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Turning a chiral skyrmion inside out
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The stability of two-dimensional chiral skyrmions in a tilted magnetic field is studied. It is shown that by
changing the direction and magnitude of the field, one can continuously transform a chiral skyrmion into
a skyrmion with opposite polarity and vorticity. This turned inside out skyrmion can be considered as an
antiparticle for an ordinary axisymmetric skyrmion. For any tilt angle of the magnetic field, there is a range
of its absolute values where two types of skyrmions may coexist. In a tilted field the potentials for interskyrmion
interactions are characterized by the presence of local minima suggesting an attractive interaction between the
particles. The potentials of interparticle interactions also have so-called fusion channels allowing either the
annihilation of two particles or the emergence of a another particle. The presented results are general for a
wide class of magnetic crystals with both easy-plane and easy-axis anisotropies.
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I. INTRODUCTION

Chiral magnetic skyrmions (Sks) are localized magnetic
vortices [1], which can be stabilized in materials with a
competing Heisenberg exchange and Dzyaloshinskii-Moriya
interaction (DMI) [2,3]. A necessary but insufficient condition
for the stability of chiral Sks is the presence of a potential
energy term, for instance, the interaction with an external
magnetic field and/or the magnetocrystalline anisotropy. The
latter plays an important role in the case of thin films and mul-
tilayer systems [4]. Such systems are typically well described
by the two-dimensional (2D) model of a chiral magnet, which
is also often utilized for so-called quasi-2D crystals—bulk
crystals of particular symmetry allowing DMI between spins
contained in specific crystallographic planes, for instance, the
lacunar spinel compound GaV4S8 [5]. The majority of studies
on the stability of chiral Sks [6–12], their interactions, dynam-
ics, and transport properties, have been carried out for the case
when the external magnetic field is applied perpendicularly to
the plane of the 2D magnet. The number of studies related to
the case of a tilted field is limited [13–21]. These publications
are mainly related to Sk lattices, their dynamical properties
[13–15], and phase transitions [16–21]. The properties of
isolated Sks have been partially discussed in Refs. [16,19],
where it was shown that in a tilted magnetic field the isolated
chiral Sk has an asymmetric magnetic structure, which leads
to an anisotropic interskyrmion interaction. It means that the
interaction energy between two skyrmions depends on their
relative orientation with respect to the in-plane component
of the external field. It is worth emphasizing that in both
Refs. [16,19] the authors argue that the interaction between
Sks remains repulsive. Contrary to this, here we show that in
a tilted magnetic field the Sks can attract each other. Besides
that, in this paper, we report a number of other fundamentally
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new phenomena occurring upon applying a tilted magnetic
field to chiral Sks.

II. MODEL

We estimate the stability of Sks by means of a direct energy
minimization of the micromagnetic functional [1],

E =
∫ (

A
∑

i

(∇ni )
2 + Dw(n) + U (nz )

)
t dx dy, (1)

where n = M(r)/Ms is a continuous unit vector field, Ms is a
saturation magnetization, and A and D are the micromagnetic
constants for isotropic exchange and DMI, respectively. It is
assumed that magnetization remains homogeneous along the
thickness t . The DMI term w(n) is defined by combinations
of Lifshitz invariants,

�
(k)
i j = ni

∂n j

∂rk
− n j

∂ni

∂rk
.

The results presented in this paper are valid for a wide class of
chiral magnets of different crystal symmetries with Néel-type
modulations [5,22,23] where w(n) = �(x)

xz + �
(y)
yz , Bloch-type

modulations [24–26] where w(n) = �(x)
zy + �

(y)
xz + �(z)

yx = n ·
(∇ × n), and D2d symmetry [27] where w(n) = �(x)

zy +
�

(y)
zx . The last term in (1) represents the potential energy

term including uniaxial anisotropy Ua = K (1 − n2
z ) and the

Zeeman energy—the interaction with an external magnetic
field UZ = Ms B · n. The distances, magnetic fields, and en-
ergies are given in dimensionless units relative to the equilib-
rium period of a helical spin spiral [28,29] LD = 4πA/|D|,
the critical field [29] BD = D2/(2MsA), and the energy of
the saturated state E0 = 2At , respectively. The dimensionless
magnetic field h = B/BD and anisotropy u = K/(MsBD) are
two unique control parameters of the system.

