iz sin φ

}
, (42)

where 	 is the length of the path γ from i to j [59].
We note that this quantity also equals the projection of

the wave function |ψ (t )〉 of a particle initially localized at
the origin of the Bethe lattice Bz onto a site at depth 	,
i.e., ψ	(t ) = 〈	|ψ (t )〉, at zero temperature (where the time
evolution is generated by a nearest-neighbor tight-binding
Hamiltonian).

C. Spinon density profile

We now turn to our main result: characterizing the density
profile of a spinon initially localized at the origin of the origi-
nal lattice. The transition probability Ps(t ) can be constructed
from the generating function Ps(x, y) in (25) via conversion
to the corresponding exponential generating function using
complex contour integration:

Ps(t ) =
‹

dw1

2π i

dw2

2π i

eiht (w1−w2 )

w1w2
Ps

(
1

w1
,

1

w2

)
, (43)

over sufficiently large circles in both the w1 and w2 com-
plex planes, for example. The moments of the probability
distribution Ps(t ) can then be constructed using the generating
functions T (x), S(x), and Cs(x) from Sec. III:

〈r2k (t )〉 =
‹

dw1

2π i

dw2

2π i

eiht (w1−w2 )

w1w2
T

(
1

w1

)
T

(
1

w2

)

× R2k

[
S

(
1

w1

)
S

(
1

w2

)]
, (44)

where we have defined the function

R2k (x) =
∑
s∈Lz

dist(0, s)2kCs(x) , (45)

with dist(0, s) =
√

s2
x + s2

y on the square lattice. Using the

relationship (30) between the generating function for nonre-
versing walks, N(x; δ, ε) and Cs(x), we deduce that the func-
tion R2k may be expressed in terms of appropriate derivatives
of N:

R2k (x) ≡
∑
s∈Lz

(
s2

x + s2
y

)k
Cs(x) (46)

= {[(δ∂δ )2 + (ε∂ε )2]kN(x; δ, ε)}∣∣
δ=ε=1, (47)

FIG. 4. At short times, the transition probabilities Ps(t ) exhibit
coherent oscillatory behavior. We plot the spinon density profile at
times (a) ht = 0.9 and (b) ht = 1.8, which correspond approximately
to a minimum and a maximum of the return probability P0(t ),
as predicted by (43), respectively. From left to right, the profiles
correspond to the Bethe lattice analytical result, the continuous-flux
model, and the π -flux model, labelled B, U(1), and Z2, respectively.
The Bethe lattice mapping provides an essentially exact description
of the full density profile for the continuous-flux model, and a very
good approximation to the π -flux model, at times on the order of the
hopping timescale. Notably, discrepancies first become manifest in
the π -flux model at the origin due to the stronger localization. The
numerical data for the Z2 and U(1) cases are averaged over 25 000
histories.

which we will write symbolically as R2k = [∇2kN](x; 1, 1).
The expression (46) and hence (47) must be generalized to
include cross-terms between δ and ε if the two basis vectors
ei are not orthonormal, as is the case for the triangular and
honeycomb lattices (see Appendix A for further details).

1. Short-time dynamics

At sufficiently short times, ht � dist(0, s), the transition
probabilities Ps(t ) exhibit complex oscillatory behavior aris-
ing from the interference of lattice walks of varying lengths,
and one must use the full expression (43) in order to accurately
capture the density profile in this regime.

Take, for example, the return probability P0(t ) obtained
using the generating function C0(x) in (37) (discussed in
further detail in Appendix C). The probability decays with
time asymptotically as P0(t )∼1/t , suggesting that the spinon
asymptotically exhibits diffusive behavior, which we study
in more detail in the next section. However, there also exist
superimposed, subleading oscillations due to interference ef-
fects that decay as cos(4

√
3t )/t2, which may be revealed by

applying the method of stationary phase to (43).
In Fig. 4 we plot the spinon density profile predicted

by (43) at ht = 0.9 and ht = 1.8 [corresponding approxi-
mately to extrema of the return probability P0(t ), i.e., ht �
nπ/(4

√
3), for integer n], making use of the family of gen-

erating functions {Cs(x)}, and we compare it with numerical
simulations of the disordered tight-binding model (4) for the
case of (i) π fluxes and (ii) continuous fluxes, φ ∈ [0, 2π ).
We observe almost perfect agreement between the analytical
results and the numerics at the shortest of the two times,
whereas the quantitative agreement survives at the later time
for the continuous-flux model only.
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2. Asymptotic second moment

We now focus on the asymptotic behavior of the density
profile, once the transient, oscillatory behavior of the distribu-
tion has subsided. Let us restrict our attention briefly to the
second moment of the density distribution, 〈r2(t )〉. For the
case of the square lattice, evaluating the derivatives in (47),
one arrives at

