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Possibility of a continuous phase transition in random-anisotropy magnets
with a generic random-axis distribution
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We reconsider the problem of the critical behavior of a three-dimensional O(m) symmetric magnetic system in
the presence of random-anisotropy disorder with a generic trimodal random-axis distribution. By introducing n
replicas to average over disorder it can be coarse grained to a φ4 theory with an m × n component order parameter
and five coupling constants taken in the limit of n → 0. Using a field theory approach we renormalize the model
to two-loop order and calculate the β functions within the ε expansion and directly in three dimensions. We
analyze the corresponding renormalization group flows with the help of the Padé-Borel resummation technique.
We show that there is no stable fixed point accessible from physical initial conditions whose existence was
argued in previous studies. This may indicate the absence of a long-range ordered phase in the presence of
random-anisotropy disorder with a generic random-axis distribution.
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I. INTRODUCTION

The structural disorder is inevitably present in many mag-
netic systems which undergo a phase transition. Of particular
interest is its impact near the critical points, where even weak
disorder can drastically modify the scaling behavior [1–3].
One can classify different types of disorder according to the
symmetry it breaks. The most common types of disorder
include: (i) random-bond/site disorder where randomness
couples linearly to the local energy density, and thus, can
be viewed as local critical temperature fluctuations [4]; (ii)
random-field disorder where the order parameter is linearly
coupled to a random-symmetry breaking field [5]; and (iii)
random-anisotropy disorder in systems with continuous sym-
metry where the coupling of the order parameter to disorder is
bilinear [6].

The effect of quenched [7] random-bond/site disorder on
the critical behavior of magnetic systems has been studied
for several decades and is now relatively well understood. In
particular, according to the Harris criterion [8] it modifies the
critical behavior of a d-dimensional system if the correlation
length exponent ν of the pure system satisfies the inequality
ν < 2/d . The corresponding critical exponents have been
computed by renormalization group (RG) methods using
ε = 4 − d expansion up to four-loop order [9], directly in
three dimensions up to six-loop order [10], and using a
nonperturbative approach [11].

The Harris criterion can be generalized to the random-
bond/site disorder correlated in space as a power law ∼1/ra

which is proven to be relevant for ν < max(2/a, 2/d ) [12].
The corresponding critical exponents have been computed
using double expansion in ε = 4 − d and δ = 4 − a [12–15],
directly in three dimensions [16,17], in two dimensions

using a mapping to Dirac fermions [18], and numerical sim-
ulations [19,20]. Another model with anisotropic correlated
disorder in which extended defects are strongly correlated in
εd dimensions and randomly distributed over the remaining
d − εd dimensions was proposed in Ref. [21] and studied in
Refs. [22–31].

The impact of quenched random fields and random
anisotropies is usually more profound and much less stud-
ied. For instance, a complete understanding of the simplest
model, the random-field Ising model (RFIM), is still lacking
despite significant numerical and analytical efforts [32]. It has
been shown that the standard perturbative RG calculations
lead to incorrect results due to the so-called dimensional
reduction [33]. The only known way to overcome this ob-
stacle for the RFIM is the nonperturbative RG developed in
Refs. [34,35], which however, is a sophisticated and hardly
controllable method (see also recent review Ref. [36]). For
systems with continuous symmetry the isotropically dis-
tributed random fields and random anisotropies drive the
low critical dimension of O(m) symmetric systems from
dl = 2 to dl = 4 with a new quasi-long-range order (QLRO)
emerging below dl [37]. Both the QLRO below dl and the
ferromagnetic-paramagnetic transition above dl have been
studied analytically using functional RG and expansion in
ε = dl − d to two-loop order [38–40]. The effects of extended
defects, free surfaces, and disorder correlation have been also
investigated in Refs. [41–44].

The situation is even less understood in the case of
an anisotropic distribution. The critical behavior of mag-
nets with random anisotropy is usually described by the
random-anisotropy model (RAM) which was first introduced
to describe magnetic properties of amorphous alloys of rare-
earth compounds with aspherical electron distributions and
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FIG. 1. Sketch plot of the two-dimensional RAM. Red disks
depict sites of the lattice with spins (black arrows) on them. Random-
local anisotropy axis direction on each site is shown by a light blue
line.

transition metals [6] (see also Refs. [45,46] for the experimen-
tal data). The Hamiltonian of RAM can be written as

H = −
∑
〈 �R, �R′〉

J �S �R �S �R′ − D
∑

�R
(x̂ �R �S �R)2, (1)

where J > 0 is a short-range ferromagnetic interaction be-
tween m > 1-component spins �S �R ≡ (S1

�R, . . . , Sm
�R ) located on

sites of a d-dimensional hypercubic lattice, x̂ �R is a random-
unit vector indicating the direction of the local anisotropy axis
on each site (see Fig. 1), and D is the anisotropy strength.
Here we restrict ourselves to the case of uniaxial anisotropy
corresponding to D > 0 and do not consider an easy-plane
anisotropy emergent for D < 0.

Despite extensive analytical and numerical studies even
the nature of the low-temperature phase in three-dimensional
random-anisotropy systems is a controversial issue [47,48].
While for completely isotropic distribution of a random-
local anisotropy axis the ferromagnetic ordering in the three-
dimensional magnets is absent even in the limit of weak
disorder controlled by the ratio D/J , it is not excluded for
anisotropic distributions [48]. There is an agreement between
different approaches in the case of infinitely strong disorder,
where appearance of a spin-glass order was observed [49,50].
The situation is less clear for moderate and weak disorder. The
question if the magnetic system can be ordered ferromagneti-
cally, either it will be in a QLRO or a spin-glass phase, is still
controversial [48].

