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We show that pinning of surface spins affects the hysteresis properties of the core-shell magnetic nanostuctures
of different shapes, sizes, and different spin interactions, namely, Ising, XY, and Heisenberg models. The
asymmetry in hysteresis loops occuring due to pinning turns out to be more prominent in an inverse core-shell
structure where spin interaction in the core is antiferromagnetic and that in the shell is ferromagnetic. Monte
Carlo simulations of the inverse core-shell nanostructures show that the exchange bias, even under zero-field-
cooled conditions, increases with increase of both the pinning density and the fraction of up spins among the
pinned ones. The exchange bias also exhibits a switch—from negative to positive—depending on the fraction
of up spins pinned. These results are remarkably well reproduced by a simple model of the outermost surface
layer. The surface spin pinning appears to affect the magnetic properties of heterostructures as well, besides
nanostructures.
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I. INTRODUCTION

Nanoscale magnetic structures continue to attract tremen-
dous attention from researchers because of the array of un-
usual properties as well as the ever-increasing application
potential in magnetic recording [1,2], imaging [3], sensors
(as well as smart) [4], DNA separation [5], magnetotransport
[6], and targeted drug delivery devices [7,8]. While ferro-
magnetism could be stabilized in nanoparticles by dispersing
them within an antiferromagnetic matrix and using, as a
consequence, the exchange coupling interaction across the
nanoparticle-host matrix interface [9], superspin glass [10]
to superferromagnetism [11] could also be observed within
different assemblages of nanoparticles because of esoteric ex-
change interactions. The magnetic properties such as satura-
tion and remnant magnetization, coercivity, and exchange bias
field (if any) also exhibit unusual features depending on parti-
cle size [12,13], shape [14], chemical composition [15], and
crystallographic structure [16]. For instance, magnetization
does not exhibit saturation even at higher applied fields (>
50 kOe) in ferromagnetic nanosized particles [17]; coercivity
and exchange bias also exhibit dependence on applied field
and temperature [18,19]. Exchange bias could be observed
even after zero field cooling from above the transition temper-
ature [18,20]. The spin composites, forming within different
platforms of nanomagnetic systems, could be comprised of a
variety of structures such as ferromagnetic-antiferromagnetic
[21], ferromagnetic-spin glass [22], ferrimagnetic-spin glass,
ferrimagnetic-antiferromagnetic, etc. [23,24]. Complete ex-
position of the plethora of such structures and the structure-
property correlation, therefore, is extremely difficult yet re-
warding. Distilling the experimental and theoretical work
carried out so far on nanomagnetic systems, it appears that

the key factors, which govern the magnetic properties, are
intra- and interphase exchange coupling interactions [25,26],
magnetic anisotropies [27], and spin pinning at the interface
[28] or at the surface [29]. Issues such as field, temperature,
measurement protocol, thermal and field cycling dependence
of magnetic properties observed in a score of nanomagnetic
structures still defied complete description. An important fac-
tor in this context, hitherto not well considered, is the pinning
of surface spins by defects. Nanosized magnetic particles—
coated by organic liquid and thereby functionalized—were
shown to exhibit incomplete saturation and spins, making
large angles with the direction of the applied field [17].

We show in this paper that pinning density and the fraction
of ↑ and ↓ surface spins pinned influence the magnetic proper-
ties far more strongly than the exchange coupling interactions.
The magnetic properties have been calculated from Monte
Carlo simulations for two- and three-dimensional systems
(including heterostructures) and as a function of particle size
and shape using different spin-spin interactions such as Ising,
XY, and Heisenberg. Both the core shell (where the core
is ferromagnetic and shell is antiferromagnetic) and inverse
core-shell (where the core is antiferromagnetic and shell is
ferromagnetic) nanostructures were considered. The variation
of coercivity and exchange bias has been mapped as a function
of pinning density, ratio of ↑ and ↓ spin fraction, core-shell
thickness, and different shapes: elliptical, square, triangular
and some irregular shapes. A simple model of the outermost
surface layer with pinned spins is introduced and solved ana-
lytically; the interesting observations of the effect of surface
pinning on a two-dimensional core-shell structure can be
understood very well from this simple model. Interestingly,
switch in exchange bias—from positive to negative—could be
observed depending on variation in fraction of ↑ and ↓ spin
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fractions. These results have very important ramifications for
a range of experimental observations.

The paper is organized as follows. The model of the core-
shell magnetic nanostructure is introduced in Sec. II and the
simulation methods are discussed here. In Sec. III we study
the core-shell structures in two dimensions and discuss how
the hysteresis loops vary with change in interaction strengths,
pinning parameters, shape, and size of the system. Similar
results are obtained in three dimensions in Sec. IV, with Ising,
XY, or Heisenberg models. We introduce a simple model
of the outermost surface layer in Sec. V to understand why
pinning affects hysteresis. Since pinning strongly alters the
magnetic properties in mesoscopic scale, heterostructures in
nanoscale are no exception; this is discussed briefly in Sec. VI.
Finally, we summarize the results and conclude in Sec. VII.