For the direct energy minimization of (1) we use a non-
linear conjugate gradient (NCG) method implemented for
the NVIDIA CUDA architecture and optimized for the best
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performance of the advanced numerical scheme ATLAS

[30,31]. We use a fourth-order finite-difference scheme on a
regular square grid with periodical boundary conditions [31].
The typical size of the simulated domain is ∼10LD × 10LD

with a mesh density �l given in the number of nodes per LD,
varying from 32 to 1024. Most of the results presented below
have been obtained for �l = 52. In particular cases, in order
to approach the continuum limit, we employ substantially
denser meshes with �l up to 1024 nodes.

III. RESULTS AND DISCUSSION

A. Stability diagram for an isolated chiral
skyrmion in a tilted field

We start with the case of a purely isotropic system, u =
0. It will be shown below that the discussed phenomena

remain valid for a wide range of positive (easy-axis) and
negative (easy-plane) values of the anisotropy. The stabil-
ity diagram for isolated Sk in a tilted magnetic field, h =
(h sin θh, 0, h cos θh), is shown in Fig. 1(a). For any tilt angle
0 � θh � π , the range of absolute values of the external field
h, in which isolated Sk remains stable, is bounded by an
elliptic instability field he from below and by a collapse or
blowup field hc from above. Below the elliptic instability
field h < he, the solution for isolated Sk becomes unstable
with respect to an elliptical deformation which results in the
transformation of the Sk into an isolated spiral strip [7]. On
the other hand, approaching the collapse field the Sk gradually
shrinks and disappears for h > hc.

The critical fields he(θh) and hc(θh) exhibit a quite dif-
ferent dependence on the mesh density used in numerical
energy minimization schemes. The value of the elliptical
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FIG. 1. (a), (b) Stability diagram for an isolated skyrmion in a tilted magnetic field h = (hx, 0, hz ) at u = 0. he and hc are the critical fields
corresponding to the elliptical instability and the collapse of isolated skyrmion, respectively. With increasing mesh density �l the region for
skyrmion stability extends. For �l values marked with an asterisk, see the main text. The dashed red line in (a) corresponds to the case when
|h| = 0.62 and does not change with the tilt angle θh [see the red line in (c)]. This leads to skyrmion instability at the point marked by a
star symbol in (a) and (d). The dashed blue line in (a) and (b) is the path along which the value of |h| changes with θh [see the blue line in
(c)]. At any point (hx, hz ) along this path there are two stable skyrmion solutions with opposite topological charge Q. The energies of both
solutions as functions of θh are given in (d). Blue lines: Solid line for Q = −1, dotted line for Q = +1. The red lines in (d) correspond to
the fixed |h| = 0.62. The spin textures in (e)–(i) and (j)–(n) represent the transient states of two skyrmion solutions with Q = −1 and Q = 1,
respectively. The images in each row from left to right correspond to θh = 0, π/4, π/2, 3π/4, and π , respectively. In (e)–(n) the standard color
code scheme [31] is used: Black and white correspond to up and down spins, respectively, and red-green-blue is defined by the azimuthal angle
with respect to the x axis; the lines and arrows in (e)–(n) denote the streamlines of the in-plane component of the magnetization [32]. For the
spin texture, see also Fig. 4 in Appendix A.
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instability field he(θh) converges quickly with an increase of
the mesh density. It does not change significantly for �l �
64. Note, the curve he in Fig. 1(a) is not fully symmetric
with respect to the horizontal axis hz = 0. For instance,
in the case of a perpendicular field, he

z = 0.52 and −0.62
for the magnetic field pointing along the positive direction
of z axis, h ↑↑ êz, and in the opposite direction, h ↓↑ êz,
respectively.

In contrast to he, the collapse field hc does not converge
when approaching the continuum limit (�l → ∞) as shown
in Fig. 1(a) for different �l values. The behavior of the
numerical solutions observed here is in line with the results of
Ref. [12], where it is proven that in the micromagnetic limit,
for the particular case of θh = 0 and u = 0, the stability of
the skyrmion solution is not bounded from above, even for
h → ∞. Following the approach of Ref. [12], we prove that

the above statement can be rigorously extended for the tilt
angles, at least in the range 0 � θh < π/3 (see Appendix B).

Remarkably, even for a fully reversed field, hx = 0 and
hz < 0, there is a finite range window where the Sk solu-
tion remains stable [see Fig. 1(b)]. A continuous transition
between the equilibrium Sk solutions shown in Figs. 1(e) and
1(i) can be achieved by varying the absolute value and the tilt
angle of the magnetic field, such that he(θh) < |h| < hc(θh)
[see Fig. 1(c) and the corresponding dashed blue line in
Figs. 1(a) and 1(b)].