R2(x) = 4x(1 + x)

(1 − 3x)2(1 − x)
. (48)

Crucially, the function R2(x) has a second-order pole at x =
(z − 1)−1. This feature is shared by the other lattices consid-
ered in Appendix A and dominates the long-time behavior
of the root mean square (rms) displacement. In particular, a
second-order pole in the function R2 gives rise to a linear, i.e.,
diffusive, t dependence of 〈r2(t )〉 � 2Dzht , for sufficiently
large times. The full time dependence of 〈r2(t )〉 described
by (44) corresponds to a crossover from ballistic to diffusive
behavior at a time ht ∼ 1 (the characteristic time taken for
the spinon to hop one lattice spacing). This is because for
sufficiently short times the particle has not moved far enough
to enclose any flux and so interference effects do not play a
significant role. The linear time dependence at long times is a
direct consequence of the result

Res
w=0

f (w)
eitw

w2
= it f (0) + f ′(0)

t�1∼ it f (0) , (49)

if the function f (w) is analytic at w = 0. Note that in
fact there exists a line of poles along the real axis in (44)
since S(u + i0+)S(u − i0+) = (z − 1) for u ∈ R and |u| <

2
√

z − 1. Expanding the integrand for general z about this
singular line, we must integrate over the relevant residues
between −2

√
z − 1 < u < 2

√
z − 1 (where the integrand is

singular), which defines the function

F(z) ≡ (z − 1)
ˆ 2

√
z−1

−2
√

z−1
du

4(z − 1) − u2

z2 − u2
(50)

= (z − 1)

[
4
√

z − 1 − z

(
z − 2

z

)2

ln

(
z + 2

√
z − 1

z − 2
√

z − 1

)]
.

(51)

Comparing the large-t asymptotic expansion of Eq. (44) with
the expected late time behavior of 〈r2(t )〉 ∼ 2Dzht , one there-
fore obtains the following exact expression for the diffusion
constant on a lattice with coordination number z:

2Dz = 1

2π
F(z) lim

w→(z−1)−1

(
1 − w

z − 1

)2

R(z)
2 (w) . (52)

Using the expression for R2 in (48), we finally deduce that

D4 = 4

π
[2

√
3 − ln(2 +

√
3)] (53)

� 2.733 83 (54)

for the square lattice. This expression gives the exact value
of the diffusion constant observed in, e.g., Ref. [24], which
was previously obtained only numerically. The values of the
diffusion constant for the triangular and honeycomb lattices
are given in Table I.

TABLE I. Values of the diffusion constants Dz obtained by
the Bethe lattice mapping corresponding to the long-time behavior
(ht � 1) of spinons propagating in the high-temperature limit (T >

h4/J3).

Lattice Coordination number, z Dz

Triangular 6 2.72968
Square 4 2.73383
Honeycomb 3 3.20977

In fact, the following expression for Dz is valid for all three
lattices:

Dz

〈d2〉 = z2

4π (z − 2)

[
4
√

z − 1 − z

(
z − 2

z

)2

× ln

(
z + 2

√
z − 1

z − 2
√

z − 1

)]
, (55)

normalized by the arithmetic mean of the squared distances
〈d2〉 corresponding to the possible moves at each step [60]. A
plot of this function in Fig. 5 shows that Dz exhibits a mini-
mum at z � 4.833—this is due to the competition between (i)
reduced destructive interference at low coordination numbers
(vanishing destructive interference as z → 2+, since there are
no loops for z = 2) and (ii) a greater number of paths between
any two points on the lattice for large z, the effect of which
dominates at large z. This result shows that it is a fortuitous
coincidence that the square and triangular lattices exhibit such
similar diffusion constants.

We stress that (55) corresponds to quantum diffusion,
which results from the complex interference pattern produced
by the multitude of lattice walks, and is faster than the
corresponding classical diffusion (random walk), Dcl = z/2,
for coordination number z � 5 [61]. For z > 5, interference
effects dominate, leading to slower propagation. The

FIG. 5. A plot of the diffusion constant Dz against the coordina-
tion number z from (55), having set the nearest-neighbor distance
between lattice sites equal to unity. The corresponding classical
diffusion constant Dcl

z = z/2 is also shown for comparison [61]. The
markers denote the values of Dz for some common lattices: the
honeycomb, square, triangular, and double triangular lattices, from
left to right.
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difference between classical and quantum diffusion is further
reflected in the non-Gaussian nature of the asymptotic density
profile, discussed in the next section.