II. THE MODEL AND SIMULATION

We intend to study the magnetic properties of core-shell
nanostructures, primarily the nanoparticles. We consider that
the nanoparticles have a core C and a shell S. The Hamiltonian
of the system is given by

H = −Jc

∑
i∈C, j∈C

Si.S j − Jsh

∑
i∈S, j∈S

Si.S j

−Jint

∑
i∈S j∈C

Si.S j − H
∑

i∈C,i∈S
Sx

i , (1)

where j is the nearest neighbor of site i, Jc (Jsh) is the
exchange interaction among the spins within the core (shell),
Jint represents core-shell interface interaction, and H is the
external magnetic field. Obviously, the spins interact ferro-
magnetically (antiferromagnetically) when the corresponding
value of interaction strength is positive (negative); for exam-
ple, when Jc < 0 and sites i and j are within the core (i ∈ C
and j ∈ C), the spins Si and Sj interact antiferromagnetically.
The magnetic field H is experienced by all the spins, both in
core C and shell S , and its direction is taken as the x axis.

Note that when Jc = Jsh = Jint, Eq. (1) describes Ising, XY,
or Heisenberg models on a lattice in any spatial dimension.
The spin Si at lattice site i is a unit vector, i.e., Si.Si = 1; for
the Heisenberg model, Si = (Sx

i , Sy
i , Sz

i ) has three components
and for the XY model, Si = (Sx

i , Sy
i ) has two components.

To describe the Ising model, one must consider that Si ≡
Sx

i = ±1 and the dot product in Eq. (1) are interpreted as a
simple multiplication of scalars. Thus, the core-shell structure
emerges due to spatial inhomogeneity of interaction strength.

In addition, to model the surface pinning that has been ob-
served in magnetic nanoparticles in contact of organic liquids
[17], in ferromagnetic thin films [30], and core-shell structures
[29], etc., we assume that η fraction of boundary spins are
pinned. We also introduce a parameter 0 � r � 1, which
controls the fractions of pinned spins which are oriented along
the field.

We must mention that usually magnetic materials have
an easy axis ê which contributes an additional magnetic
anistropic energy term

∑
i(Si.ê)2 to the Hamiltonian. Such

anisotropy alone cannot generate exchange bias at zero-field-
cooled conditions, but it may have some influence on it. Since
our focus here is to study whether exchange bias can be

originated solely from pinning of surface spins, we avoid this
anisotropic term.

Monte Carlo simulations

We study the hysteresis properties of the core-shell nanos-
tructures using Monte Carlo simulations and single-spin
Metropolis algorithm where a trial configuration is accepted
with probability min{1, e−β�E }; �E is the energy difference
between the current and the trial configuration. The trial con-
figuration is constructed by reorienting a single spin, chosen
randomly; for the Ising model, the spin is flipped, whereas for
XY and Heisenberg spins, the angles are changed by a small
amount, chosen from a uniform distribution.

To measure hysteresis, first we set the temperature of the
system to a fixed value smaller than critical temperature Tc.

This can be achieved from any random initial configuration
by relaxing the system for a long time, in zero-field-cooled
conditions. Then we raise the magnetic field slowly from H =
0 to Hmax with a field sweep rate �H units per Monte Carlo
sweep (MCS) and, finally, the hysteresis loop calculations are
undertaken for a cycle, by varying the field from Hmax to
−Hmax and then to Hmax again with same rate. Magnetization
of the system is measured after each MCS and it is averaged
over 100 samples. Random numbers are generated by using a
standard linear congruential generator drand48().

It is well known that the area of hysteresis and the co-
ercive field depends strongly on the rate at which the field
is swept [31]. The quasistatic field sweep in real systems
(Tesla/second) translates to a rate of the order 10−12 units
of magnetic field per MCS, which is not practically feasible
in simulations. Instead, we choose a faster field sweep rate
�H ∼ 10−2 which may lead to overestimation of the coer-
cive field but it keeps the value of exchange bias and the
qualitative behavior of the coercive field unaltered. It is also
advantageous for doing fast calculations. One must, however,
note that a fast sweep rate must be associated with a large
Hmax to make a closed hysteresis loop; for �H ∼ 10−2, the
required field is typically of the order unity.

We primarily focus on the dependence of coercive field
(Hc) and exchange bias field (Heb) on η, r, interface inter-
action strength Jint, and size of the core and the shell. Hc and
Heb in a hysteresis loop are defined as

Hc = 1
2 (Hc2 − Hc1) and Heb = 1

2 (Hc2 + Hc1), (2)

where Hc2 and Hc1 are the fields corresponding to zero mag-
netic moment in the forward and reverse branches of the
hysteresis loop. Usually, for simple magnets, the coercive field
Hc1 is negative, Hc2 is positive, and |Hc1| = |Hc2| and thus
Heb = 0. A positive (negative) exchange bias can occur in
special situations when |Hc1| < |Hc2|(|Hc1| > |Hc2|). In the
following, we see that surface pinning can produce nonzero
exchange bias in core-shell magnetic nanoparticles.