Because of the continuity of such transitions and the fact
that the states in Figs. 1(e) and 1(i) have an opposite sign of
both polarity and vorticity [33], one may conclude that the
topological charge of these states as well as for all transient
states in Figs. 1(f)–1(h) is identical. It is also easy to show that
for all spin textures in Figs. 1(e)–1(h) the topological charge
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FIG. 2. (a) Simulated domain of 1024 × 1024 lattice sites. The points A and B are the positions of two pinned spins with n = (0, 0, −1) at
the center of two interacting skyrmions. (b)–(d) are the potential energies of two interacting particles calculated for θh = π/3, |h| = 0.8 (u = 0
and �l = 52), and given in the local coordinate frame (x′, y′) = (R cos φh, −R sin φh ), in which the in-plane component of the field is always
pointing along the x′ axis. The distances x′ and y′ are given in units of LD. (b)–(d) correspond to skyrmion-skyrmion, skyrmion-antiskyrmion,
and antiskyrmion-antiskyrmion interactions, respectively. The spin textures in (e)–(i), (k), and (l) illustrate equilibrium states obtained by
energy minimization without the spins being pinned. These states correspond to the local energy minima marked accordingly in (b)–(d). The
spin textures in (j) and (m) were obtained with pinned spins and illustrate the states that are precursory for the fusion of two particles. All
images in (e)–(m) have an identical size and show only the central part of the simulated domain. The white arrows in the bottom left corner
indicate the direction of the in-plane component of the applied magnetic field hxy.
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defined by the invariant Q = 1/(4π )
∫

[n · (∂xn × ∂yn)]dxdy
equals −1.

The symmetry of the problem permits us to apply the same
analysis to an equivalent solution, which at magnetic field h
opposite to êz, h ↓↑ êz represents an axially symmetric Sk
with opposite polarity [see Fig. 1(n)]. The topological charge
for the Sk in Fig. 1(n), as well as for all other states in
Figs. 1(j)–1(m), is Q = +1. Thereby, the Sk with Q = −1 and
the antiskyrmion (ASk) with Q = +1 may coexist at any tilt
angle. Moreover, the energies of Sk and ASk become equal
when θh = π/2 [see Fig. 1(d)].

The stability of Sk and ASk in a tilted field can be also
reproduced in the corresponding spin-lattice model. Note
that the hc curves in Figs. 1(a) and 1(b) for �l = 32, 64,
128, and 256 marked with an asterisk have been calculated
with the nearest-neighbor spin-lattice model, where �l has
the meaning of the number of lattice sites per LD (see
Appendix A).

B. Interskyrmion interactions

The interactions between Sks in a tilted field are fundamen-
tally different from those of axisymmetric Sks in a perpendic-
ular field because of the broken symmetry of their spin texture.
For the calculation of the potentials of the interskyrmion
interactions presented in Figs. 2(b)–2(d), we performed the
energy minimization on a large size domain with two pinned
spins at the centers of the two Sks, as depicted in Fig. 2(a).
The white region in the center of the energy profiles is defined
by critical distances, where the interaction energy is either too
high or too low. This is attributed to the distortion of the Sks’
spin texture. The calculation of the interaction energies with
pinned spins at such small distances has no physical meaning.

The common features of the potentials corresponding to
the different pairs of interacting particles in Figs. 2(b)–2(d)
are as follows: (i) For any fixed ϕh �= ±π/2 the interaction
energy between particles oscillates in strength and sign with
the distance from negative (attraction) to positive (repulsion);
and (ii) for any pair of particles there are a few local minima
corresponding to stable configurations. In fact, we believe that
for any θh > 0, there are an infinite number of such minima,
while their depths as well as the energy barrier between
them get smaller as the distance increases. The local minima
also disappear when θh → 0 or π [16]. The ASk interaction
reveals two remarkable features: an asymmetry of the Sk-ASk
potential and the presence of so-called fusion channels. The
latter means that there are specific mutual orientations of the
particles leading them to fuse [see Figs. 2(j) and 2(m)]. Note,
this fusion occurs with the conservation of the topological
charge, and leads either to the annihilation of the interacting
particles or to the emergence of a another particle. The pro-
cesses of Sk-ASk and ASk-ASk fusion are presented in the
video files in the Supplemental Material [34].