3. Asymptotic higher-order moments

It is possible to evaluate arbitrary moments of the density
distribution in order to give a better characterization of the
spinon density profile. We specialize to the case of the square
lattice (i.e., z = 4) for convenience. The function R2k (x) in
general has a pole of order k + 1 at x = (z − 1)−1. This
implies that, in the long-time limit, the 2kth moment behaves
as ∼t k , consistent with the diffusive behavior exhibited by the
second moment. This is because, analogous to (49), at long
times

Res
w=0

f (w)eitw

wk+1
= 1

k!
(it )k f (0) + · · · , (56)

if f (w) is analytic at w = 0. The dots correspond to lower
powers of t , which contribute to the transient oscillatory
behavior at short times.

We start by considering the expression for R2k (x) derived
in (47):

R2k (x) = [∇2kN](x; 1, 1) (57)

=
[

k∑
	=0

(
k

	

)
(δ∂δ )2	(ε∂ε )2(k−	)N

]
(x; 1, 1). (58)

One can show that the term (δ∂δ )2	(ε∂ε )2(k−	)N gives rise to a
contribution(

k

	

)
[2	]![2(k − 	)]!

xk (1 + x)

(1 − 3x)k+1(1 − x)k
+ · · · (59)

to the highest order pole ∼(1 − 3x)−k−1. The dots correspond
to poles of lower order that give rise to lower powers of time.
Performing the summation over 	, we obtain

k∑
	=0

(
k

	

)2

[2	]![2(k − 	)]! = 4k (k!)2 . (60)

Hence, sufficiently close to the pole at x = 1/3, the function
R2k behaves as

R2k (x) ∼ 22+k

3


(k + 1)2

(1 − 3x)k+1
, (61)

where 
(x) is the gamma function. The final ingredient
therefore is the integral over residues, which generalizes the
expression in (50),

ˆ 2
√

3

−2
√

3
du

(12 − u2)
k+1

2

16 − u2

= √
π2k−23(k+2)/2 


(
3+k

2

)


(

4+k
2

) 2F1

( 1
2 , 1

2 + 1
2 k

;
3

4

)
, (62)

in terms of the Gauss hypergeometric function 2F1(a, b, c; z).
Combining the multiplicity of the highest order pole and the
integral over residues, we arrive at the final exact expression
for the 2kth moment of the density distribution in the long-

FIG. 6. (a) Comparison of Bethe lattice result for the mean
square deviation, 〈r2(t )〉 � 2Dzht , with numerics for (i) the discrete
flux model with fluxes 2π/n, for n = 2, 3, 4, and (ii) the continuous
random flux model. Time evolution is performed using a high-order
Suzuki–Trotter decomposition on a square lattice with 1999 × 1999
sites and averaged over 128 random flux configurations at infinite
temperature. All models exhibit the same ballistic behavior for suf-
ficiently short times. The π -flux model shows the most pronounced
deviation from the Bethe lattice approximation at longer times as a
result of being most strongly localized. The density profile at ht = 40
for the Bethe lattice is compared with the continuous and π -flux
models in (b) and (c), respectively. The profiles ρ(x) are averaged
over 105 flux configurations on a lattice of size 249 × 249 sites. The
error bars are in all cases too small to be visible.

time limit, for fixed k:

μ2k ≡ lim
t→∞

〈r2k (t )〉
(ht )k

(63)

= 22k−13k/2+1

√
π


(k + 1)

(

3+k
2

)


(

4+k
2

) 2F1

( 1
2 , 1

2 + 1
2 k

;
3

4

)
. (64)

These moments are checked against numerics in Appendix B.
As required, the special case k = 1 simply reduces to 2D4

given in (53). The density distribution is, however, not Gaus-
sian, as evidenced by nonzero higher-order cumulants. This
is not an artefact of the Bethe lattice mapping and indeed is
reflected in our numerical simulations, as seen in Fig. 6. This
feature further distinguishes the interference-driven quantum
diffusion from its classical counterpart.

One can similarly compute the moments of the marginal
distribution ρ(rx; t ) = ´

dryρ(r; t ). One must in this case
replace R2k (x) by the function

R̃2k (x) = [(δ∂δ )2kN](x; 1, 1) . (65)

A similar calculation of the residues and multiplicities (now
simplified by the removal of cross terms between the generat-
ing variables δ and ε) gives

μx
2k ≡ lim

t→∞

〈
r2k

x (t )
〉

(ht )k
(66)

= 3k/2+1

2
√

π


(2k + 1)

(

3+k
2

)

(k + 1)


(
4+k

2

) 2F1

(
1
2 , 1

2 + 1
2 k

;
3

4

)
. (67)
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As one would expect, μx
2 = Dz. The first two of these exact

moments were used to construct the analytical estimate of the
marginal density profile in Fig. 6.