III. CORE-SHELL STRUCTURES IN TWO DIMENSIONS

Models in two dimensions are far from realistic three-
dimensional core-shell structures, but they provide very good
insight and better analytical understanding of the physical
phenomena at hand. The exact solution of the model which
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FIG. 1. Schematic representation of the core-shell structure: The
core-shell structure in two dimensions is represented here by a square
lattice bounded by a circle of radius R, within which there is a circular
core having radius Rc < R; the annular region of width R − Rc is
the shell. Ising spins si = ±1, on the lattice sites belonging to the
core (shell) interact with strength Jc (Jsh ) and the interaction strength
across the interface is Jint.

mimics only the outermost layer (in Sec. V) of the core-shell
structure explicitly shows that the spin pinning generates
an additional effective magnetic field in the system, leading
to asymmetric hysteresis. Thus it is natural to expect that
qualitative behavior of Heb and Hc are same in Ising, XY,
Heisenberg models; the actual value of the effective magnetic
field, and that of Hc and Heb, depends on the details of the
surface topology and the spin types. From a computational
point of view, studying Ising model has an obvious advantage
as it allows a phase transition in two dimensions, which cannot
take place in models having continuous symmetry (XY or
Heisenberg models) [32]. Taking this advantage into account,
we study the two-dimensional core-shell structure in detail. A
generalization to three dimensions is straightforward, which
we discuss briefly in Sec. IV.

The core-shell structure can be obtained in two dimensions
by considering a square lattice with circular boundaries of
radius R, which has a circular core C of radius Rc < R; the
shell region S falls between these two circles (see Fig. 1).
Each lattice site i of this core-shell structure is associated with
a spin Sx

i ≡ si = ±1 (representing ↑, ↓) which interacts with
other spins following Eq. (1). The Hamiltonian in Eq. (1) can
be written as

H = −Jc

∑
i∈C, j∈C

sis j − Jsh

∑
i∈S, j∈S

sis j

−Jint

∑
i∈S j∈C

sis j − H
∑

i∈C,i∈S
si. (3)

We assume that η fraction of boundary spins are pinned,
of which r fractions are oriented along H , i.e., the pinning
density is η and the ↑-spin fraction (among pinned ones) is r.

A. Antiferromagnetic core and ferromagnetic shell

Let us proceed by assuming the interaction of spins within
the core is antiferromagnetic (Jc < 0) whereas the interaction

of spins in the shell is ferromagnetic (Jsh > 0) and the inter-
action at the interface can be ferro- or antiferromagnetic; this
is not the usual scenario but observed in several experimental
systems [33]. We briefly discuss other possible structures in
Sec. III B. In the following, we primarily study the hysteresis
effects, particularly the dependence of coercive field and
exchange bias on different model parameters and the shape
and size of the core-shell structure.

For carrying out the Monte Carlo simulations, we consider
the following default values for model parameters, unless
otherwise specified:

R = 32, Rc = 26, η = 0.4, r = 0.7,

Jc = −0.5, Jsh = 1, Jint = 1. (4)

The magnetic field is swept with rate �H = 0.02 per MCS
and with this rate, we need a high magnetic field Hmax = 2
to complete the hysteresis loop. Temperature of the system
β−1 = 1 is kept fixed throughout the simulation [34].

1. Dependence of Heb, Hc on η

First we study the hysteresis properties of a nanoparticle
by changing the pinning density η. Other parameters are kept
fixed at the default values given in Eqs. (4). In Fig. 2(a), we
present hysteresis loops for different η. These loops show
negative exchange bias which increases as the pinning density
η is increased. The exchange bias is maximum when all the
spins are pinned at the surface. The reason for the asymmetry
in the loop is that 70% of the pinned spins are ↑ and thus
one requires some additional magnetic field to completely
reverse the magnetization. The coercivity, however, decreases
with increase of η. This is because, with increase in pinning
density, more spins of ferromagnetic shell are pinned and a
fewer number of spins of the shell take part in the hysteresis
dynamics which effectively decreases the shell width.

2. Dependence of Heb, Hc on r

Different external conditions pin the spins on the surface
differently. If the pinning is due to surface functionalization
by organic solvent, both the density of pinned spins and the
↑-spin fraction may vary in different solvent conditions. Here
we intend to change ↑-spin fraction r and investigate the
hysteresis properties. For r > 1

2 , more ↑ spins are pinned
compared to ↓ and one expects that an effective positive
intrinsic field is generated in the system. Thus, one needs
some additional negative external magnetic field to overcome
this effect, resulting in a negative exchange bias. Similarly,
a positive exchange bias is expected for r < 1

2 . In Fig. 2(b),
we have plotted the hysteresis curves for different r, keeping
η = 0.4 and other parameters the same as in Eqs. (4). The
inset here shows dependence of Heb and Hc on r. As expected,
Heb = 0 for r = 1

2 ; it is negative (positive) for r > 1
2 (r < 1

2 )
and |Heb| increases as one moves away from r = 1

2 . The
coercivity, which primarily depends on the pinning density η,

is almost independent of r.

