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Multiple phase transitions and high-field quadrupolar order in a model for β-TeVO4
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Motivated by the complex behavior of the frustrated magnet β-TeVO4, we study an anisotropic Heisenberg
model for coupled spin-1/2 zigzag chains. Using a cluster mean field approach to capture quantum correlations
we find, upon reducing temperature in the absence of applied field, (i) a partially ordered state, (ii) a collinear
antiferromagnetic phase, and (iii) an elliptical spiral state characterized by finite vector chirality. For finite fields
we find a metamagnetic response close to saturation magnetization. We show via explicit calculations that the
quadrupolar order parameter is finite in the metamagnetic regime. The exchange parameters reported in the ab
initio study of β-TeVO4 are used in our study. We compare our results with those reported in recent experiments
on β-TeVO4 and highlight similarities as well as differences between experimental results and our cluster mean
field calculations.
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I. INTRODUCTION

Interacting spin systems realized in condensed matter
are well known for manifesting the surprises of quantum
physics [1,2]. A microscopic understanding of quantum spin
systems not only enriches us with new fundamental concepts
useful across disciplines, but also opens up possibilities for
next-generation technologies [3–5]. Quantum effects come
to the fore at low temperatures in low-spin systems. Lower
dimensionality and frustrating interactions further reduce the
tendency of spin systems to acquire conventional magnetic or-
der, thereby promoting exotic quantum phenomena [3,6–10].
Often, the interplay among frustrating interactions, lower di-
mensionality, and the intrinsic quantum nature of the degrees
of freedom results in unexpected states and complex magnetic
phase diagrams [11,12].

Weakly coupled frustrated spin-1/2 chains represent a
class of systems possessing all of the above ingredients.
These are realized in various quasi-one-dimensional mag-
nets, such as linarite [13,14], NaCuMoO4(OH) [15], and
LiCuVO4 [16,17]. In recent years, β-TeVO4 (βTVO) has
emerged as another model magnetic material for studying
coupled frustrated spin chains. Low-temperature magnetic
phases and phase transitions in βTVO are uncovered via
a combination of thermodynamic measurements, as well as
neutron scattering and NMR experiments [18–22]. Three
magnetic transitions upon cooling, (i) paramagnet to spin
density wave (SDW) at TN1 = 4.65 K, (ii) SDW to spin-
stripe at TN2 = 3.28 K, and (iii) spin-stripe to an elliptical-
spiral or vector chiral order at TN3 = 2.28 K, are reported.
Applied field versus temperature phase diagrams were ob-
tained via a combination of specific heat, magnetization, and
magnetostriction measurements [21]. Discontinuous changes
in magnetization with an applied field close to saturation
were reported [19,21]. These discontinuities have been pro-
posed as a realization of theoretically predicted spin-nematic
or quadrupolar phase. Recent investigations report that the

high-field phase is magnetically ordered with nematic or-
der possibly present in a very narrow range of applied
field [23]. Experiments have reported that the intermediate
spin-stripe phase hosts unusual elementary excitations called
wigglons [24], whereas at lower temperatures a coexistence of
spinons and magnons is expected [22].

Motivated by the rich magnetic behavior of βTVO, we
study a minimal anisotropic Heisenberg model for coupled
zigzag chains in two dimensions. In order to capture magnetic
field and temperature dependence of various thermodynamic
quantities, we make use of the cluster mean field (CMF)
approach for our investigations. Using model parameters re-
ported in ab initio study of the material, we find: (i) a partially
ordered state with zero ordered moments on alternate sites,
(ii) a collinear antiferromagnet, (iii) an elliptical spiral state
with finite vector chirality, and (iv) unusual metamagnetic
behavior close to saturation magnetization. Some of these
features, e.g., the VC ground state, the SDW order, and the
metamagnetic jumps in magnetization are consistent with the
experimental data.