V. NUMERICAL RESULTS

The Bethe lattice result is compared to Trotterized time
evolution [45] on a 1999×1999 square lattice, averaged over
infinite-temperature disorder realizations, both for random
discrete fluxes (2π/n, for n = 2, 3, 4) as well as for the
continuous random flux model, where the flux threading each
plaquette is chosen from a uniform distribution φ ∈ [0, 2π ).
The results are shown in Fig. 6. We see that over numerically
accessible, intermediate timescales, the Bethe lattice result
provides an excellent quantitative description of the density
profile for the continuous-flux model and qualitative agree-
ment with the Z2 model. The results for discrete fluxes with
n > 2 can be seen to rapidly converge to the continuous-flux
result. Note that the case n = 2, corresponding to Z2 fluxes,
is special, being the only case in which the effective tight-
binding Hamiltonian exhibits time-reversal symmetry (i.e.,
H = H∗).

In the π -flux model, encircling a flux an even number of
times gives rise to constructive interference. The difference in
behavior between this model and the continuum case means
that the loop diagrams depicted in Fig. 2(b), which are missed
by the Bethe lattice, play an important role. These diagrams
lead to an increased weight near the origin, which results in
a reduced rms displacement. These observations are consis-
tent with the idea that all single-particle eigenstates of the
effective disordered tight-binding model are localized but with
a diverging localization length near E = 0 arising from the
presence of purely off-diagonal disorder in the Hamiltonian.

The subdiffusive form of the second moment observed in
the numerics may be explained in the following way: a wave
packet composed of states in the vicinity of energy E will
diffuse with diffusion constant D(E ) up to (approximately)
their localization length λ(E ) [62], at which point such states
give rise to a fixed, time-independent contribution to 〈r2(t )〉 ∼
λ(E )2. As time progresses, a reduced fraction of states have
not yet reached their localization length and are still diffusing,
explaining the negative curvature observed in Fig. 6. The
Bethe lattice result can therefore be thought of as giving the
behavior of 〈r2(t )〉 before any of the states have reached
their localization length. Since the localization length of the
continuous-flux model increases exponentially with energy
away from the band edge [57], we observe very close agree-
ment up to ht = 103 with the Bethe lattice result. The differ-
ence in behavior between the continuous and π -flux models
may be attributed to the fact that the latter is more strongly
localized [63], implying a smaller fraction of diffusing states
at any given time and hence a more pronounced departure
from the pure diffusion predicted by the Bethe lattice.

A. Finite temperature

In the case of discrete π fluxes with a gap �v ∼h4/J3,
at intermediate temperatures or, equivalently, finite vison
separation ξ ∼ρ−1/2 ∼e�v/2T , the crossover from ballistic to
subdiffusive behavior is shifted to later times. We expect

FIG. 7. Comparison of the mean square displacement 〈r2(t )〉 of
a spinon initially localized at the origin for various temperatures.
Over the simulated timescales, the dominant effect of reducing
temperature is to shift the crossover from ballistic to (sub-) diffusive
behavior to larger times, namely, at a time ht ∼ ξ 2 indicated by the
circular markers as a guide to the eye [64]. In the Z2 case, ξ is set
by the distance between visons. In the U(1) case, ξ 2 is given by
the area whose enclosed flux has an O(1) variance. Time evolution
is performed using a high-order Suzuki–Trotter decomposition on
a 1999 × 1999 square lattice, and the data are averaged over 128
disorder realizations for each temperature. The error in the data is
smaller than the linewidth.

that the particle should propagate ballistically until it has
encountered a sufficient number of visons so as to impede its
motion: (ht )2/ξ 2 ∼ ht . Hence, for ht � ξ 2 we expect to see
free-particle behavior, and for ht � ξ 2 we expect to observe
approximately the infinite-temperature (sub-) diffusive behav-
ior (with a renormalized diffusion constant). The crossover
between the two regimes is therefore set by the time taken to
diffuse to the nearest vison. This behavior is indeed seen in
Fig. 7.

In the continuous-flux model, one may attribute an energy
cost E (φ) = −�v cos φ to threading a given plaquette with a
flux φ. At sufficiently low temperatures, β�v � 1, the corre-
sponding probability density p(φ) ∝ e−βE (φ) is approximately
Gaussian and the relevant length scale ξc becomes ξ 2

c (T ) =
2/T [cf. Eq. (7)]. This characteristic area is defined via the
relation 〈ei

∑
〈αβ〉∈γ φαβ 〉 ≡ e−Aγ /ξ 2

c and may be understood as the
area such that typical fluctuations of the enclosed flux have a
magnitude that is O(1). As in the discrete flux case, the effect
of finite temperature is to shift the crossover from ballistic to
(sub-) diffusive behavior to a time ht ∼ ξ 2

c , as shown in Fig. 7.