3. Dependence of Heb, Hc on Jint

We now study the influence of Jint, the interface interaction
strength. The hysteresis loops for particles with size R = 32
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FIG. 2. The main figures show hysteresis loops for a two-
dimensional circular core-shell structure when one of the model
parameters X is changed while other parameters are taken from
Eqs. (4); insets show the corresponding change in coercivity Hc and
exchange bias Heb. (a) X = η : Hc decreases, but |Heb| increases
with increase of η. The dashed line is the best linear fit: Heb =
−0.15η + 0.013. (b) X = r : Hc is almost a constant, but |Heb|
increases linearly with increase of η. (c) X = Jint : No appreciable
change in Hc and |Heb|.

and Rc = 26 are plotted in Fig. 2(c). With change of Jint we
do not find any significant change in Hc and Heb; two extreme
values Jint = 1,−1 give rise to a slightly increased coercive
field, but the exchange bias changes only a little. Thus, it ap-
pears that in a core-shell magnetic system, the exchange bias
can be controlled effectively by the ↑-spin pinning fraction r
and the pinning density η, not by the interface interaction Jint.

One should note that some earlier studies have reported a
significant change in exchange bias with change in interface
interaction strength Jint [26]. These studies primarily focus on
core-shell structures with a ferromagnetic core and antiferro-
magnetic shell [25,35,36], modeled by the usual Heisenberg
model in three dimensions along with additional magnetic
anisotropy [35,36] and sometimes in the presence of a crystal
field [37]. In addition, hysteresis is studied in both field-cooled
and zero-field-cooled conditions; the exchange bias and its
change with respect to interface interactions are found to be
significant only in field-cooled conditions [26].

In the present paper, we consider an inverse core-shell
structure, with an antiferromagnetic core and ferromagnetict
shell modeled by Ising spins in two dimensions and no
magnetic anisotropy or any crystal field; in this simple case,
even in zero-field-cooled conditions we find a large exchange
bias Heb when surface spins are pinned. Heb will, of course,
increase further in field-cooled conditions. To emphasize that
surface pinning indeed causes large exchange bias, we extend
the study to three-dimensional inverse core-shell structures,
considering Ising, XY, and Heisenberg models (see Sec. IV);
in all these cases, under zero-field-cooled conditions, the
influence of Jint on Heb is found to be negligible.

4. Dependence of Heb, Hc on R and Rc

Figure 3(a) shows the hysteresis loops of inverted core-
shell structures for different Rc, keeping R = 32 fixed; thus
the shell thickness increases with decrease in Rc. The other
parameters are chosen from Eqs. (4). In Fig. 3(a), we plot
the variation of coercive field and exchange bias with Rc.

Here, |Heb| increases with an increase in Rc and reaches a
constant value asymptotically. The saturation magnetization
and coercive field, however, decreases for larger Rc. This
is because the coercivity primarily gets a contribution from
the ferromagnetic shell (antiferromagnetic core produces zero
net magnetic moment) whose thickness decreases with in-
creased Rc.

It is important to ask whether the observed behavior is
scalable, i.e., whether the asymmetric hysteresis survives in
the thermodynamic limit where Rc and R increases, keeping
their ratio fixed. To study this, we increase particle size R
while increasing the core size Rc proportionately, Rc = 3

4 R.

Other parameters are shown in Fig. 3(a). We find [Fig. 3(c)]
that the size of the hysteresis loop increases with R as the
number of ferromagnetic layers are increased. This is reflected
in an increased value of coercivity in Fig. 3(d). However, the
magnitude of the exchange bias |Heb| decreases with R, indi-
cating the decrease in asymmetry of the loop with R and the
usual symmetric hysteresis loop in the thermodynamic limit.
Thus, the exchange bias due to surface pinning is only the
mesoscopic effect, which goes away in larger systems when
surface-to-volume ratio becomes very small. In fact, similar
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FIG. 3. (a) Hysteresis loops for different shell thicknesses R −
Rc, obtained by varying Rc, keeping R = 32 fixed. (b) |Heb| increases
with increased Rc and reaches a constant for large Rc. Hc also
decreases with increase of Rc, as the number of ferromagnetic layers
also decrease. (c) The thermodynamic limit of the system can be
achieved by changing the size of the core and shell proportionately.
Here we plot hysteresis loops for different R and fixed Rc

R = 3
4 .

(d) Hc, Heb as a function of R. Hc increases with R as the number
of ferromagnetic layers increase. However, Heb → 0 because the
surface- (where pinning occurs) to-volume ratio approaches zero
in the thermodynamic limit. Unspecified parameters here are taken
from Eqs. (4).

size dependence of coercivity and Heb has been observed in
systems with a ferromagnetic shell and antiferromagnetic core
[33,38].

B. Ferromagnetic core or antiferromagnetic shell

The core-shell structure that we studied so far has ferro-
magnetic interaction in the shell and antiferromagnetic inter-
action in the core. We have investigated the other possibilities
too. The influence of surface pinning turned out to not be that
prominent when the core (shell) is ferromagnetic (antiferro-
magnetic) irrespective of the interaction in the shell (core).
We decided not to present these studies in detail as these
results neither add any significant information nor alter the
conclusions of this paper.