In order to place our results in a proper context, we summa-
rize the existing theoretical work that aims to understand the
frustrated spin-1/2 chain magnets in general, and βTVO in
particular. Isolated zigzag spin chains with nearest neighbor
(nn) FM and next nn (nnn) AFM interactions have been
studied using DMRG, exact diagonalization, effective field
theories, and coupled cluster methods [25–32]. Transition
from helical to SDW state driven by an applied magnetic
field in linarite has also been accurately described via a
purely classical spin model [13]. Most of these studies focus
on ground state phase diagrams in the plane of interaction
strength ratio and applied field. Spiral phases and nematic
states close to saturation field have been reported in these
theoretical investigations [30,31,33]. The temperature depen-
dence in the two-dimensional model has remained unexplored
due to the lack of suitable methods. Classical approximation
for spin operators can be invoked with the argument that
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thermal effects take over at finite temperatures [34]. This
approach can work, with the understanding that the transi-
tion temperatures and the size of ordered moments will be
overestimated, in systems that show a single phase transition.
However, for a system that displays multiple transitions with
changing temperature, a careful treatment of quantum effects
becomes most important. Since the CMF approach retains
quantum correlations while allowing for thermodynamic-limit
calculations of various order parameters in the mean field
spirit, the method is well suited for describing temperature
and magnetic field dependence within a single framework.

II. MODEL AND METHOD

We begin with an anisotropic Heisenberg model on cou-
pled zigzag spin-1/2 chains in the presence of an external
magnetic field. The model is described by the Hamiltonian

H =
∑

n, j

[
J1(S j,n · S j+1,n) + J2

(
S j,n · S j+2,n + δ2Sz

j,nSz
j+2,n

)

+ J2b(S j,n · S j−1,n+1) − hzS
z
j,n

]
. (1)

Here S j,n represents the spin-1/2 operator located at the
nth chain and jth site. J1 is the nn ferromagnetic (FM)
interaction, J2 is the nnn antiferromagnetic (AFM) interac-
tion, and J2b is the AFM interchain coupling. Strength of
anisotropy and applied magnetic field are denoted by δ2

and hz, respectively. The parameters used in our work, fol-
lowing a density functional theory study for β-TeVO4, are:
J1 = −26.2 K, J2 = 24.6 K, and J2b = 7.3 K [21,35]. The
anisotropy value is fixed to δ2 = −0.2 throughout the study,
except for results discussed in Fig. 4. We show in Sec. III A
that exact diagonalization (ED) calculations on small clusters
miss out on most features related to conventional magnetic
order. Therefore, in this work, CMF is used as the main
method to understand the nature of magnetic order and the
magnetic transitions. The CMF has proven extremely useful
for investigating spin models possessing magnetic frustrations
of geometrical or Kitaev nature [36–40]. The key idea of
the method is to treat all interaction links located within the
cluster exactly, and to make use of the conventional mean field
decoupling, Si · S j ≈ 〈Si〉 · S j + Si · 〈S j〉 − 〈Si〉 · 〈S j〉, for in-
teraction links connecting the cluster and the environment.
Applying this approximation to the Hamiltonian Eq. (1) leads
to the cluster Hamiltonian

Hc =
∑

n, j

′ [
J1(S j,n · S j+1,n) + J2

(
S j,n · S j+2,n + δ2Sz

j,nSz
j+2,n

)

+ J2b(S j,n · S j−1,n+1) − hzS
z
j,n

]

+
∑

n, j

′′
M j,n · S j,n, (2)

where the prime over the summation sign refers to all the
links contained inside the cluster, and the double-primed sum
is over all those spins that have at least one interaction link
outside the cluster. For our choice of cluster shown in Fig. 1,
all eight spins contribute to the double-primed summation.
M j,n denotes the effective mean field vector that couples to the
spin S j,n. The mean field vector is defined as an appropriate
vector sum M j,n = ∑

Jp〈S j′,n′ 〉, where the sum is over all

FIG. 1. A schematic picture of the magnetic model for β-TeVO4.
The shaded area highlights the cluster within which interactions are
treated exactly. The chain and site indices for each spin inside the
cluster are specified. The dot-dashed lines represent connectivity due
to periodic boundary condition in the b direction.

spins S j′,n′ that are located outside the cluster and are coupled
to spin S j,n via coupling parameter Jp, with p = 1, 2, 2b.
Setting up the equivalence between environment and cluster
sites, in the spirit of a mean field theory, enables the closing
of a self-consistency loop. We impose periodic boundary
conditions perpendicular to the chain direction (b direction in
Fig. 1), and couple the spins to mean fields along the chain
(c direction in Fig. 1). Note that the intracluster interaction
between S3,1 and S2,2 is a consequence of periodic boundary
condition along the b direction. Average of a general operator
Ô is computed, following the standard quantum statistical
approach, as

〈Ô〉 = Tr Ô e−βHc

Tr e−βHc
, (3)

where Hc is the cluster Hamiltonian defined in Eq. (2), and the
trace is over all states of the Hc with converged values of the
mean field parameters. Further details of the method and its
extensions are available in some recent papers [36–40].