The fusion channels are always present on the interaction
energy profile involving ASk, even in the perpendicular field.
The latter can be proven via the analysis of the asymptotic
behavior of analytical Sk solutions (see Appendix C). The
coexistence of Sk and ASk and their ability for fusion disputes
the statements postulated in earlier works [35–38]. For in-
stance, in Ref. [35] the authors argued the following: “Nor is it

-0.5 -0.25 0 0.25 0.50 0.75 1.00 1.25
0

0.2

0.4

0.6

0.8

1.0

0 0.5 1
0

5

-0.5

10

15

20

Δ h
=

(h
c -h

e )
×

10
3

u

hc

he

Anisotropy, u

Ap
pl

ie
d

fie
ld

, h

easy plane ↦↦ easy axis

FIG. 3. The range of existence for an antiskyrmion in a per-
pendicular magnetic field, h = (0, 0, h), is bounded by the fields of
elliptic instability he and collapse hc. The field range �h (right top
inset) converges to zero at the Bogomol’nyi point [39], u = −0.5 and
h = 1. The bottom left inset illustrates the coexistence of Sk and ASk
without fusion at large distances for the case of strong perpendicular
anisotropy and zero field.

possible to fuse a skyrmion with an antiskyrmion to annihilate
them since the system under consideration consists only of
one species of skyrmions.” The statement of the uniqueness
of the Sk solution has been disproved in Ref. [31]. Here, we
demonstrate the possibility of Sk and ASk fusion.

C. The case of nonzero anisotropy

The stability of Sks in the whole range of magnetic field tilt
angles can be observed not only for isotropic chiral magnets
but also for easy-plane and easy-axis anisotropies. The crite-
rion for this is the stability of the ASk in the perpendicular
field. The diagram in Fig. 3 illustrates a wide range of positive
and negative values of u where ASk remains stable. Note,
the critical point h = 1, u = −0.5 corresponds to the so-
called Bogomol’nyi point [39], where a large set of skyrmion
solutions can be found analytically. This also includes the
solution for ASk presented here. With increasing u, both he

and hc decrease gradually and for a strong enough uniaxial
anisotropy, the stability of Sk and ASk can be achieved even
in zero magnetic field (see the inset in Fig. 3).

One has to make an important remark regarding previous
works reporting the stability of the in-plane Sks similar to
those in Figs. 1(g) and 1(l) even at h = 0 (see Refs. [40–42]).
The value of the easy-plane anisotropy used in these works
corresponds to u � −2, which is far below the critical value
of u = −0.5. Indeed, to a certain extent, such solutions can be
treated as Sks, although, de facto, they share more similarity to
pairs of vortices and antivortices. In Appendix D we provide
simple arguments that support this statement. In particular,
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we show that for the case of strong easy-plane anisotropy
u 	 −0.5 and zero external field h = 0, there are four types
of stable vortex solutions depicted in Fig. 6. These vortices
are distinguished by the sign of the vorticity and polarity
of the vortex core. The topological charge of the vortices
is fractional, Q = ±1/2. We provide a few examples (see
Fig. 7) which illustrate some complex multivortex configura-
tions with integer and fractional values of Q. In this regard, it
seems reasonable to use precisely these four vortices as unique
countable objects that describe the state of the system.

IV. CONCLUSIONS

In conclusion, in this paper, we investigate the stability
of 2D chiral magnetic skyrmions in the presence of a tilted
magnetic field. It is shown that by changing the absolute value
of the magnetic field with the tilt angle one can continuously
transform the axisymmetric skyrmion at h ↑↑ êz (or h ↓↑ êz)
into a nonaxisymmetric skyrmion with opposite polarity and
opposite vorticity which remains stable even in a fully inverted
field h ↓↑ êz (h ↑↑ êz). In other words, one can turn a chiral
skyrmion inside out. It is shown that in the tilted magnetic
field, the interaction potentials of the chiral skyrmions, which
are characterized by several local minima, reveal an attractive
interaction between the particles. These interactions can be
controlled by the strength and tilt angle of the external mag-
netic field. Complex potentials of interskyrmion interactions
allow not only the formation of various skyrmion clusters but
also a fusion of the skyrmions. The discussed phenomena
are general and applicable for a wide class of crystals with
trigonal, tetragonal, and cubic symmetry.
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APPENDIX A: SPIN-LATTICE MODEL