The standard way to study the critical behavior of
model (1) analytically is to coarse grain it to a continuous
effective models of φ4 type which can be averaged over
disorder using replicas and studied by field-theoretical RG
methods [51–53]. In the case of the isotropic distribution of
the random-anisotropy axis this leads to a model with three
distinct φ4 terms. As was shown in Refs. [54–56] this model

has no stable physically accessible fixed point (FP) that is in
agreement with the absence of the ferromagnetic state below
d = 4 for isotropic distribution of anisotropies. In the case of
random anisotropy with the cubic distribution, vectors x �R are
aligned along the edges of an m-dimensional hypercube and
the effective Hamiltonian possesses four distinct φ4 terms of
different symmetries. In this case a continuous phase transi-
tion of random-Ising universality class into a ferromagnetic
state was predicted below d = 4 [56–58]. A more general
model includes five distinct φ4 terms [59]. While this model
was shown to have no stable FP to one-loop order it was
recently argued that a stable FP appears at two-loop order in
d = 3 [60]. Here we reconsider this problem by studying the
model with a generic random-anisotropy disorder to two-loop
order using two different RG methods: minimal subtraction
(MS) scheme with the ε expansion and massive scheme
directly in three dimension. We show that both methods
provide consistent pictures which exclude the possibility of
a continuous phase transition in this model. This indicates the
absence of a long-range order in the systems with a generic
random-anisotropy disorder.

The paper is organized as follows. Section II introduces
the effective models for different distributions of random-
anisotropy axis. In Sec. III we renormalize the generic model
with a trimodal distribution of anisotropies which includes
five distinct φ4 terms using the ε expansion and directly in
three dimensions to two-loop order. In Sec. IV we analyze the
corresponding RG flow using resummation techniques. We
summarize our results in Sec. V.

II. EFFECTIVE φ4 HAMILTONIANS

We now map the spin lattice model (1) onto an effective
φ4 theory using the Hubbard-Stratonovich transformation and
averaging over quenched disorder [7] encoded by the local
random vectors {x̂ �R} [48,54]. We use the replica trick [61]
introducing n copies of the original model and taking the limit
of n → 0 at the very end. One has to specify a particular
distribution p(x̂ �R) of the local random-unit vectors x̂ �R in the m-
dimensional target space. Let us consider three different cases.

In the case of the isotropic distribution any direction of the
random-unit vector x̂ �R is allowed with equal probability so that
the probability distribution is given by

pi(x̂) = �(m/2)

2πm/2
, (2)

where �(x) is the Euler gamma function. Averaging with this
distribution leads to the effective Hamiltonian [54]

Heff = −
∫

dd r

{
1

2

[
μ2

0|φ|2 + |∇φ|2] + u0

4!
|φ|4

+ v0

4!

n∑
α=1

| �φα|4 + z0

4!

n∑
α,β=1

m∑
i, j=1

φα
i φα

j φ
β
i φ

β
j

}
, (3)

where φ = { �φα (�r)} and �φα (�r) = {φα
1 (�r), . . . , φα

m(�r)} is the
n times replicated m-component order parameter, such that
|φ|2 = ∑m

i

∑n
α |φα

i |2, and μ is the bare mass. The bare cou-
pling constants u0 > 0, v0 > 0, z0 < 0 satisfy z0/u0 = −m
(see also Table I).
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TABLE I. The signs of the physical couplings for the effective
Hamiltonians (3), (5), and (7). The two last lines correspond to the ef-
fective Hamiltonian obtained from model (1) with the distribution (6)
and the model (14) with the distribution (2), respectively.

Eqs. u0 v0 w0 y0 z0

(3) >0 >0 0 0 <0
(5) >0 >0 <0 ∀ 0
(1) with (6) �→ (7) >0 >0 <0 ∀ <0
(14) with (2) �→ (7) >0 >0 ∀ ∀ <0

In the case of the cubic distribution of the local anisotropy
axis the random-vector x̂ �R is allowed to point along one of
the m axes of the hypercubic lattice with the probability
distribution

pc(x̂) = 1

2m

m∑
i=1

{
δ(m)(x̂ − k̂i ) + δ(m)(x̂ + k̂i )

}
, (4)

where k̂i, . . . , k̂m are unit vectors along the axes and δ(y) is
the Dirac delta function. Averaging over the random-variables
{x̂ �R} for the cubic distribution one arrives at [54]

Heff = −
∫

dd r

{
1

2

[
μ2

0|φ|2 + |∇φ|2] + u0

4!
|φ|4

+ v0

4!

n∑
α=1

| �φα|4 + w0

4!

n∑
α,β=1

m∑
i=1

(
φα

i

)2(
φ

β
i

)2

+ y0

4!

m∑
i=1

n∑
α=1

(
φα

i

)4
}
. (5)

Here the bare coupling constants u0, v0, w0 satisfy the condi-
tions u0 > 0, v0 > 0, w0 < 0, and w0/u0 = −m. Note that the
term with coupling y0 is not present in the bare microscopic
model, but it is generated by the RG transformations so we
have added it from the beginning. This, however, does not fix
its sign.