III. RESULTS AND DISCUSSIONS

A. Exact diagonalization

We begin by discussing specific heat and magnetization
obtained via ED calculations on finite clusters. We present
results of ED for an 8-site cluster where two zigzag chains
of four spins each are coupled, and a 16-site cluster where
four zigzag chains are coupled. Periodic boundary conditions
(PBC) in both directions are imposed. Details of the calcula-
tions are similar to those presented in a recent study [40]. In
Fig. 2(a) we show the temperature dependence of specific heat
CV = 1

Nc
d〈H〉/dT , where Nc denotes the number of spins in

the cluster. In the same panel we plot the variations of spin-
spin correlations Cpq = 〈S j,n · S j′,n′ 〉, where p = 4(n − 1) + j
and q = 4(n′ − 1) + j′ for different spin pairs. Within ED
a dimer state comprising of perfect singlets on nnn sites,
characterized by C13 = −0.75, emerges as the ground state.
These singlet correlations gradually decrease upon increas-
ing temperature leading to a characteristic hump in specific
heat [41,42]. We conclude that for the Hamiltonian under
consideration, ED calculations on small clusters do not sup-
port the existence of a conventional ordered magnetic state.
Consequently, stand alone ED calculations are unable to pro-
vide any hint of multiple phase transitions that are observed
in the experiments on βTVO. Similarly, the field depen-
dence of magnetization displays large jumps coinciding with
discontinuities in the correlation functions [see Fig. 2(b)].
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FIG. 2. Solid lines display the variation of (a) specific heat with
temperature, and (b) magnetization with applied field for 8-site and
16-site clusters with PBC calculated using exact diagonalization. The
broken lines represent variations of correlations for different spin
pairs with (a) temperature and (b) applied magnetic field for the
16-site cluster. Results in (a) are at hz = 0, and those in (b) are at
T = 0. The results for spin-spin correlations for the 8-site cluster are
almost identical to those for 16-site cluster.

Such discontinuities associated with level crossings in the
spectrum of a finite cluster will not be present in a larger
system. Since ED calculations on very large systems are
extremely difficult, we take an alternate approach of capturing
thermodynamic limit with the help of mean field scheme. In
the next subsections we discuss the results obtained via CMF
approach and present a comparison with available experimen-
tal data.

B. Cluster mean field: Temperature dependence

In Fig. 3 we show the temperature dependence of specific
heat CV , the vector chiral (VC) order parameter 〈κz〉, and
the magnitude 〈S1,1〉 and 〈S1,2〉 of local spin averages at two
inequivalent sites. The VC order parameter is defined as

〈κz〉 = 1

Nc

∑′
Im[〈S+

j,nS−
j+1,n〉 − 〈S+

j,n〉〈S−
j+1,n〉]. (4)

As we will discuss below in detail, there are three dis-
tinct features in CV (T ) which have an associated feature in
one of the three order parameters mentioned above. Upon
reducing T , one of the mean fields 〈S1,1〉 becomes nonzero

〈O〉 CV
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0.4
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FIG. 3. (a) Specific heat CV , vector chiral order parameter 〈κ z〉,
and magnitudes of self-consistent mean fields 〈S1,1〉 and 〈S1,2〉 as a
function of temperature. The right y axis is for specific heat and
the left y axis is for all other quantities. The vector chiral order
parameter is scaled up by a factor of 10 for clarity. Three distinct
magnetically ordered states can be clearly identified with the help
of these thermodynamic observables. (b)–(d) Real-space patterns of
mean field spin vectors in the three phases.