VI. CONCLUSIONS

In this paper we studied the effects of nontrivial mutual
statistics on the propagation of quasiparticles in topological
systems at finite temperature. Specifically, we considered a
temperature regime where one species of quasiparticle is ther-
mally excited and provides a static (à la Born–Oppenheimer)
stochastic background for the other species, which are sparse
and hop coherently across the lattice. This is a regime of
experimental interest, in topological quantum spin liquids, for
instance, where a large separation of energy scales between
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different species of quasiparticles arises naturally in many
realistic model Hamiltonians.

We used a combination of numerical and analytical ap-
proaches to investigate toric-code-inspired toy models, where
the excitations (dubbed spinons and visons) have anyonic
mutual statistics. The effect of nonzero temperature in our
model is to populate a finite density of static visons. Due to the
mutual statistics of the quasiparticles, visons act as Aharonov–
Bohm half flux quanta for the spinons. Within perturbation
theory, our model permits an effective description in which
the spinons evolve in time according to a two-dimensional
tight-binding Hamiltonian in the presence of randomly placed
fluxes. Changing temperature alters the density of the fluxes,
which, in turn, changes the strength of off-diagonal disorder
in the tight-binding Hamiltonian. We also considered models
in which the flux threading each plaquette is a multiple of 1/3
or 1/4 of the flux quantum, and the case in which the flux is
distributed continuously.

Various time-dependent observables for lattice systems,
including the spinon density profile in our effective tight-
binding description, may be computed by counting discrete
lattice paths. In order to make analytical progress, we con-
sidered the self-retracing path approximation. Such paths are
expected to dominate at intermediate times due to interference
effects by virtue of the Aharonov–Bohm effect. To this end,
we map the self-retracing paths to walks on an auxiliary Bethe
lattice and enumerate such walks exactly. This gives us access
to analytical expressions for the spinon density profile as a
function of space and time.

For sufficiently short times, namely, on the order of the
hopping timescale τ , the density exhibits oscillatory behavior
due to coherent interference effects. On these timescales, the
self-retracing path approximation is essentially exact and our
results are almost indistinguishable from numerical simula-
tions. At times much greater than the hopping timescale,
t � τ , the self-retracing path approximation predicts asymp-
totic quantum diffusive behavior of the spinon, i.e., 〈r2(t )〉 �
2Dzt/τ . We obtained an exact expression for the correspond-
ing diffusion constant Dz, which depends on the coordination
number of the underlying lattice. The function Dz exhibits
a minimum at z � 5, where the effects of (i) reduced de-
structive interference at low coordination numbers and (ii)
an increasing number of paths connecting any two sites at
larger coordination numbers, balance one another. The higher
moments of the density distribution in the large-time limit ex-
hibit non-Gaussian behavior, which highlights the difference
between quantum and classical diffusion.

Comparison with numerical simulations reveals excellent
agreement with the continuous-flux model up to O(103) hop-
ping times, while for the π -flux model discrepancies become
apparent at much shorter times. This difference is understood
as arising from the distinct localization properties of the two
models. When considering 〈r2(t )〉, states with a given energy
will diffuse with some characteristic diffusion constant until
the corresponding localization length is reached. The π -flux
model is more strongly localized, and so at any given time a
larger fraction of states have reached their localization length
and give rise thereafter to a time-independent contribution to
〈r2(t )〉.

The results that we have presented provide us with a
quantitative understanding of the crossover from ballistic to
quantum (sub-) diffusive motion of spinons through a sea of
thermally excited visons, which is a direct consequence of
their nontrivial mutual statistics. More generally, our work
represents a step forward in understanding the dynamics of
quantum spin liquids at finite temperature, which is essential
to interpret both the relevant experiments and numerical data.
Our results demonstrate another way in which the mutual
semionic statistics of spinons and visons manifests itself in
the dynamical properties of spinons; this paves the way for the
possible study of such dynamics as an experimentally viable
diagnostic tool for anyonic statistics in many-body systems
that exhibit topological order.

We expect that our results may be relevant to several
interlaced but distinct contexts of many-body physics. On
the condensed matter physics front, while realistic Hamil-
tonians require including further effects such as possible
interactions between quasiparticles and correlations in the
spin background, it is nonetheless tempting to point at the
recent experimental advances in the study of Kitaev-model-
like candidate materials at finite temperature as a possi-
ble context where the physics discussed in our work may
be relevant and observable [65]. However, to make such
connections, some modification of our present framework
is necessary in that the spinon dispersion in the Kitaev
model [2] is massless and relativistic, as opposed to the mas-
sive and nonrelativistic dispersion considered in the present
work.