Both the isotropic distribution and the cubic distribu-
tion can be combined into the so-called trimodal distribu-
tion [62,63]

p(x̂) = qpi(x̂) + (1 − q)pc(x̂), (6)

where the direction of x̂ is chosen either from the isotropic
distribution with probability q or from the cubic distribution
with the probability (1 − q). This leads to the effective Hamil-
tonian that contains all terms of the effective Hamiltonians (3)
and (5) [59,60]

Heff = −
∫

dd r

{
1

2

[
μ2

0|φ|2 + |∇φ|2] + u0

4!
|φ|4

+ v0

4!

n∑
α=1

| �φα|4 + w0

4!

n∑
α,β=1

m∑
i=1

(
φα

i

)2(
φ

β
i

)2

+ y0

4!

m∑
i=1

n∑
α=1

(
φα

i

)4 + z0

4!

n∑
α,β=1

m∑
i, j=1

φα
i φα

j φ
β
i φ

β
j

}
, (7)

where the bare couplings satisfy u0 > 0, v0 > 0, w0 < 0, z0 <

0, while the sign of y0 is arbitrary (see also Table I). However,

ratios z0/u0 and w0/u0 resulting from the trimodal distri-
bution (6) are different from those for the distributions (2)
and (5),

z0

u0
= − 2qm

m(1 − q) + 2
, (8)

w0

u0
= − (1 − q)(m + 2)m

m(1 − q) + 2
, (9)

where for (8) with q = 1 we reproduce z0/u0 = −m for the
isotropic distribution, while for (9) with q = 0 we obtain
w0/u0 = −m for the cubic distribution.

It can be also shown that the effective Hamiltonian (7)
can describe a more general local anisotropy axis distribution.
Indeed, it can be derived for any distribution p(x̂) provided
that it has first two nonvanishing moments

Mi j =
∫

dmx̂p(x̂)x̂ix̂ j, (10)

Mi jkl =
∫

dmx̂p(x̂)x̂ix̂ j x̂k x̂l , (11)

which can be expressed as [58]

Mi j = δi j

m
, (12)

Mi jkl = A(δi jδkl + δikδ jl + δilδ jk ) + Bδi jδikδil . (13)

Parameters A and B in (12) are determined by the precise form
of the distribution p(x̂) and satisfy the Cauchy inequalities
A(m + 2) + B � 1/m and 3A + B � 1/m2. Note that the ef-
fective Hamiltonian (7) reduces to model (5) for A = 0.

The effective model (7) can be also derived by considering
the system with the random single-ion cubic anisotropy given
by

H = −
∑
�R, �R′

J �R, �R′ �S �R �S �R′ − D
∑

�R
(x̂ �R �S �R)2

−V
∑

�R

m∑
i=1

(
Si

�R
)4

, (14)

where V is the cubic anisotropy strength. It is straightfor-
ward to show that averaging (14) over the random-variables
{x̂ �R} with isotropic distribution leads to the effective Hamil-
tonian (7) with the bare couplings u0, v0 > 0, z0 < 0, and
z0/u0 = −m, while the sign of y0 depends on the sign of V
(see Table I). Similar to the case of the cubic distribution, the
coupling w0 is not present in the bare model but it should be
added, since it is generated by the RG transformations and
may be of any sign [59].

Let us now discuss the conditions ensuring the physical
stability of models (3), (5), and (7). The stability analysis
can be carried out along the lines of Refs. [58,59]. To that
end we assume that the Hamiltonian has a stable minimum
characterized by the homogeneous order parameter M. We
first consider the case when the symmetry of the ordered phase
is broken with respect to (i) φα

i = M. Expanding the effective
Hamiltonian (3) around this minimum, we find that the region
of stability reads [59]

(i) v0 + nu0 + nw0 > 0. (15)
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In the case when symmetry is broken with respect to (ii) φα
i =

Mδα1δi1 one arrives at [59]

(ii) v0 + u0 + w0 > 0. (16)

If we consider that the symmetry is broken with respect to
(iii) φα

i = Mδi1 and (iv) φα
i = Mδα1, we obtain the same

conditions (15) and (16).
Repeating the same analysis for the effective Hamilto-

nian (5) we arrive at the following stability conditions [58]:

(i) mnu0 + mv0 + nw0 + y0 > 0, (17)

(ii) u0 + v0 + w0 + y0 > 0, (18)

(iii) nu0 + v0 + nw0 + y0 > 0, (19)

(iv) mu0 + mv0 + w0 + y0 > 0. (20)

Finally, we obtain the regions of stability of the effective
Hamiltonian (7),

(i) mnu0 + mv0 + nw0 + y0 + mnz0 > 0, (21)

(ii) u0 + v0 + w0 + y0 + z0 > 0, (22)

(iii) nu0 + v0 + nw0 + y0 + nz0 > 0, (23)

(iv) mu0 + mv0 + w0 + y0 + mz0 > 0. (24)

As it was discussed in Ref. [59] in the replica limit n → 0
the only relevant stability conditions appear to be those of
replica symmetric configurations. Therefore in our case only
conditions (i) and (iii) should be considered giving for n = 0

(i) mv0 + y0 > 0, (25)

(iii) v0 + y0 > 0. (26)

Before concluding this section let us mention that the
Hamiltonian (7) is identical to

Heff = −
∫

dd r

{
1

2

[
μ2

0|φ|2 + |∇φ|2]+λ0

m∑
i=1

n∑
α=1

(
φα

i

)4

+ g0

m∑
i=1

n∑
α=1

(
φα

i

)2 ∑
k �=i

(
φα

k

)2 − ũ0

m∑
i=1

(
ϕ2

i

)2

− 2ṽ0

∑
1�i<k�m

ϕ2
i ϕ

2
k −2w̃0

∑
1�i<k�m

(
n∑

α=1

φα
i φα

k

)2
⎫⎬
⎭, (27)

with ϕ2
i = ∑

α (φα
i )2, which was introduced in Ref. [64] to

study the influence of low-symmetry defects on the contin-
uous phase transition. Comparing this expression with (7)
one can see that recombining components φα

i in the Hamil-
tonian (7) transforms it to the Hamiltonian (27) with the fol-
lowing relations between the coupling constants λ0 = (v0 +
y0)/4!, g0 = v0/4!, ũ0 = −(u0 + w0 + z0)/4!, ṽ0 = −u0/4!,
and w̃0 = −z0/4! (see Appendix A).