at T = 7.2 K while the other remains zero. This is an unusual
partially ordered state where alternate sites remain quantum
disordered and are unable to develop finite magnetic moments
[see Fig. 3(b)]. Such partially ordered states have also been
reported in Kondo systems where they can be understood as
arising out of the competing tendencies of Kondo screening
and ordering of magnetic moments [43]. PO state can be
viewed as an extreme case of a SDW order where difference
between magnitude of ordered local moments on neighboring
sites is maximum. Indeed, the magnetic order reported in
experiments on βTVO below 4.65 K is SDW with weaker
moment-size modulation and larger wavelength. The onset of
the PO state is accompanied by a “shoulder” feature in CV

exactly at T = 7.2 K.
The second mean field parameter 〈S1,2〉 becomes finite at

T = 6.8 K leading to a conventional magnetic order. Indeed,
this is accompanied by a sharp peak in specific heat signifying
a conventional long-range order [see Fig. 3(c)]. Upon further
lowering the temperature these mean fields approach towards
their saturation values. However, a discontinuous change in
both 〈S1,1〉 and 〈S1,2〉 occurs at 4 K, exactly at the temper-
ature at which vector-chiral order parameter becomes finite
confirming a change in the nature of the magnetic order. This
first order phase transition manifest itself in the specific heat
through a discontinuity exactly at T = 4 K. The ground state
is therefore characterized by a finite vector chirality and un-
equal magnitude of magnetic moments on alternate sites [see
Fig. 3(d)], describing an elliptical spiral state similar to the
ground state reported in experimental studies on βTVO [21].
While the magnitude and locations of the specific-heat anoma-
lies discussed above are likely to depend on the cluster size,
the number of such anomalies remain independent of Nc [40].

While the similarities with the experimental data [19,21] in
terms of multiple phase transitions and the VC ground state
become clear from the above discussion, it is important to
point out the key experimental features of βTVO that are not
captured in our study. We find that the ordered phase between
the PO and the VC is a collinear antiferromagnet with varying
moment size on alternate sites. Experiments, on the other
hand, report a peculiar stripe phase with two orthogonally
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FIG. 4. Specific heat (solid lines) and vector chiral order param-
eter (dotted lines) as a function of temperature for different values
of the anisotropy parameter δ2. Note that a significant amplitude for
vector chirality appears only for |δ2| � 0.2.

oriented sublattices in this regime [20]. Stabilizing such a
phase may require inclusion of Dzyaloshinskii-Moriya inter-
actions as well as the interlayer coupling which we have not
included in our present model Hamiltonian study.

The appearance of VC phase as the ground state of the
Hamiltonian considered in this work strongly depends on
anisotropy parameter δ2. In Fig. 4 we show specific heat
as a function of temperature for different values of δ2. The
discontinuity in the specific heat at low temperatures is absent
for a fully isotropic δ2 = 0 model, and becomes prominent
only for |δ2| � 0.2. A further increase in the strength of
anisotropy parameter leads to an increase in the size of the
discontinuity, as well as the value of the temperature at
which the discontinuity occurs. We simultaneously track the
VC order parameter. Indeed, the location of discontinuity in
specific heat is correlated perfectly with the onset of vector
chirality. Therefore, we conclude that anisotropy is crucial
not only to obtain the vector chiral ground state but also
for the correct ordering temperature. Note that in general
anisotropy in other interactions may also be present in the real
material [20].

We also note that for the choice of parameters used for
calculations, the range of stability for the partially ordered
state was found to be rather narrow. To show that this state
is not a result of fine tuning of parameters of the Hamiltonian,
we check if the range of stability can be increased by at
least one of the model parameters. In Fig. 5 we plot specific
heat as a function of temperature for different values of the
interchain coupling parameter J2b. The presence of a partially
ordered phase is indicated by the difference between the size
of local moments on two inequivalent sites. Therefore, we also
show in Fig. 5 the temperature dependence of 〈S1,1〉 − 〈S1,2〉.
Increasing the value of J2b leads to an increase in the window
over which the specific heat displays the unusual shoulder
feature. This is also followed by the large values of the
moment difference 〈S1,1〉 − 〈S1,2〉. However, for large values
of interchain coupling, partially ordered state destabilizes the
vector chiral ground state. Therefore, only a suitable combina-
tion of J2b and δ2 allows for the appearance of both the vector
chiral and the partially ordered phases.