The results presented in the main text are based on an
analysis of a micromagnetic model but remain valid also for
the spin-lattice model,

E = −J
∑
〈i j〉

ni · n j −
∑
〈i j〉

Di j · [ni × n j]

− K
∑

i

n2
z,i − μsBext

∑
i

ni, (A1)

where ni = μi/μs is the unit vector of the magnetic moment
at lattice site i, 〈i j〉 denotes the summation over all nearest-
neighbor pairs, J is the Heisenberg exchange constant, and
Di j is the Dzyaloshinskii-Moriya vector defined as Di j = Dri j

with the scalar constant D and the unit vector ri j pointing from
site i to site j, K is an uniaxial anisotropy constant, and Bext

is an external magnetic field.

The equilibrium period of the spin spiral in model (A1) at
zero magnetic field has an exact solution [43],

L∗
D = 2πa/ arctan(D/J ). (A2)

For weak DMI, D 	 J , it can be approximated with the exact
solution of a spin spiral period in a continuum model,

L∗
D ≈ LD = 2πaJ/D. (A3)

In Fig. 4 we show the spin texture of skyrmions corresponding
to the case of a perpendicular field. It is worth emphasizing
that in a fully isotropic micromagnetic model the energy of
axially nonsymmetric skyrmions [Figs. 1(i) and 1(j)] does
not depend on how the semiaxes of such an elliptic object
are oriented with respect to the x and y axis. In contrast to
this, in the spin-lattice model, there is a significant contribu-
tion of anisotropy induced by a natural discretization of the
system [44]. A clear manifestation of this effect is that the
elliptical shaped skyrmion has the lowest energy only when
its semiaxes coincide with the diagonals of a square lattice as
in Figs. 4(b) and 4(d).

APPENDIX B: ENERGY UPPER BOUND FOR SKYRMION
IN A TILTED MAGNETIC FIELD

To estimate the stability of a chiral skyrmion in a tilted
magnetic field we follow the approach of Ref. [12]. In partic-
ular, without loss of generality, the functional (1) of the main
text can be written in the following reduced form,

E (n) = Eex(n) + EDMI(n) + EZ(n)

=
∫∫ [

1

2
(∇n)2 + 2ε

(
nx

∂nz

∂y
− ny

∂nz

∂x

)

+ ε

4
|n − ez|2

]
dx dy, (B1)

where ε = 1/(2h). We consider an axially symmetric ansatz
for the skyrmion solution [12]. Next, we model a skyrmion
profile in a tilted field by applying a rotation matrix about the
y axis to all spins,

n =
⎛
⎝ cos θh 0 sin θh

0 1 0
− sin θh 0 cos θh

⎞
⎠

⎛
⎝ − f ′

R(r) sin φ

f ′
R(r) cos φ

sgn(r − 1)
√

1 − [ f ′
R(r)]2

⎞
⎠,

(B2)

where the function fR is defined as

fR(r) =
{

ln(1 + r2), for 0 � r � R,

c, for r � 2R,
(B3)

where c is a positive constant. The following conditions are
applied to the first and second derivatives of the function fR,

0 � f ′
R(r) � 2r

1 + r2
, 0 � − f ′′

R (r) � c

1 + r2
,

for r � R � 1. (B4)

The advantage of such an ansatz is that it describes the near-
core asymptotic behavior of an exact skyrmion solution.
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FIG. 4. Equilibrium spin texture of skyrmions with different polarity p and vorticity ν calculated for the spin-lattice model (A1) with the
following parameters: J = 1, |D| = 0.1963, K = 0, and μsBext = 0.024 which correspond to LD ≈ 32 (L∗

D ≈ 32.4), u = 0, h ≈ 0.623. The
skyrmion in (a) has p = −1, ν = 1, and topological charge Q = −1, in (b) p = −1, ν = −1, Q = +1, in (c) p = +1, ν = 1, Q = 1, and in
(d) p = 1, ν = −1, Q = −1. The energy minimization has been performed on a square domain of 80 × 80 lattice sites. We use the same color
code for spin directions as in the main text. The black spins are pointed towards the viewer and white spins in the opposite direction.

In the case of the high magnetic field, ε 	 1, the exchange
and Zeeman energy terms are bounded from above,

Eex(n) + EZ(n) � 4π + πε ln(1 + R2) + c

(
1

R2
+ ε

)
.