III. FIELD-THEORY APPROACH

The field-theoretical RG approach completed by various
techniques for resummation of asymptotic series [51–53,65]
is generally recognized as a powerful tool to get accurate
estimates of critical exponents for systems with random-
bond/site disorder [1,66]. It can be even applied to frustrated

systems [67–70]. Here we apply it to study the critical prop-
erties of the RAM with a generic distribution of random-
anisotropy axes.

The large scale behavior of the RAM with the effective
Hamiltonian (7) can be described by one-particle irreducible
(1PI) vertex functions which are defined as

δ

⎛
⎝ L∑

i

pi +
N∑
j

k j

⎞
⎠�̊(L,N )

({p}; {k}; μ2
0; {λ̊})

=
∫ �0

dd R1 · · · dd RLdd r1 · · · dd rN ei(
∑

piRi+
∑

k j r j )

×〈
φ2(R1) · · · φ2(RL )φ(r1) · · · φ(rN )

〉Heff

1PI , (28)

where {λ̊} = {u0, v0,w0, y0, z0} are bare coupling constants,
{p}, {k} are external momenta, �0 is a cut-off parameter, and
μ0 is a bare mass. In what follows we use the upper circle to
denote the bare quantity.

In general the vertex functions (28) have a complicated
tensor structure. As an example consider the vertex function
�̊(0,4)i jkl

αβγ τ which we will need to renormalize the theory. It is
convenient to split it into the parts which possess the tensorial
structure of the different terms in the bare model (7). This
leads to

�̊(0,4)i jkl
αβγ τ = �̊(0,4)

u Sαβγ τ

i jkl + �̊(0,4)
v Si jkl Fαβγ τ

+ �̊(0,4)
w Fi jkl Sαβγ τ + �̊(0,4)

y Fi jkl Fαβγ τ

+ �̊(0,4)
z Aαβγ τ

i jkl , (29)

where we have introduced the tensors

Fi jkl = δi jδikδil ,

Si jkl = 1
3 (δi jδkl + δikδ jl + δilδ jk ),

Sαβγ τ

i jkl = 1
3 (δi jδklδαβδγ τ + δikδ jlδαγ δβδ + δilδ jkδατ δβγ ),

Aαβγ τ

i jkl = 3
2 Si jkl Sαβγ τ − 1

2 Sαβγ τ

i jkl ,

and δab is the Kronecker symbol.

A. Renormalization

The functions (28) are divergent in the limit �0 → ∞
and have to be renormalized after a proper regularization.
We apply two different renormalization schemes, the massive
scheme [71] and the MS scheme [72]. To render the vertex
functions finite we introduce the renormalization factors Zφ

for the field φ, Zφ2 for the φ2 insertion, and Zλi for the coupling
constants λi = u, v,w, y, z. The bare and renormalized vertex
functions are related by

�(L,N )({p}; {k}; {λ}) = ZN/2
φ ZL

φ2 �̊
(L,N )({p}; {k}; {λ̊}). (30)

The renormalization schemes differ by the normalization con-
ditions. In the massive scheme these conditions are formulated
at zero external momenta and nonzero mass, and have the
following form:

�(0,2)(k; −k; μ2; {λi})
∣∣
k=0 = μ2, (31a)

d

dk2
�(0,2)(k; −k; μ2; {λi})

∣∣
k=0 = 1, (31b)
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�
(0,4)
λi

({k}; μ2; {λi})
∣∣
{k}=0 = μ4−dλi, (31c)

�(1,2)(p; k1, k2; μ2; {λi})
∣∣
k1=k2=p=0 = 1. (31d)

The renormalization factors Zλi relate the bare couplings λ̊i to
the renormalized ones:

λ̊i = μ4−d Zλi

Z2
φ

λi. (32)

The normalization conditions for the MS scheme are fixed
at zero mass and given by

�(0,2)(k,−k; μ̃; {λi})
∣∣
k=0 = 0, (33a)

∂

∂k2
�(0,2)(k,−k; μ̃; {λi})

∣∣
k2=μ̃2 = 1, (33b)

�
(0,4)
λi

({k}; μ̃; {λi})
∣∣
kik j= μ̃2

3 (4δi j−1)
= μ̃4−dλi, (33c)

�(1,2)(p; k,−k; μ̃; {λi})
∣∣

p2=k2=μ̃2, pk=−1/3 μ̃2 = 1, (33d)

where the renormalized couplings λi are

λ̊i = μ̃4−d Zλi

Z2
φ

λi, (34)

and μ̃ is the external momentum scale parameter.
We now introduce the RG functions

βλi = ∂λi

∂ ln μ̄
, γφ = ∂Zφ

∂ ln μ̄
, γ φ2 = − ∂Zφ2

∂ ln μ̄
,

where Zφ2 = Zφ2 Zφ and the derivatives are taken at fixed
bare parameters. Here μ̄ is the renormalized mass μ in the

massive scheme and the scale parameter μ̃ in the MS scheme.
The β and γ functions characterize the change of the vertex
functions under the RG transformation, and thus allow one to
calculate the scaling behavior in the critical region controlled
by a FP

βλi ({λ∗
i }) = 0, i = 1, . . . , 5. (35)

The FP solution {λ∗
i } of Eqs. (35) describes the critical point of

the system if it is stable and accessible from initial conditions.
The FP is stable if all the eigenvalues {ωi} of the stability
matrix

Bi j = ∂βλi

∂λi

∣∣∣∣
λi=λ∗

i

(36)

have positive real parts (Re ωi > 0).