4
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FIG. 5. Specific heat (solid lines) and the difference in the
magnitude of two ordered moments (dotted lines) as a function
of temperature for different values of the interchain coupling
parameter J2b.

C. CMF: Magnetic field dependence

Having discussed the temperature dependence of various
physical quantities in the absence of external magnetic field,
we now focus on the magnetic field dependence in the low-T
regime. The component along external field of local magneti-
zations on two inequivalent sites, 〈Sz

1,1〉 and 〈Sz
2,1〉, are plotted

in Fig. 6. Note that conversion factor of kB/μB ≈ 1.5 T/K is
used throughout to represent the applied magnetic field values
in units of Tesla. We find a metamagnetic response in terms of
discontinuities in magnetization close to saturation. We also
show the field dependence of vector chiral order parameter
〈κz〉, with appropriate scale factor, in the same figure. The
first jump in magnetization coincided with abrupt vanishing
on VC order parameter, and the second jump takes the system
to the fully saturated FM state (Fig. 6). Therefore we infer the
existence of a new magnetic phase bounded between a fully
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FIG. 6. Component along applied field of local magnetizations
〈Sz

1,1〉 and 〈Sz
2,1〉 on two inequivalent sites as a function of applied

magnetic field for different temperatures. Magnetic field dependence
of the vector chiral order parameter 〈κ z〉 and quadrupolar order
parameter Qx2−y2 is also shown. The factor kB/μB ≈ 1.5 T/K is used
to express hz in physical units of Tesla.
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FIG. 7. A schematic energy versus applied field plot demonstrat-
ing how mean field, or any approximate method, always underesti-
mates saturation field. The lower curve is the energy obtained from
exact calculations and the upper curve represents the approximate
energy. The linear part is the energy of fully saturated state which
is accurately captured in the mean field scheme as well. The inter-
section of the linear part with the exact (mean field) energy defines
hexact

sat (hmf
sat).

saturated FM and the vector chiral state. These results match
remarkably well with those reported in the experiments.

Recent theoretical studies based on spin-wave approach
about the fully saturated FM state have suggested the presence
of quadrupolar order in the metamagnetic regime. In order
to verify these predictions, we explicitly calculate quadrupo-
lar order parameter (QOP) Qx2−y2 = 1

Nc

∑′ Re[〈S+
j,nS+

j+1,n〉 −
〈S+

j,n〉〈S+
j+1,n〉] as a function of applied field. The outcome

of these calculations at different temperatures are plotted in
Fig. 6. Indeed, the QOP becomes finite in the metamagnetic
regime [see Figs. 6(a) and 6(b)]. Therefore our explicit cal-
culations support the existing theoretical proposals regard-
ing the presence of a quadrupolar order close to saturation
magnetization [10,44,45]. Upon increasing temperature the
discontinuities in magnetization become weaker in magnitude
and their locations shift to lower magnetic fields and [see
Figs. 6(b)–6(d)]. The QOP also tracks these evolution of
magnetization jumps. However, we also note that the QOP
also becomes finite in the low-field regime for larger temper-
atures [see Figs. 6(c) and 6(d)] For T = 4.5 K, an additional
discontinuity is obtained at the onset of the vector chiral order.
This is indicative of a reentrant behavior which becomes more
clear as we discuss the complete phase diagram below.

Comparing our results with the experimental data, we note
that the transition to a PM state occurs at 7.2 K, whereas the
corresponding experimental value is 4.6 K. On the other hand,
the magnetic field required to obtain a fully saturated FM
state hsat

z is 20 T in our study compared to 22 T reported in
experiments [21]. It is interesting to note that while the tran-
sition temperature is significantly overestimated in the CMF
approach, the saturation field is only slightly underestimated.
We present a simple argument to justify these findings. In
general, any mean field approximation suppresses thermal
as well as quantum fluctuations. While both thermal and
quantum fluctuations play an important role in determining
the temperature at which the magnetic order is lost, only quan-
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FIG. 8. Magnetic susceptibility as a function of temperature for
various field strengths. Inset shows susceptibility over a wider range
of temperature for hz = 1.5 T.