(B5)

Now let us estimate the bounding energy of DMI. In the
region r � R, the DMI energy is

E∗
DMI(n) = −8πε

R2(1 + (R2 − 1) cos θh) cos2(θh/2)

(1 + R2)2
. (B6)

In the region R < r � 2R the DMI energy density is

E∗∗
DMI(n) = 2πε

∫ 2R

R

sin2 θh f ′(1 − f ′2) + r(sin2 θh + f ′2(cos θh + cos 2θh)) f ′′√
1 − f ′2 dr �

∫ 2R

R

2πε r sin2 θh

1 + r2
dr, (B7)

at least when cos θh + cos 2θh � 0, meaning θh � π/3. Taking into account (B6) and (B7), the upper bound DMI energy EDMI =
E∗

DMI + E∗∗
DMI is

EDMI(n) � −8πε
R2(1 + (R2 − 1) cos θh) cos2(θh/2)

(1 + R2)2
+ 2πε sin2 θh ln

1 + 4R2

1 + R2
. (B8)
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Defining ñ = n(λr), where λ is the rescaling parameter, we
get for the total energy of our ansatz solution,

E (ñ) � 4π + πε

λ2
ln(1 + R2) + c

(
1

R2
+ ε

λ2

)

− 8πε

λ

R2(1 + (R2 − 1) cos ϑh) cos2 ϑh
2

(1 + R2)2

+ 2πε sin2 ϑh

λ
ln

1 + 4R2

1 + R2
. (B9)

Now choosing R = | ln ε|√
ε

and λ = L| ln ε|, one can write the
following inequality for the total energy,

E (ñ) � 4π + ε

| ln ε|
(

−8π

L
cos θh cos2(θh/2) + π

L2

+ 2π (ln 4) sin2 θh

L
+ O(1)

)
, (B10)

and minimizing this expression with respect to L > 0 gives

L =
(

4 cos θh cos2 θh

2
− (ln 4) sin2 θh

)−1

. (B11)

Note that L in (B11) remains positive only for angle θh �
π/3. This critical angle defines the limit of our ansatz (B2).
Thereby, the energy of a skyrmion in an external magnetic
field tilted by the angle 0 � θh � π/3 with respect to the
plane normal is bounded, at least, by the value

E (ñ) � 4π + επ

|ln ε|

×
[
−

(
4 cos θh cos2 θh

2
− (ln 4) sin2 θh

)2

+ O(1)

]
.

(B12)

It means that the energy of an approximate skyrmion solution
is lower than the energy of the Belyavin-Polyakov soliton
(4π ). Thereby, the exact skyrmion solution is also less than
4π even when h → ∞ (ε → 0).

With the simplified ansatz (B2) and (B3) which does not
take into account an asymmetry of the skyrmion in the tilted
magnetic field, the above remains true only for θh � 60◦.
Nevertheless, there is no doubt that by using a more advanced
ansatz one will be able to obtain a higher value of the critical
angle which will even better correlate with the results of the
numerical calculations presented in the main text.

APPENDIX C: ANALYSIS OF SKYRMION AND
ANTISKYRMION ASYMPTOTICS

To analyze the asymptotic behavior of the skyrmion and
antiskyrmion solutions we solve the variational problem for
the micromagnetic functional (1) in the main text, where the
vector field n(x, y) is defined by the spherical coordinates
,�,

n =
⎛
⎝ cos θh sin  cos � + sin θh cos 

sin  sin �

− sin θh sin  cos � + cos θh cos 

⎞
⎠. (C1)

The Euler-Lagrange equations for the functional (1) for
radially symmetric solutions is

� + 4π sin (n · ∇� − πh) − 1

2
sin 2(∇�)2 = 0,

�� sin2  − 4πn · ∇ sin 

+
(

∇ · ∇� − 2π sin θh
∂

∂x

)
sin 2 = 0. (C2)

We assume that the boundary conditions obey (0, 0) =
π , (x,±∞) = (±∞, y) = 0. The asymptotic behavior of
the skyrmion solutions of Eq. (C2) for r =

√
x2 + y2 → ∞

can be written as follows,

 = c2/
√

r · e−2π
√

h−sin2 θhr, (C3)

� = ±(φ + π/2) + 2πr sin θh cos φ + F (φ), (C4)

where the plus and minus sign stand for skyrmion and an-
tiskyrmion solutions, respectively, c is an arbitrary constant,
F (φ) some 2π -periodic function, and r and φ = arctan(y/x)
are the radial and angular coordinates in a polar coordinate
system, respectively. In the case of a perpendicular field,
θh = 0, the asymptotic for the skyrmion takes a simplified
form [45,46],