When spins interact ferromagnetically in the shell, the pin-
ning of surface spins (which belong to the shell) can produce
an effective additional magnetic field which in turn generates
an asymmetry in the hysteresis loop. On the other hand,
when spin interactions in the shell are antiferromagnetic, the
pinning is less effective as other spins in the shell can orient
in a direction opposite to the pinned spins and make an
antiferromagnetically ordered structure throughout; thus, the
effective intrinsic field produced in the system is negligible.
In this case, some sites might encounter frustrations and may
give rise to certain local residual magnetic moments, but the
number of the frustrated spins are statistically very small. On
the other hand, when the core is ferromagnetic, one generally
gets large hysteresis loops even in the absence of surface
pinning because the volume of the core is usually much larger
compared to that of the shell. Thus, the relative change of

exchange bias and coercivity produced by surface pinning is
quite small.

In summary, surface pinning surely affects the hysteresis
properties in core-shell nanostructures but it is more promi-
nent when interaction in the core is antiferromagnetic and that
in the shell is ferromagnetic.

C. Different surface morphology

Like other nanomaterials [39], the surface morphology or
shape of core-shell nanocomposites may be changed. Mor-
phology of the nanoparticle can be spherical [40], square [38],
elliptical [41], triangular [42], or it may be irregular [43].
Their magnetic properties depend crucially on the surface
anisotropy [44]. Other properties like catalytic activity, elec-
trical, and optical properties are also highly shape dependent
[45]. Combination of core-shell materials in different dimen-
sions and shapes are designed regularly for their potential ap-
plication in technology, like magnetoplasmonic applications,
[46], and fluorescence applications [47]. In this section, we
have studied hysteresis properties of two-dimensional core-
shell nanostructures having different shapes.

To emphasize how change in surface morphology affects
the magnetic properties, we did Monte Carlo simulation of
core-shell nanoparticles of different shapes, but similar area
and shell thickness. Coercivity and exchange bias obtained for
different shapes are compared with those of the circular core-
shell structure with R = 32 and Rc = 26.

We consider four different shapes: (i) a triangular core-
shell structure with base a = 86, (ii) a square core-shell struc-
ture with side a = 56, (iii) an elliptical core-shell structure
with major axis a = 46 and minor axis b = 23, and (iv) a
core-shell structure with irregular surface but circular core or
radius Rc = 26. In all the cases except (iv), the shell thickness
is taken to be six lattice units and for (iv) the average thickness
is � 6. The interaction parameters Jc = −0.5, Jsh = 1, Jint =
1 and the pinning parameters η = 0.4, r = 0.7 are kept the
same. Hysteresis loops of all these different shapes, along
with that of the circle, are plotted in Fig. 4. The coercive
field of the circular shape is found to be maximum; then they
are decreasing in order: circle, triangle, square, ellipse, and
the irregular shape. The corresponding exchange biases are
Heb = −0.05,−0.06,−0.11,−0.08, and −0.06 respectively.

1. Local magnetic structure

The local magnetic structure changes during the hysteresis
cycle. We consider the spin configurations at four different
positions in the hysteresis cycle, marked as B± and F± in
Fig. 5, and averaged the configurations over 100 statistical
samples to get the local magnetization profile {mi} = {〈si〉}.
The positions B± (F±) correspond to backward (forward)
directions of the loop with H = ±1. The density plots of
the magnetization profile, marking red (blue) as mi = 1(mi =
−1) are shown in Fig. 5. Position B+ (F−) is near to the maxi-
mum (minimum) field Hmax (−Hmax), where the moment val-
ues are preferably positive (negative); thus, the ferromagnetic
shell regions are almost fully magnetized and appear as a dark
red (blue) borders. At B− (F+) the antiferromagnetic core has
relaxed to have a predominantly negative (positive) moment
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FIG. 4. Shape dependence of magnetic hysteresis of core-shell
nanoparticles for (i) equilateral triangle (base a = 86), (ii) square
(a = 56), (iii) circle (R = 32), (iv) ellipse (major and minor axis
a = 46, b = 23), and (v) an irregular shape (core radius Rc =
26). Each one has approximately the same particle size and
shell thickness. Corresponding Hc = 0.86, 0.83, 0.89, 0.72, 0.7 and
Heb = −0.06, −0.11, −0.05, −0.08, −0.06. Unspecified parameters
are taken as the default values given in Eqs. (4).

consistent with the field direction whereas the relaxation has
not happened in the ferromagnetic shell, which is hysteretic.

2. Aspect ratio

We notice that the coercivity of the elliptical core-shell
structure is smaller than that of the circular one with same

FIG. 5. Magnetization profile of inverse core-shell structure of
different shapes at four different positions in hysteresis loop, each
indicated by a •. Continuous variation of magnetization from −1 to
1 are colored as blue to red. All the model parameters are taken same
as in Fig. 4.

FIG. 6. Hysteresis loop of elliptic core-shell structures, with
approximately same area but different aspect ratio α = a/b. All
other parameters are taken from Eqs. (4). The inset shows that the
coercivity Hc decreases, but |Heb| increases with α.

area. This indicates that a rodlike structure may have the
smallest coercivity, which indeed has been observed earlier
[14]. Here we aim at studying, systematically, how aspect ratio
affects Heb and Hc. To this end, we change the aspect ratio
α = a

b of the ellipse and follow the change in its magnetic
properties. Figure 6 shows the hysteresis loops; the coercivity
and exchange bias are plotted in the inset as a function of
the aspect ratio. The interaction parameters and the pinning
parameters are taken same as earlier. Note, that the coercive
field Hc decreases, but |Heb| increases as the aspect ratio α

increases.