In the context of quantum information and quantum com-
puting, the recent proposal that the toric code and similar
Z2 spin liquid Hamiltonians may be realized using quantum
annealers [33], indeed in the limit explored in our work of
a large star constraint and a perturbative transverse field,
promises to provide further avenues to benchmark and explore
the type of phenomena that we have uncovered in a convenient
and highly tunable setting.

Seen from the ultracold atomic physics perspective, our
results also describe quantitatively the motion of holes in
real space in the large-U , large-S limit of the Hubbard
model [24]. Owing to recent developments in quantum
gas microscopy [25–30], our analytical expressions for the
site-resolved density profile may thus be probed directly
in ultracold atomic experiments. Our calculation extends
the self-retracing path approximation used in Ref. [22],
showing that it in fact holds to much larger times and
distances.

Our work also points at a couple of potentially interest-
ing future directions. Extending the analysis in the present
work to string-net models [66] may offer access to richer
varieties of topological order and anyonic statistics, and an
opportunity to classify more generally the resulting dynamics.
Perhaps more interesting is the spinons’ backaction on the
visons, which we have so far neglected. In a similar spirit to
Ref. [24], it is plausible that the quantum coherent hopping
of spinons may lead to nontrivial correlations in the posi-
tions of the visons, which may have other important implica-
tions at finite temperature, indicative of quantum spin liquid
behavior [67].
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APPENDIX A: OTHER LATTICES

1. Toric code on the kagome lattice

In this section we calculate explicitly the generating func-
tions for nonreversing walks on the triangular and honeycomb
lattices. Both lattices appear naturally in the context of frus-
trated magnetism. However, as a concrete example, consider
the toric code defined on the kagome lattice, as in Fig. 8:

H = −λA

∑
�

A� − λB

∑
�

B� , (A1)

where A� = ∏
i∈� σ x

i , B� = ∏
i∈� σ z

i , corresponding to the
hexagonal (�) and triangular (�, both “up” and “down”)
plaquettes of the lattice, respectively. λA(B) > 0 are the two
coupling constants of the model. The operators are all mu-
tually commuting, [A�, B�] = 0, since each hexagonal pla-
quette shares an even number of spins with any overlapping
triangular plaquette.

As in the case of the square lattice, the cases λA � λB

(λB � λA) can be generated perturbatively in the ground-state
sector by applying a small magnetic field in the x (z) direction
to a system with λA(B) = 0. We will use the terminology
that the lower-energy excitations, generated perturbatively
via ring exchange, correspond to the visons. If the visons
reside on the triangular plaquettes, then the spinons, which
live on the hexagonal plaquettes, hop on a triangular lattice.

FIG. 8. A kagome lattice of spins, depicted by the white circles,
and the corresponding plaquette operators, A� and B�, which com-
prise the toric code Hamiltonian (A1). The centers of the hexagonal
plaquettes, A�, form a triangular lattice, while the centers of the
triangular plaquettes, B�, form a hexagonal lattice.

Conversely, in the opposite limiting case, if the visons live on
the hexagonal plaquettes, then the spinons hop on a hexagonal
lattice.

2. Triangular lattice

For the triangular lattice, the coordination number z = 6
and there are thus six possible moves at each step enumerated
by the generating variables δ and ε: δ, ε, ε−1, δ−1, εδ−1,
and δε−1. The matrix which governs transitions between these
various allowed moves between adjacent sites is

N = x

⎛
⎜⎜⎜⎜⎜⎝

ε δ ε−1δ 0 δ−1 εδ−1

ε δ ε−1δ ε−1 0 εδ−1

ε δ ε−1δ ε−1 δ−1 0
0 δ ε−1δ ε−1 δ−1 εδ−1

ε 0 ε−1δ ε−1 δ−1 εδ−1

ε δ 0 ε−1 δ−1 εδ−1

⎞
⎟⎟⎟⎟⎟⎠ , (A2)

where the zeros enforce the nonreversing constraint imposed
on the lattice walk. The initial condition

N0 = x diag(ε, δ, ε−1δ, ε−1, δ−1, εδ−1) (A3)

represents the unconstrained first step. Using the general
expression (28) presented in the main text, the generating
function for nonreversing walks is therefore

N(x; δ, ε)

= 1 − x2

1 − x(ε + ε−1 + δ + δ−1 + εδ−1 + δε−1) + 5x2
.

(A4)

The expression for R2(x) presented in the main text in (47)
must be generalized to allow for the two basis vectors to be
nonorthonormal, i.e., when ei · e j = a2δi j + a2(1 − δi j ) cos θ ,
the expression for R2 becomes

R2(x) = a2{[(δ∂δ )2 + 2 cos θ (δ∂δ )(ε∂ε ) + (ε∂ε )2]N}∣∣
δ=ε=1.