tum fluctuations are responsible for transition to a saturated
FM state at zero temperature. A more accurate estimate of
hsat

z reflects the fact that CMF approach captures quantum
fluctuations well. Furthermore, it can be shown that mean field
approximations will always underestimate hsat

z . The argument,
presented with reference to the schematic Fig. 7, is as follows:
the energy of a saturated FM state is a linear decreasing
function of applied field. This estimate can be accurately
obtained in any approximate scheme as well. For nonsaturated
states, on the other hand, the ground state energy obtained
via any approximate method is always higher than the exact
energy. By definition, the saturation field hsat

z is the value
of applied field at which the energy curves for the saturated
FM state (linear part in Fig. 7) crosses the energy of the
nonsaturated state. Therefore, this crossing will necessarily
occur at a lower value of magnetic field for any approximate
method. Note that in the schematic Fig. 7, hmf

sat < hexact
sat .

The magnetic susceptibility is calculated as χ (T )|hz =
(dMz/dhz )|hz for different values of applied field hz. Results
are shown in Fig. 8. We find that the magnetic susceptibil-
ity shows a clear indication of the transition to the vector
chiral state. However, the presence of two other transitions
at higher temperatures is not very apparent looking at the
magnetic susceptibility results. Interestingly, even this situa-
tion is similar to that found in experiments. The experimental
susceptibility data does not provide conclusive evidence for
the presence of transitions. On the other hand, the specific heat
data shows clear anomalies [19]. For the vector chiral order,
the nonmonotonic evolution of the transition temperature with
increasing magnetic field is correctly captured.

D. hz-T phase diagram

Finally we discuss the complete hz-T phase diagram ob-
tained in our CMF study of the anisotropic Heisenberg model.
As discussed so far, in addition to the trivial paramagnet and
fully saturated ferromagnet, we have identified four quali-
tatively distinct magnetic phases with varying temperature
and magnetic field. These are (i) VC, (ii) canted-AF, (iii)
PO, and (iv) quadrupolar (Q) [see Fig. 9(a)]. The boundaries
between these phases are extracted from the changes in order
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FIG. 9. (a) The hz-T phase diagram inferred from the variations
in different order parameters and the anomalies in specific heat. The
color map in the background represents the value of quadrupolar or-
der parameter Qx2−y2 . (b) and (c) The color map in hz-T plane of the
(b) interchain 〈S3,1 · S2,2〉 (C36) and (c) intrachain 〈S2,1 · S3,1〉 (C23),
spin-spin correlations. Since dipolar correlations become vanishingly
small in the region above the dotted line in (a), a pure quadrupolar
order exists.

parameters which also coincide with the anomalies in the
specific heat. Intrachain and interchain spin-spin correlations
carry important information about the competition between
different magnetic phases and provide additional insights
regarding the phase boundaries. We show the color map in
the hz-T plane for the nn interchain correlation C36 [Fig. 9(b)]
and nn intrachain correlation C23 [Fig. 9(c)]. The definition
of the correlation functions as well as the site indices are as
given in Sec. III A. Qualitative changes in the interchain and
the intrachain correlations across different phase boundaries
are clearly visible from Figs. 9(b) and 9(c). In addition,
we display the color map corresponding to the value of the
QOP, Qx2−y2 . The resulting phase diagram is shown in Fig. 9.
Interestingly, the region of finite Qx2−y2 is bounded between
two phase boundaries. What still remains puzzling is the
finiteness of QOP at low fields for which there is no support
in the experimental data. We provide a resolution of this with
the help of inter- and intrachain spin-spin correlation maps.