IV. CORE-SHELL STRUCTURES IN THREE DIMENSIONS

In three spatial dimensions, magnetic phase transitions can
occur in systems having discrete (Ising) or continuous spins
(like XY and Heisenberg). In this section, we extend our study
to core-shell structures with spin interactions given by either
Ising, XY, or Heisenberg models. We study the hysteresis
properties of three models, separately, on a cubical core shell
with core C of length Rc and shell S of width R − Rc, i.e., we
have a cubical core of size R3

c and particle size R3.

We compare the hysteresis curves obtained from Monte
Carlo simulations of all three models on a core-shell structure
for Rc = 26 and R = 32, which means that the width of the
shell is six lattice units. The interaction parameters are taken
as Jc = −0.5, Jsh = 1, Jint = 1.

In Fig. 7, we have plotted the hysteresis curves for η =
0.4. The insets in Figs. 7(a) and 7(b) show, respectively, the
variation of Hc and Heb as a function of pinning density η.

Here r = 1 (i.e., all pinned spins are oriented along the field),
Hmax = 4, and the field sweep rate is �H = 0.04. Clearly, in
all three models, the coercivity Hc decreases with η, whereas,
as expected, |Heb| increases. For the Heisenberg model, both
Hc and |Heb| are quite high compared to those obtained from
other models.

Asymmetric hysteresis, and thus large exchange bias, has
been observed earlier in core-shell nanostructures. For the
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FIG. 7. Hysteresis loops of a cubical core-shell structure (particle
size R3 and core size R3

c ) for Ising, XY, and Heisenberg models, with
Rc = 26, R = 32, pinning density η = 0.1, and interaction parame-
ters Jc = −0.5, Jsh = 1, Jint = 1. The insets (a) and (b), respectively,
show variation of Hc and Heb as a function of η. Heisenberg models
generate maximum |Heb| and coercivity Hc.

ferromagnetic core and antiferromagnetic shell, one of the
primary factors that controls the magnetic properties is the
core-shell interaction parameter. Numerical studies of these
core-shell structures with Heisenberg spin interactions, ad-
ditional anisotropic spin interaction, and crystal field claims
that, under field-cooled conditions, the exchange bias strongly
depends on the nature and strength of core-shell interaction
[25,26]. Here we show that surface pinning can affect the
exchange bias strongly, even in zero-field-cooled conditions
and in absence of anisotropy or crystal fields. This pin-
ning effect is quite dominant in inverse core-shell nanos-
tructures where the core is antiferromagnetic and the shell,
ferromagnetic.

V. WHY PINNING AFFECTS HYSTERESIS

What we observe so far from the Monte Carlo simulation
of the core-shell nanostructure is that, irrespective of shape,
size, value of the interaction strength, and pinning parameters,
the exchange bias Heb increases with increase of pinning
density η and decrease of ↑ spins fraction r. To understand
this, we introduce a simple model of the surface by ignoring
the interaction of the surface spins with those in the bulk
(shell). In the two-dimensional core-shell structure of Ising
spins, the surface is as a one-dimensional chain with peri-
odic boundary conditions; the corresponding Hamiltonian is
now

Hsurf = −Jsh

L∑
i=1

sisi+1, (5)

where L is total number of spins on the surface. For a circular
core-shell structure studied here, L � 2πR; in fact, a better
approximation is L � 4R, since for every i ∈ (−R, R) there
are two boundary spins. We assume that N spins on the surface
are pinned, of which N+ spins are ↑, thus

∑
k Sk = 2N+ −

FIG. 8. The pinned spins are denoted {S1, S2, . . . SN }. Here S1 =
s1, S2 = s3, . . . SN = sL−2. Distance between two consecutive pinned
spins Sk and Sk+1 is lk . The periodic boundary condition ensures that
si+L = si and Sk+N = SK .

N = Mb. Accordingly,

η = N

L
, r = N+

N
and mb ≡ Mb

N
= 2r − 1. (6)

For notational convenience, let us denote the pinned spins
as {S1, S2, . . . SN } with S1 = simin , where imin is the position
index of the first pinned spin (see Fig. 8). As shown in the
figure, the separation of two consecutive pinned spins Sk and
Sk+1 is lk .

The partition function of the system can be written as

ZL,N ({li}) =
∑
{si}

e−βHsurf =
N∏

k=1

〈Sk|T lk |Sk〉δ
(

N∑
k=1

Sk − Mb

)
,

(7)

where T = ( eK e−K

e−K eK ) with K = βJsh is the usual transfer
matrix of one-dimensional Ising model, and K = βJsh.