(A5)

By symmetry, δ∂δ and ε∂ε commute when acting on
N(x; δ, ε). Evaluating the appropriate derivatives ofN(x; δ, ε)
we arrive at

R2(x) = 4x(1 + x)

(1 − 5x)2(1 − x)
(2 − cos θ ) . (A6)

This leads to the final expression for the diffusion constant

D6 = 3

π

[
3
√

5 − 2 ln

(
3 + √

5

3 − √
5

)]
(A7)

= 2.729 68 . . . . (A8)

3. Honeycomb lattice

The case of the honeycomb lattice (z = 3) is complicated
slightly by its two-sublattice structure. We proceed by con-
structing two generating functions Naa and Nab, correspond-
ing to walks that begin and end on the same sublattice,
and walks that begin and end on complementary sublattices,
respectively. Beginning with Naa, we divide each walk into
segments of length 2. Taking into account the nonreversing
constraint, there are six possible transitions for each length-
2 segment: δ, ε, ε−1, δ−1, εδ−1, and δε−1, corresponding
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to moves on the underlying triangular lattice. At each step
following the initial one, two of these moves are disallowed
by the nonreversing constraint, leading to the transition matrix

N = x2

⎛
⎜⎜⎜⎜⎜⎝

ε δ 0 0 δ−1 εδ−1

ε δ ε−1δ ε−1 0 0
0 0 ε−1δ ε−1 δ−1 εδ−1

ε δ ε−1δ ε−1 0 0
0 0 ε−1δ ε−1 δ−1 εδ−1

ε δ 0 0 δ−1 εδ−1

⎞
⎟⎟⎟⎟⎟⎠ (A9)

with the initial condition

N0 = x2 diag(ε, δ, ε−1δ, ε−1, δ−1, εδ−1) . (A10)

These matrices lead to the generating function

Naa(x; δ, ε)

= 1 + x2(ε+ε−1+δ+δ−1+εδ−1 + δε−1) − 6x2

1−x2(ε+ε−1+δ+δ−1 + εδ−1 + δε−1 − 1) + 4x4
.

(A11)

For the generating function Nab, we write a walk from
a → b as (i) the first step takes the walker from the a to
the b sublattice, and (ii) the walker then performs a walk
amongst sites belonging to the b sublattice only. This walk
is implemented using the matrix

N = x2

⎛
⎜⎜⎜⎜⎜⎝

ε δ 0 ε−1 0 εδ−1

ε δ 0 ε−1 0 εδ−1

0 δ ε−1δ ε−1 δ−1 0
0 δ ε−1δ ε−1 δ−1 0
ε 0 ε−1δ 0 δ−1 εδ−1

ε 0 ε−1δ 0 δ−1 εδ−1

⎞
⎟⎟⎟⎟⎟⎠ (A12)

and the initial condition

N0 = xN1 + xε−1N2 + xδ−1N3 , (A13)

which represents the three possible moves in the un-
constrained first step, where Ni = e2i ⊗ e2i, and eμ (μ =
1, . . . , 6) are the orthonormal basis vectors with respect to
which (A12) is expressed. These matrices lead to

Nab(x; δ, ε)

= x(1 − x2)(1 + δ−1 + ε−1)

1 − x2(ε + ε−1 + δ + δ−1 + εδ−1 + δε−1 − 1) + 4x4
.

(A14)

The full generating function is then given by N = Naa +
Nab. However, in order to calculateR2, one should in principle
account for the fact that the b sublattice is translated by one
lattice constant with respect to the a sublattice. This detail is
only relevant for short times and hence does not need to be
taken into account for the calculation of the diffusion constant,
which depends only on the asymptotic behavior of 〈r2(t )〉.

Combining all of the above results gives us the generating
function R2:

R2(x) = 2a2

(1 − 4x2)2(1 − x2)
{4x2(1 + 2x2)

+ x(1 + 7x2 + 4x4) − cos θ [2x2(1 + 2x2) + 6x3]},
(A15)

where a = √
3 and θ = π/3. Inserting these values simplifies

the expression to

R2(x) = 6x(1 + 2x2)

(1 − 2x)2(1 − x)(1 + 2x)
. (A16)

Hence, we arrive at the expression

D3 = 3

2π

[
12

√
2 − ln

(
3 + 2

√
2

3 − 2
√

2

)]
= 3.209 77 . . . .