 = c2/
√

r · e−2π
√

hr,

� = φ + π/2, (C5)

and for an antiskyrmion,

 = c2/
√

r · e−2π
√

hr,

� = −φ − π/2 + F (φ). (C6)

In a linear approximation of adding spin waves we get
the potential of the interaction between skyrmions and an-
tiskyrmions, which equals the energy density of (1) at the
middle point between the particles [see the star symbol in
Fig. 5(a)]. The skyrmion-antiskyrmion and antiskyrmion-
antiskyrmion interaction potentials in a perpendicular applied
magnetic field are shown on Figs. 5(b) and 5(c). In the case
of θh �= 0, the interaction energy demonstrates oscillatory
behavior and direct use of the method above is impossible.

APPENDIX D: SKYRMIONLIKE STATES COMPOSED
OF VORTICES AND ANTIVORTICES; THE CASE

OF STRONG EASY-PLANE ANISOTROPY

In the case of strong easy-plane anisotropy, u 	 0, the
energy minimization of the states composed of skyrmions or
antiskyrmions leads to an appearance of textures which are
morphologically very similar to those discussed in the main
text [compare the states in Figs. 6(a) and 6(c) to the states
depicted in Figs. 1(g) and 1(l)]. Such states can be stabilized
in the system even without applying an external field [40–42].
Similar to skyrmions these states may have a positive or
negative topological charge and exhibit particlelike properties,
meaning that they can move and interact with each other
[40–42]. In particular, at small distances the states shown in
Figs. 6(a) and 6(c) attract each other, which in turn leads
to their annihilation. Moreover, the particles with identical
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(b) (c)

y

x

(a)

W
×

10
3

W
×

10
3

2

1

0

-1

-2

1LD

0.75LD

1.25LD

Ask-Ask

1LD

R=0.75LD

1.25LD

Sk-Ask

2

1

0

-1

-2

3

φ
R

2R

0 π/2 π 3π/2 2π 0 π/2 π 3π/2 2π
φ φ

FIG. 5. (a) Schematic representation of two interacting particles (skyrmion and antiskyrmion) at a distance 2R in the perpendicular
magnetic field, h = (0, 0, 0.62), u = 0. The mutual orientation of the particles is defined by the azimuthal angle ϕ. (b) and (c) are the potential
W ’s calculated at the middle point between particles [star symbol in (a)] as functions of angle ϕ, for a skyrmion-antiskyrmion in (b) and an
antiskyrmion-antiskyrmion in (c). Note, W < 0 and W > 0 correspond to repulsion and attraction, respectively.

topological charge attract each other and may form clusters
mainly in the form of chains of particles. These two facts,
indeed, show a lot of similarity between the objects stabilized
at strong easy-plane anisotropy and skyrmions in a tilted field.
On the other hand, there are strong arguments supporting the
statement that these objects possess more similarities to vortex
and antivortex pairs rather than skyrmions.

Below we show examples of different textures appearing in
the case of strong easy-plane anisotropy. These representative
textures were obtained by direct energy minimization for
the functional (1) with |h| = 0, u = −2, and discretization
δl = 52. For comparison, the micromagnetic parameters used
in previous works reporting the study of so-called in-plane

skyrmions correspond to the following anisotropy: u = −1.96
[40], u = −2.00 [41], and in Ref. [42] for a different set of
parameters u = −2.88, −3.33, and −4.67.

First of all, it is easy to show that the states in Figs. 6(a)
and 6(c) can be decomposed into stable isolated states. Indeed,
Figs. 6(e)–6(h) illustrate two types of vortices and antivortices
with a different polarity of the cores. It is well known that an
isolated vortex cannot be stabilized in an infinite sample (or
in the domain with periodical boundary conditions) and only a
vortex and antivortex pair can do that. Because of that, in order
to visualize such stable isolated vortices in Figs. 6(e)–6(h),
we use a finite-size domain with open boundary conditions.
It is easy to see that the state in Fig. 6(b) [Fig. 6(d)] can be

(a) (c) (e)

(b) (d) (f)

(g)

(h)
x

y

z
LD

FIG. 6. The equilibrium spin textures obtained by direct energy minimization of functional (1) in the main text for the case of zero external
field h = 0 and strong easy-plane anisotropy u = −2. We use the parameters corresponding to �l = 52 and a domain size of ≈10LD × 10LD