In presence of the constraint, that exactly N+ out of N
pinned spins are ↑, which is ensured by a δ function in the
above equation, evaluating this partition-sum Eq. (7) is diffi-
cult. We proceed to find a generating function of ZL,N ({li}),

ZL(x) =
∞∑

Mb=0

ZL,N ({li})xMb = Tr

[
N∏

k=1

(
AT lk

)]
, (8)

where A =
∑
Sk=±

xSk |Sk〉〈Sk| =
(

x 0
0 x−1

)
. (9)

Eigenvectors of T are |±〉 = (
1

±1) with eigenvalues λ± =
eK ± e−K , the generating function ZL(x) can be evaluated
using the diagonalizing matrix U = 1√

2
(1 1
1 −1),

ZL(x) = λL
+

(
x + 1

x

)N
[

1 +
(

λ−
λ+

)l∗(x2 − 1

x2 + 1

)2

+ . . .

]

(10)

where, we have used
∑N

k=1 lk = L and l∗ = min({li}) is the
smallest separation between consecutive pinned spins.

Note that, for any given choice of separations {lk}, one can
calculate ZL(x) explicitly using Eq. (10). In the second step
here, we use a perturbation series in λ = λ−

λ+
= tanh(βJsh ),

valid quite well in the large temperature limit. The dominant
(zeroth order) term of ZL(x) does not depend on individual
separations {lk}, and the next order correction depends only on
the smallest separation l∗. We have assumed that the smallest
separation l∗ appears only once in {lk}; if it appears n times
(and the separations are not adjacent to each other) then we
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have an additional multiplicative factor n :

ZL(x) � λL
+(x + x−1)N

[
1 + nλl∗

(
x2 − 1

x2 + 1

)2
]
. (11)

The average value of Mb is now

〈Mb〉 = x
d

dx
lnZL(x)

= N
x2 − 1

x2 + 1
+ 4nλl∗x2

(1 + x2)2 + nλl∗ (x4 − 1)
. (12)

Note that the partition function ZL(x) in Eq. (8) can be
mapped to an Ising model on a one-dimensional periodic
lattice,

HIsing = −J
L∑

i=1

sisi+1 −
L∑

i=1

Hisi (13)

with inhomogenous magnetic field Hi acting at site i. The
partition function is then,

ZIsing = Tr

[
L∏

i=1

(AiT )

]
, where T =

(
eβJ e−βJ

e−βJ eβJ

)

and Ai =
(

eβHi 0
0 e−βHi

)
. (14)

Clearly, this equation becomes identical to the partition func-
tion of the pinned surface defined in Eq. (8) if (i) Hi = h for
all pinned sites and Hi = 0 for other sites, (ii) Jsh = J , and (iii)
x in Eq. (9) is identified as x = eβh.

The effective Hamiltonian is then

H̃surf = −Jsh

L∑
i=1

sisi+1 − h
N∑

k=1

Sk, (15)

where the magnetic field h acts selectively only on the pinned
spins.

Thus, a system having exactly N+ number of ↑ spins
among N pinned ones is equivalent to a system without
pinning, but with an additional magnetic field h acting only
on the pinned spins. The value of h for any given r = N+

N can
be calculated from Eqs. (12) and (6) as

r = 1

2

(
1 + tanh(βh) + 1

N

nλl∗sech(βh)2

1 + nλl∗ tanh(βh)

)
. (16)

In addition, when an external magnetic field H is applied to
the system, the effective field per site becomes

Heff = H + ηh. (17)

Thus, the hysteresis loops, which are symmetric when plotted
against Heff, would now appear asymmetric (shifted by a
factor ηh) against the external field H. The exchange bias is
then

Heb = −ηh. (18)

To calculate h from Eq. (16) explicitly, let us consider
the large N limit so the smallest separation between two
consecutive spins is l∗ � 1. To a leading order in N,

h = 1

β
tanh−1(mb) − 1

βN

nλ

nλmb + 1
. (19)

FIG. 9. Schematic representation of the heterostructure of K
layers (each containing L sites) of which NAF = 5 layer are anti-
ferromagnetic and NF = 4 ferromagnetic. The intra-layer coupling
strengths in ferro and antiferro layers are respectively Jx

F,AF and
interlayer coupling strengths are Jx

F,AF. The interaction at the interface
is Jint. Pinning of spins occur only at the top layer k = K .

The effective field h, along with Eq. (18), indicates that the
exchange bias increases linearly, with pinning density η and
temperature β−1; it also grows monotonically with mb or
r = 1+mb

2 . Linear dependence of Heb on η, r are observed in
Figs. 2(a) and 2(b), respectively.

It is interesting that a simple model of the surface which
ignores the interaction of the surface spins with other spins
in the shell completely reproduce the properties of hysteresis
qualitatively.

VI. HETEROSTRUCTURES

Heterostructures are layered magnetic composites which,
at nanoscale, may experience the influence of surface pinning
[48]. We investigate the effect of pinning by modeling het-
erostructures as NF number of ferromagnetic layers placed on
the top of NAF number of antiferromagnetic layers.

In two dimensions, the layers are line segments having L
lattice sites labeled by i = 1, 2, . . . , L.