It is interesting to note that the CMF approach allows
access to both thermodynamic behavior, in the mean field
spirit, as well as short-range spatial correlations. This is an
advantage of the CMF method over both a fully microscopic
approach such as quantum Monte Carlo and a simple mean
field approach which totally misses out on spatial correlations.
It would be interesting to check if the short-range spatial
correlations can provide us with additional insights regarding
the behavior of the system. In particular, one may ask if the
information regarding change of magnetic phases is encoded
in short-range spin-spin correlations. To this end, we show in
Figs. 9(b) and 9(c) the map of correlations in the hz-T space
for selected spin pairs. The intracluster spin-spin correlations
display significant changes across various phase boundaries.
The interchain correlations 〈S3,1 · S2,2〉 become vanishingly
small in the low-temperature high-field region [see Fig. 9(b)].
Therefore, this can be seen as an effective decoupling of
chains leading to destabilization of the VC order [22]. Further-
more, the effective reduction in dimensionality also implies a
loss of long-range dipolar order. Hence, this region of vanish-
ingly small interchain correlations should be seen as support-
ing pure quadrupolar order. Similarly, intrachain correlation
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FIG. 10. (a)–(d) Color map representing the value of spin-spin
correlations C pq for different spin pairs in the hz-T plane.

〈S2,1 · S3,1〉 display a change of sign [see Fig. 9(c)]. If the nn
links in a zigzag chain get decoupled then the chain can be
viewed as consisting of two intertwined decoupled sublattices,
and does not support long-range dipolar order. Therefore, the
region of finite QOP can be qualitatively divided into two parts
with the help of the discussion above. One with coexisting
long-range dipolar order and other with pure quadrupolar
order. The boundary between these two regions is the dotted
line in Fig. 9(a), which is the line of vanishing spin-spin
correlations in Fig. 9(c). This displays a better correspondence
with the experimentally reported phase diagrams where only
the high-field phase is marked as quadrupolar. Importantly,
this is also consistent with the discontinuities in the magneti-
zation which are thermodynamic signatures for the existence
of an unusual, such as quadrupolar, order. It is important
to note that experimental phase diagrams show appreciable
dependence on the direction of the applied field. Our results
correspond to the field applied along the b axis. We believe
that the interlayer couplings become essential for capturing
the experimental phase diagram corresponding to the field
in a-c plane.

We also display the behavior of other spin spin correlation
functions in Fig. 10. Since |J1| ∼ J2 for β- TVO, nnn spin cor-
relations are strongest owing to their antiferromagnetic nature
[see Fig. 10(c)]. The nnn correlation C68 gradually decreases
with increasing temperature due to thermal fluctuations. Upon
increasing the applied field a region with vanishingly small
C68 is indicative of the complete absence of dipolar order.
Finally, C68 = 0.25 characterizes a field induced saturated FM
state. Figures 10(a), 10(b), and 10(d) display the variations
of nn correlations C67, C34, and C78 in that order. Given that
the nn interactions are FM, these correlations have a positive
value over most of the parameter regime. The reentrant behav-
ior as a function of applied magnetic field can also be noticed
from the color maps of these nn correlation functions.

IV. SUMMARY AND CONCLUSION

With the aim to describe complex magnetic phase diagram
of β-TVO, we have investigated the anisotropic Heisenberg
model with nn FM and nnn AFM interactions on weakly
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coupled zigzag spin-1/2 chains. The CMF approach utilized
in our study allows for an accurate treatment of short-range
spatial correlations, and therefore, captures the subtle com-
petition between different possibilities of magnetic ordering.
The results are obtained using realistic values of interaction
parameters taken from ab initio studies for β-TVO. We find (i)
a sequence of three-phase transitions upon reducing tempera-
ture, (ii) a vector chiral ground state, (iii) quadrupolar order
close to the saturation field accompanied by a metamagnetic
response, and (iv) reentrant behavior as a function of applied
field. While some of these features are consistent with the
experimental data, our analysis does not capture the un-
usual spin-stripe state existing in the intermediate temperature
regime. Additional anisotropic terms, such as Dzyaloshinskii-
Moriya interaction, may be important for stabilizing the spin-
stripe state. Furthermore, the anisotropy of the hz-T phase di-
agram may crucially depend on the interchain couplings along

the a axis which is not included in the present study [21]. We
have also shown that the relative locations of the transition
temperatures can be tuned by varying the relative strengths of
the coupling parameters. Nevertheless, the transition temper-
atures are overestimated due to the mean field nature of the
method. To conclude, in addition to capturing certain general
features of the complex magnetic phase diagram for β-TVO,
our results highlight how the CMF approach can become a
powerful tool in understanding the nature of magnetic order
emerging at low temperatures in frustrated magnets.
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