[see the scale bar in (a)]. The pairs of vortices and antivortices with a total topological charge, Q = −1 in (a) and Q = +1 in (c). The zoomed
areas indicated by the dashed square in (a) and (c) are shown in (b) and (d), respectively. The pairs of vortices and antivortices in (a) and
(c) are calculated with periodical boundary conditions in the xy plane. (e)–(h) show isolated vortices and antivortices with different polarity
p and vorticity ν: (e) p = −1, ν = −1; (f) p = 1, ν = 1; (g) p = −1, ν = 1; and (h) p = 1, ν = −1. Black arrows indicate the in-plane
magnetization.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 7. Various stable spin configurations in the square shape domain with open boundary conditions obtained by energy minimization
with the same parameters as in Fig. 6. (a) A vortex with p = 1, ν = 1: The same as in Fig. 6(f) but with other types of modulations at the
edges. (b) The same vortex as in (a) coexisting with two different vortex-antivortex pairs. (c) A triplet state composed of two vortices and
one antivortex. (d) A triplet state composed of two antivortices and one vortex. (e) An example of a state composed of three different types of
vortices, where a mutually attractive vortex and antivortex form a localized pair on the right with a topological charge of the pair Q = +1. The
vortex on the left is repelled by that pair. (f) Another example of the state composed of three different types of vortices. Two vortices and two
antivortices form a chain on the left with topological charge Q = −2. (g) A chain of alternating vortices and antivortices. (h) An example of
a complex state obtained after full energy minimization starting from a random spin distribution. The state contains all four types of vortices
and antivortices [see Figs. 6(e)–6(h)]. The state composed of one isolated vortex in the top right quadrant, pairs, triplets, and chains of vortices
and antivortices.

decomposed into pair of antivortices in Fig. 6(e) [Fig. 6(h)]
and vortices in [Fig. 6(f) [Fig. 6(g)]. Note that due to the pres-
ence of DMI the vortex state in Figs. 6(f) and 6(g) have a lower
energy than that of antivortices in Figs. 6(e) and 6(h). Isolated
vortices are also more stable than the antivortices which are
illustrated in Fig. 7(a), where the vortex state remains stable
even in the case of unfavorable edge modulations. In contrast
to this, the antivortices are unstable at these conditions. For
the range of the uniaxial anisotropy value u > −0.5 discussed
in the main text, the vortices shown in Figs. 6(e)–6(h) are
unstable in the whole field range. In other words, at these
conditions, the skyrmion is a single object which cannot be
decomposed into more elementary particles.

Beside the stability of isolated vortices in the case of strong
easy-plane anisotropy, the vortices and antivortices may also
form more complex textures (see Fig. 7). In particular, vortices
can appear not only in the form of isolated vortices and pairs
as in Figs. 7(a) and 7(b), but also can be stable as a triplet
state, quadruplet state, etc. Figures 7(c) and 7(d) illustrate
some stable triplet states. Note, the vortex-antivortex triplets
may appear as a localized bound state only when composed
of two types of mutually attracting objects. Only the objects
with opposite polarity and opposite vorticity exhibit attractive

interactions. Thereby, only vortices and antivortices can at-
tract each other and only when their polarities are opposite
[see Figs. 6(f) and 6(e) for such a vortex and antivortex
pair, respectively, and Figs. 6(g) and 6(h) for another pair
of the vortices and antivortices]. The interaction of vortices
and antivortices with identical polarity always leads to their
annihilation. A pair of vortices and a pair of antivortices
with opposite polarities are always characterized by repulsion.
Figure 7(e) illustrates the state composed of three types of
objects with a different character of the interactions: a vortex
with positive polarity, a vortex with negative polarity, and an
antivortex with positive polarity. The vortex-antivortex cou-
pled pair on the right side of the figure and the vortex on the
left side repel each other. A similar configuration with a larger
number of vortices and antivortices is shown in Fig. 7(f).

A typical spin texture after full energy minimization from
a random distribution is shown in Fig. 7(h). Remarkably, all
four types of vortices depicted in Figs. 6(e)–6(h) are present
in Fig. 7(h). One may conclude that such configurations can
be quantified only by the number of vortices and antivortices.
Thereby, in the case of strong easy-plane anisotropy, these
four types of vortices and antivortices are the countable ob-
jects that describe the state of the system.
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