B. RG functions

Applying the renormalization schemes (31) and (32), and
(33) and (34) to the model (7) we obtain the RG functions
to two-loop order. Introducing ε = 4 − d the resulting β

function calculated within both schemes can be written in the
same form

βλi = −λi(ε + γλi − 2γφ ), (37)

once the one-loop integral D2 = ∫ dd p
(p2+1)2 appearing in the

massive scheme is included in the redefinition of the coupling
constants as λi → λi/D2, βλi → βλi/D2. The corresponding
γ functions are given by

u γu = −1

6

[
(mn + 8)u2 + 2vw + 2vz + 2wz + 3z2 + 2(m + 2)uv + 2(n + 2)uw + 6uy + 2(m + n + 1)uz

]
E

− 1

9

[
2(5mn + 22)u3 + 4v2w + 4vw2 + 4v2z + 16vwz + 4w2z + 2(m + 8)vz2 + 2(n + 8)wz2 + 3yz2

+ 3(m + n + 3)z3 + 24(m + 2)u2v + 24(n + 2)u2w + 72u2y + 24(m + n + 1)u2z + 6(m + 2)uv2

+ 6(n + 2)uw2 + 36uwy + 18uy2 + 12(n + 4)uwz + 36uyz + 3(mn + m + n + 15)uz2 + 60uvw

+ 36uvy + 12(m + 4)uvz
]
I, (38a)

v γv = −1

6

[
(m + 8)v2 + 12uv + 4vw + 6vy + 2(m + 5)vz + 6yz

]
E − 1

9

[
2(5m + 22)v3 + 6(mn + 14)vu2

+ 2(n + 6)vw2 + 36vwy + 18vy2 + 24(m + 5)uv2 + 12(n + 6)uvw + 108uvy + 68v2w + 72v2y

+ 12(3m + n + 11)uvz + 4(7m + 29)v2z + 4(n + 20)vwz + 72uyz + 132vyz + 24wyz + 18y2z

+ [(m + 5)n + 17m + 67]vz2 + 3(n + 14)yz2
]
I, (38b)

w γw = −1

6

[
(n + 8)w2 + 12uw + 4vw + 6wy + 2(n + 5)wz + 6yz

]
E − 1

9

[
2(5n + 22)w3 + 6(mn + 14)wu2

+ 2(m + 6)wv2 + 36vwy + 18wy2 + 24(n + 5)uw2 + 12(m + 6)uvw + 108uwy + 68w2v + 72w2y

+ 12(m + 3n + 11)uwz + 4(7n + 29)w2z + 4(m + 20)vwz + 72uyz + 132wyz + 24vyz + 18y2z

+ [(n + 5)m + 17n + 67]wz2 + 3(m + 14)yz2
]
I, (38c)

y γy = −1

6

[
9y2 + 8vw + 12vy + 12uy + 12wy + 6yz

]
E − 1

9

[
54y3 + 96uvw + 4(m + 18)v2w + 252vwy

+ 4(n + 18)vw2 + 6(mn + 14)u2y + 6(m + 14)v2y + 6(n + 14)w2y + 12(m + 14)uvy + 144uy2

+ 12(n + 14)uwy + 144vy2 + 144wy2 + 8(m + n + 10)vwz + 12(m + n + 7)uyz + 126y2z

+ 12(n + 12)wyz + 12(m + 12)vyz + 3(m + n + 13)yz2
]
I, (38d)
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z γz = −1

6

[
(m + n + 4)z2 + 12uz + 4vz + 4wz

]
E − 1

9

[
(2mn + 5m + 5n + 27)z3 + 6(mn + 14)u2z

+ 2(m + 6)v2z + 2(n + 6)w2z + 12wyz + 2(5n + 22)wz2 + 24yz2 + 44vwz + 12vyz

+ 2(5m + 22)vz2 + 12(m + 6)uvz + 12(n + 6)uwz + 36uyz + 12(2m + 2n + 15)uz2
]
I, (38e)

γφ = −1

9

[
(mn + 2)u2 + (m + 2)v2 + (n + 2)w2 + 3y2 + mn + m + n + 3

2
z2 + 2(m + 2)uv

+ 2(n + 2)uw + 6uy + 2(m + n + 1)uz + 6vw + 6vy + 2(m + 2)vz + 6wy + 2(n + 2)wz + 6yz

]
J , (38f)

γ φ2 = 1

6

[
(mn + 2)u + (m + 2)v + (n + 2)w + 3y + (m + n + 1)z

]
E

− 1

3

[
(mn + 2)u2 + (m + 2)v2 + (n + 2)w2 + 3y2 + mn + m + n + 3

2
z2 + 2(m + 2)uv

+ 2(n + 2)uw + 6uy + 2(m + n + 1)uz + 6vw + 6vy + 2(m + 2)vz + 6wy + 2(n + 2)wz + 6yz

]
I. (38g)

The γ functions (38) differ for the two renormalization
schemes only by values of E , I, and J . For the MS scheme
one gets E = 1, I = 1/4, and J = −1/8, while in the mas-
sive scheme E = ε, I = ε(i1 − 1/2), and J = εi2. Here i1
and i2 are loop integrals which have to be computed in fixed
dimension. In d = 3 they are given by i1 = 1/6 and i2 =
−2/27 [73], while their values for general d can be found in
Ref. [74].