We consider Ising spins on the heterostructure denoted by
sk

i = ±1 with two indices, a lattice site index i = 1, 2, . . . , L,

and a layer index k = 1, 2, . . . , K = NAF + NF (see Fig. 9).
The intralayer interaction strength of Ising spins in ferromag-
netic (antiferromagnetic) layers are Jx

F (Jx
AF), whereas the same

in the interlayer are Jy
F (Jy

AF). At the interface, the interaction
strength is Jint, which may be positive (ferro) or negative
(antiferro). The corresponding Hamiltonian is

H = −Jx
AF

NAF∑
k=1

L−1∑
i=1

sk
i sk

i+1 − Jx
F

K∑
k=NAF+1

L−1∑
i=1

sk
i sk

i+1

−Jy
AF

NAF−1∑
k=1

L−1∑
i=1

sk
i sk+1

i − Jy
F

K−1∑
k=NAF+1

L−1∑
i=1

sk
i sk+1

i

−Jint

L−1∑
i=1

sNAF
i sNAF+1

i − H
K∑

k=1

L∑
i=1

sk
i . (20)

We also consider that pinning of spins occurs only at the top
(or exposed) layer k = K .

In Monte Carlo simulations (single spin Metropolis), start-
ing from a random initial configuration at temperature β−1 =
1 we first increase the field from H = 0 to H = Hmax = 2 with
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FIG. 10. (a) Hysteresis loop of two-dimensional heterostructures
of NF ferromagnetic layers on the top of NAF = 24 antiferromagnetic
layers. Here the length of each layer is L = 128, ↑-spin fraction
r = 0.6. Corresponding values of Hc and Heb are shown as a dashed
line in (b); similar curves of Hc and Heb as a function of NF, for
NAF = 16, 8 are also shown there (solid lines). (c) Hysteresis curves
for different r, for a heterostructure with NAF = 8 and NF = 2. The
corresponding values of Hc1 and Hc2 as a function of r, are shown
(dashed line) in (d). The solid lines in (d) show variation of Hc1, Hc2

for different NAF = 16, 24. The unspecified parameters here are same
as in Eqs. (4).

a sweep rate 0.01 units per MCS. The zero-field hysteresis
cycle is performed by varying the field from H = 2 to H =
−2, and then back to H = 2.

First, we calculate the variation of coercivity Hc and ex-
change bias Heb by varying the number of ferromagnetic
layers NF for a fixed number of NAF = 24, as shown in Fig. 10
(a). The interaction parameters are taken to be Jx

AF = Jy
AF =

JAF = −0.5, Jx
F = Jy

F = JF = 1. At the interface, we have
Jint = 1. The pinning parameters are the pinning density η =
0.4 and the ↑-spin fraction r = 0.6. Corresponding Hc and
Heb are shown in Fig. 10(b) by a dashed line; the solid lines
there correspond to NAF = 8, 16. Clearly, the coercivity of the
heterostructure decreases monotonically as NF decreases.

We also find an interesting finite size effect: For all values
of NF, except for NF = 2, the exchange bias Heb is nega-
tive, as expected for r > 0.5. In fact, for NF = 2, both Hc1

and Hc2 are positive. We further investigate heterostructures
with NF = 2, for different ↑-spin fraction and different NAF.

Figure 10(c) shows hysteresis curves for a heterostructure of

NAF = 8, NF = 2 for different r; corresponding values of Hc1

and Hc2 are plotted in Fig. 10(d) by a dashed line. Similar
plots for NAF = 16, 24 (and NF = 2) are shown in Fig. 10(d)
with solid lines. Surprisingly, for NF = 2, both Hc1 and Hc2

take the same sign irrespective of the number of antiferro
layers: both are positive (negative) when r > 0.5(r < 0.5).
Comparing the curves of NAF = 8, 16, 24, it appears that this
unusual finite size effect goes away slowly as NAF increases.
This is because for very large NAF the interaction in the bulk
is largely antiferromagnetic and one expects Hc1 = 0 = Hc2.

VII. SUMMARY AND CONCLUSION

To summarize, we studied in detail the effect of surface
pinning on magnetic properties of core-shell nanostructures
and heterostructures in nanoscale using different spin-spin
interactions such as Ising, XY, and Heisenberg. The effect of
surface pinning turned out to be more prominent in an inverse
core-shell structure where spins interact antiferromagnetically
in the core and ferromagnetically in the shell. We study
hysteresis by changing the interaction and pinning parameters
in Monte Carlo simulations to conclude that the exchange bias
increases with increase in pinning density and the fraction of ↑
spins pinned. This behavior could be reproduced remarkably
from the analytical studies of a model introduced here that
captures only the pinning and the spin-spin interaction in the
outermost surface layer. The shape and size of the nanoparti-
cles, which can be tuned experimentally, also strongly modify
the exchange bias and coercivity.

We further investigate the nanoscale heterostructurs of
ferrromagnetic layers grown on the top of antiferromagnetic
layers. Spin pinning in the exposed ferromagnetic surface
layer here produces an exchange bias similar to core-shell
nanostructures. An interesting finite size effect is observed:
it turns out that for a system with two ferromagnetic layers,
both Hc1 and Hc2 takes the same sign, positive (negative) when
↑-spin fraction is greater (less) than 1

2 .

We believe that this mechanism of exchange bias generated
from the pinning of spins on the surface, whose morphology
and pinning density can be changed easily in experiments, will
help in tuning the exchange bias for many fruitful technologi-
cal applications in the future.
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