(A17)

APPENDIX B: NUMERICAL VERIFICATION

In this Appendix we confirm numerically our results for
the moments of the spinon density profile on the square lattice
via an independent calculation. We perform this verification
by calculating numerically how a single particle spreads with
time on the Bethe lattice (at zero temperature) and then
mapping sites on the Bethe lattice to sites on the square lattice
in order to correctly account for the distance of each site from
the origin. Suppose that the particle’s wave function has the
projection ψ	(t ) onto a site at depth 	 on the Bethe lattice.
The symmetry of the lattice dictates that the magnitude of this
projection is the same for all sites at the same depth. Then,

〈r2k (t )〉 =
∞∑

	=0

N	∑
s	=1

r2k
s	

|ψ	(t )|2 . (B1)

The mapping between the square and Bethe lattices comes
from the term

∑N	

s	=1 r2k
s	

, where each site s	 on the Bethe
lattice maps to a site with position rs	

in real space (i.e., on
the original square lattice). The number of sites at depth 	 is
N	 = 4 × 3	−1 for 	 > 0. This sum can be evaluated by taking
appropriate derivatives of the functionR2k (x), defined by (47):

N	∑
s	=1

r2k
s	

= 1

	!

[
∂	

xR2k
]
(0) . (B2)

For the special case k = 1,

1

N	

N	∑
s	=1

r2
s	

= 2	 − 3

2
(1 − 3−	) ∼ 2	, (B3)

in agreement with the expression presented in Ref. [24],
obtained by different means. For general k, one may show
from the general expression (B2) that asymptotically

1

N	

N	∑
s	=1

r2k
s	

∼ k!(2	)k (B4)

for sufficiently large depths 	. Hence, the moments may be
calculated for sufficiently large times using the expression
〈r2k (t )〉∼k!

∑
	 N	(2	)k|ψ	(t )|2. This expression is used to

evaluate the moments numerically in Fig. 9, showing conver-
gence towards our exact expression.

APPENDIX C: RETURN PROBABILITY

The probability that the spinon returns to its initial site (0)
at high temperature (i.e., the survival probability) is found
by evaluating all closed, self-retracing walks on the original
lattice Lz. Such walks are enumerated by the generating
functions C0(x) (corresponding to closed, nonreversing base
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FIG. 9. The first six nonzero moments of the density distribution,
evaluated numerically (solid lines), exhibiting convergence for large
times towards the analytical expression (64) (dashed lines) presented
in the main text.

paths), and T (x), S(x) (corresponding to self-retracing excur-
sions).

In the case of the square lattice, the double contour inte-
gral, (43), may be rewritten in the form of a surface integral
over a square in the θ1-θ2 plane:

P0(t ) = −
∑
α1,α2

gα1α2

ˆ π

0

ˆ π

0

2∏
j=1

dθ j

2π
e2

√
3iht (cos θ1−cos θ2 )

×C0

[
1

3
ei(α1θ1+α2θ2 )

] 2∏
j=1

sin θ j(
4
3 − cos2 θ j

)
× (cos θ j − 2eiα jθ j ), (C1)

where the symmetric matrix,

gα1α2 = eiπ (α1−α2 )/2 =
(

1 −1
−1 1

)
α1α2

, (C2)

ensures that the probability P0(t ) remains real for all time. We
remind the reader that

C0(x) = 2

π

(
1 − x2

1 + 3x2

)
K

(
4x

1 + 3x2

)
(C3)

=
(C4)

FIG. 10. Short-time behavior of the spinon’s return probability
P0(t ). The calculation is performed on a 49 × 49 square lattice, and
the data are averaged over 25 000 histories. The full self-retracing
result, (43), differs qualitatively from the T = 0 return probability
on the Bethe lattice in that the latter periodically exhibits perfect
destructive interference and decays more rapidly with time.

where K (x) is the complete elliptic integral of the first kind.
Asymptotically, as ht → ∞, within the Bethe lattice approxi-
mation, the return probability equals

P0(t ) = c1

t
+ c2

t2
cos(4

√
3ht ) + · · · , (C5)

where the ci are O(1) constants. The first term is consonant
with the asymptotic diffusion of the density profile, while the
latter term corresponds to transient coherent oscillations.

The exact expression (C1) is plotted in Fig. 10 and com-
pared with the corresponding numerics for the continuous
and π -flux models. The form of the return probability differs
drastically from the zero-temperature result corresponding to
ballistic propagation of the spinon, where P0(t ) ∼ cos4(2ht −
π/4)/t2 for ht � 1, in which the survival probability decays
more rapidly (∼t−2) and the coherent oscillations persist
indefinitely. The discrepancy between the Bethe lattice result
and the high-temperature limit of the π -flux model at these
short times is attributed to the neglect of loop diagrams of the
form shown in Fig. 2(b).
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