While our main goal is to analyze the above RG functions
in the replica limit of n = 0, corresponding to a disordered
system with a generic random-anisotropy distribution, it is
also instructive to consider the model for arbitrary values of m
and n. Before do that, let us check that the RG functions (37)
and (38) satisfy the properties that follow from the original
model (7) and reproduce properly the results known for re-
duced models [58]. These functions are expected to

(1) remain invariant under the simultaneous exchange
v ↔ w and m ↔ n;

(2) reproduce the RG functions of the mn model in the
limit of w = y = z = 0 or v = y = z = 0 with n ↔ m (see
Refs. [75–77] and references therein);

(3) reproduce the RG functions of the (m × n)-component
cubic model in the limit of v = w = z = 0 (see
Refs. [1,75,78,79] and references therein);

(4) reproduce the RG functions of the randomly dilute cu-
bic model for w = z = 0 and n = 0 [80], and of the tetragonal
model for w = z = 0 with m = 2 [1,77];

(5) satisfy for v = z = 0, and n = 0 the identities

βu(u, 0,w, y, 0)+βw(u, 0,w, y, 0) = βRIM,u(u+w, y),

βy(u, 0,w, y, 0) = βRIM,y(u+w, y), (39)

where βRIM,u(u, y) and βRIM,y(u, y) are the RG functions of
the random-Ising model (RIM) [66];

(6) reproduce for z = 0 and n = 0 the RG functions of the
RAM with cubic distribution obtained in Refs. [48,56,58];

(7) reproduce for w = y = 0 and n = 0 the RG func-
tions of the RAM with isotropic distribution obtained in
Refs. [48,55];

(8) reproduce for n = 0 (after applying the transformation
described in Appendix A) the MS β functions for the crystal
with low-symmetry defects derived in Ref. [64].

We have checked that our β functions satisfy all these
properties. Note that the two-loop β functions derived in
Ref. [60] using a massive RG scheme do not satisfy all
these conditions. For instance, the first property from the list
above does not hold. As functions of Ref. [60] have been
presented only for n = 0, to check this property we set m = 0
in βv of Ref. [60] and substitute v ↔ w. Then we compare
this with βw of Ref. [60] where we also set m = 0. The
obtained functions do not coincide, as they should. Moreover
for z = 0 the RG functions obtained in Ref. [60] do not
match completely with (37) and (38) and with the functions
derived in Ref. [57]. They also do not reproduce the RG
functions calculated for the RAM with isotropic distribution
of anisotropies in Ref. [55].

IV. RG ANALYSIS

We can analyze the two-loop beta functions (37) and (38)
either developing the ε expansion, or directly in d = 3 by
setting ε = 1 and considering the renormalized couplings as
the expansion parameters [81]. Since in the last case the
series in the coupling constants are asymptotic, in order
to get reliable numerical data one has to apply appropriate
resummation techniques [51–53]. In the next two subsections
we will use both these approaches: we analyze our functions
in the one-loop approximation using ε expansion and than
apply a resummation technique to the two-loop expressions
in fixed space dimensions d = 3.

A. One-loop approximation

Although our main interest is to analyze the RG func-
tions (37) and (38) in the limit of n = 0, the model under
consideration has some applications also for nonzero n. The
simplest example is the mn-vector model [75,76]. At m = 1
and arbitrary n it reduces to the cubic model [1,75], while
for m = 2, n = 2, and n = 3 it describes a class of special
structural phase transitions [82]. Another example is provided
by the systems described by the reduced effective Hamil-
tonian (7) with w = z = 0. At n = 0 it corresponds to the
randomly dilute cubic model [80] and for m = 2 and nonzero
n it corresponds to the tetragonal model [1].

Let us first analyze the FPs of the RG functions (37)
and (38) to first order in ε for arbitrary values of m and n.
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TABLE II. FPs as a function of m and n to first order in ε. Only 22 FPs (from all 32 FPs), which can be calculated analytically, are
shown. The rest of the ten FPs are discussed in Appendix B. Here x± = [m + n − 2 ±

√
(m + n − 2)2 − 12mn + 48]/(8 − 2mn); A±(m, n) =

{m + n − 2 + 2mσ (m, n) ±
√

[m + n − 2 + 2mσ (m, n)]2 + 4(4 − mn)[2σ (m, n) + 3]}/(8 − 2mn), σ (m, n) = −(m − n + 6)/(m + 4);
A±(n, m) = {m + n − 2 + 2nσ (n, m) ±

√
[m + n − 2 + 2nσ (n, m)]2 + 4(4 − mn)[2σ (n, m) + 3)]}/(8 − 2mn), σ (n, m) = −(n − m +

6)/(n + 4); α± = {(n − 4)γ + 2m ± √
[(n − 4)γ + 2m]2 + 8(4 − mn)γ }/(8 − 2mn), β± = −{(4 − n)γ + 8 ± √

[(4 − n)γ + 8]2 − 96γ }/6,
γ = (m + 4)/(n + 4), B±± = 12α± + 6β± + (n + 8)γ + 4, ρ = m + n + 4, ζ (m, n) = (mn + 8)(m + 8), �±(m, n) = σ (m, n) + 3A±(m, n).

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 6
m+8 ε 0 0 0

III 6
mn+8 ε 0 0 0 0

IV 0 0 6
n+8 ε 0 0

V 0 0 0 2
3 ε 0

VI 6(m−4)
24(m+2)−ζ (m,n) ε

6(mn−4)
ζ (m,n)−24(m+2) ε 0 0 0

VII 6(n−4)
24(n+2)−ζ (n,m) ε 0 6(mn−4)

ζ (n,m)−24(n+2) ε 0 0

VIII 0 2
m ε 0 2(m−4)

3m ε 0

IX 2(m−4)
(8−mn)m−16 ε 2(4−mn)

(8−mn)m−16 ε 0 2
3

(mn−4)(m−4)
(mn−8)m+16 ε 0

X 2(n−4)
(8−mn)n−16 ε 0 2(4−mn)

(8−mn)n−16 ε 2
3

(mn−4)(n−4)
(mn−8)n+16 ε 0

XI a 6α+
B++ ε 6

B++ ε
6γ

B++ ε
6β+
B++ ε 0

b 6α+
B+− ε 6

B+− ε
6γ

B+− ε
6β−
B+− ε 0

c 6α−
B−+ ε 6

B−+ ε
6γ

B−+ ε
6β+
B−+ ε 0

d 6α−
B−− ε 6

B−− ε
6γ

B−− ε
6β−
B−− ε 0

XII 2
mn ε 0 0 2

3
mn−4

mn ε 0

XIII 0 0 2
n ε 2

3
n−4

n ε 0

XIV a 6x+
ρ+12x+ ε 0 0 0 6

ρ+12x+ ε

b 6x−
ρ+12x− ε 0 0 0 6

ρ+12x− ε

XV a 6A+ (m,n)ε
ρ+4�+ (m,n)

6σ (m,n)ε
ρ+4�+ (m,n) 0 0 6ε

ρ+4�+ (m,n)

b 6A− (m,n)ε
ρ+4�− (m,n)

6σ (m,n)ε
ρ+4�− (m,n) 0 0 6ε

ρ+4�− (m,n)

XVI a 6A+ (n,m)ε
ρ+4�+ (n,m) 0 6σ (n,m)ε

ρ+4�+ (n,m) 0 6ε

ρ+4�+ (n,m)

b 6A− (n,m)ε
ρ+4�− (n,m) 0 6σ (n,m)ε

ρ+4�− (n,m) 0 6ε

ρ+4�− (n,m)

To this order the RG functions derived using both schemes coincide and read

βu = −εu + 1
6

[
(mn + 8)u2 + 2vw + 2vz + 2wz + 3z2 + 2(m + 2)uv+2(n + 2)uw+6uy + 2(m + n + 1)uz

]
, (40a)

βv = −εv + 1
6

[
(m + 8)v2 + 12uv + 4vw + 6vy + 2(m + 5)vz + 6yz

]
, (40b)

βw = −εw + 1
6

[
(n + 8)w2 + 12uw + 4vw + 6wy + 2(n + 5)wz + 6yz

]
, (40c)

βy = −εy + 1
6

[
9y2+8vw+12vy+12uy + 12wy+6yz

]
, (40d)

βz = −εz + 1
6

[
(m + n + 4)z2 + 12uz + 4vz + 4wz

]
. (40e)

The system of equations (40) has 32 solutions, from which
the first 16 FPs have z = 0, and thus, describe a system with
the cubic anisotropy distribution (4). They are shown in lines
I–XIII of Table II where we group the FPs with the same
vanishing coupling constant. The first 14 FPs being taken in
the limit of n → 0 match those found in Refs. [54,57,58].
Note that the coordinates of several FPs have a pole at n → 0
(e.g., FP XII and XIII in Table II), and thus, do not exist
in this limit. The corresponding FPs with (u∗ �= 0, y∗ �= 0,
v∗ = w∗ = z∗ = 0 and w∗ �= 0, y∗ �= 0, u∗ = v∗ = z∗ = 0)
can be obtained in the next order of approximation with the

help of
√

ε expansion [66,83]. This also applies to the FP IX
at n = 0 and m = 2 [57].

The rest of the 16 FPs with z∗ �= 0 can be found along the
lines of Ref. [64] (see Appendix B). Out of them, only six
can be expressed in the analytic form, the coordinates of the
rest of the ten FPs can be found only numerically. The FPs
XIV–XVI with z∗ �= 0 which can be computed analytically
are shown in Table II. Stability analysis of FPs listed in the
Table II and the other ten FPs found numerically at n = 0 does
not indicate that there are other stable FPs except for the FP III
(for details see Appendix B). However, as it has been pointed
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TABLE III. FPs for m = 2 computed in the massive scheme to two-loop order.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.9107 0 0 0

III 1.1857 0 0 0 0

IV 0 0 1.1857 0 0

V 0 0 0 1.0339 0

VI −0.0322 0.9454 0 0 0

VII 2.1112 0 −2.1112 0 0

VIII 0 1.5509 0 −1.0339 0

IX −0.4401 2.3900 0 −1.5933 0

X α −0.1387 0 −0.2667 1.5509 0

β 0.6678 0 −0.6678 1.0339 0

XI α −0.0899 −0.0081 −0.3262 1.5727 0

β 0.3486 −0.2398 −0.4969 1.4538 0

γ 0.4128 0.5013 0.7676 −0.5706 0

δ 0.4755 1.2862 1.1146 −2.4093 0

ε 1.9951 −1.7745 −2.4995 1.9710 0

XII 0.4755 0 0 −2.4093 0

XIII 0 0 −0.4401 1.5933 0

XIV α 0.5349 0 0 0 0.5325

β 1.4650 0 0 0 −1.6278

XV α 0.3427 2.0830 0 0 −1.1498

β 0.7991 0.7341 0 0 −0.5360

XVI α 0.5929 0 −1.1857 0 1.1857

β 1.0556 0 2.1112 0 −2.1112

XVII α −0.2201 2.3900 0.4401 −1.5933 −0.4401

β 0.1106 1.9238 0.5040 −1.4409 −0.5040

γ 0.3339 1.5509 0.6678 −1.0339 −0.6678

δ 0.7139 1.1670 2.4589 −1.9465 −2.4077

ε 0.7394 1.1381 2.4016 −1.8889 −2.4016

ζ 0.7971 −0.3573 −0.7735 0.5750 0.7735

out in Refs. [48,55–58], where the reduced versions of the
Hamiltonian (7) were analyzed using RG methods, this FP
cannot be reached along the RG flow starting from physical
initial conditions. Indeed, the bare coupling constants satisfy
conditions (8) and (9) and have fixed signs outlined below
Eq. (7). The RG flow starting in this region will never reach FP
III because of separatrices that restrict its basin of attraction.

We also computed the FPs for m = 2, m = 3 and n = 1,
n = 2, n = 3 which are shown in Tables VII–XIV of Ap-
pendix B. We find that the FP III is also the only stable FP
for n = 1, while for n > 1 there is no stable FP.

Therefore, the exhaustive analysis of the one-loop β func-
tions indicates the absence of a continuous phase transition of
the random anisotropy with a generic random-axis distribu-
tion. In the next subsection we show that this conclusion holds
also at the two-loop order contrary to the claim of Ref. [60].

B. Two-loop approximation

As it was shown for the model with three coupling con-
stants the straightforward calculation of the FP coordinates
using the asymptotic series is not very accurate [55]. To

extract the reliable information, we apply the Padé-Borel
resummation method [84] which is described in Appendix C.

In this subsection we analyze the β functions (37) and (38)
in the replica limit of n = 0 for m = 2, m = 3. To that
end we resume them using the Padé-Borel method (C3) and
then solve the obtained system of five nonlinear equations.
The computed FPs are shown in Tables III and IV (for the
massive RG scheme) and in Tables V and VI (for the MS
scheme). There we list only the FPs with real coordinates. In
the limiting cases, the obtained results reproduce the known
ones [48,55–57].

Unlike the one-loop approximation, where we know the
number of solutions, here we solve the system of nonalgebraic
equations and thus the number of FPs is unknown in advance.
This procedure may lead to spurious FPs which are not
perturbative in ε, i.e., do not coincide with the Gaussian FP
in d = 4 and which appear and disappear once one increases
the number of loops taken into account. If such a solution
exists and turns out to be stable, one needs a careful analysis
to check if this is a real or spurious FP, see, e.g., Refs. [67–69].
Fortunately we do not find such solutions, since all FPs turn
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TABLE IV. FPs for m = 3 computed in the massive scheme to two-loop order.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.8102 0 0 0

III 1.1857 0 0 0 0

IV 0 0 1.1857 0 0

V 0 0 0 1.0339 0

VI 0.1733 0.6460 0 0 0

VII 2.1112 0 −2.1112 0 0

VIII 0 0.8394 0 −0.0485 0

IX 0.1695 0.7096 0 −0.1022 0

X α 0.6678 0 −0.6678 1.0339 0

β −0.1387 0 −0.2667 1.5509 0

XI α −0.0879 −0.0070 −0.3295 1.5731 0

β 0.2833 −0.1901 −0.5381 1.5365 0

γ 0.4371 0.4027 0.7289 −0.5051 0

δ 0.5704 1.0219 1.1630 −2.2717 0

XII 0.4755 0 0 −2.4093 0

XIII 0 0 −0.4401 1.5933 0

XIV 0.5386 0 0 0 0.4431

XV 0.8450 0.5934 0 0 −0.4506

XVI 0.5753 0 −0.4570 0 0.6462

XVII 0.8962 −0.3497 −0.8276 0.7597 0.5187

out to be unstable. For the sake of convenience we adopt
the classification of one-loop FPs introduced in Table II by
regrouping all the two-loop FPs of the same symmetry found
using the resummation technique. Note that in this approxima-
tion the FP coordinates are renormalization scheme dependent
and differ for the massive and MS schemes [52].

We consider only the physical FPs with couplings u∗ > 0,
v∗ > 0, z∗ < 0, and any w∗ and y∗ (see Table II). Among all
FPs there is only one stable physical FP. This is the “polymer”
O(n = 0) FP, which is stable for any m (point III in Tables III–
VI), but unfortunately this FP is unreachable from physical
initial conditions. The FP with coordinates u∗ = v∗ = z∗ = 0,
w∗ < 0, and y∗ > 0, which corresponds to the stable FP of
the Hamiltonian (5), has one negative stability eigenvalue
associated with coupling z. Thus the stable and physically
accessible FP of the RAM with the cubic distribution of
local anisotropy axis (4) (FP XIII of Tables III–VI) becomes
unstable with respect to this perturbation. Let us compute the
corresponding crossover exponent φz which is related to the
stability eigenvalue

ωz = ∂βz

∂z

∣∣∣∣
0,0,w∗,y∗,0

(41)

as φz = −ωzν, where ν is the correlation length critical expo-
nent calculated in this fixed point (see, e.g., [48,57]). In the
massive scheme we find

ωz = −1.1947, φz ≡ −ωzν = 0.8071, (42)

while in the MS scheme we obtain

ωz = −1.0747, φz ≡ −ωzν = 0.7173. (43)

The difference between the results computed using different
renormalization schemes provides an estimation of the error
bars for the critical exponent values.

It is instructive to compare our result with the six-loop
estimate obtained within the massive RG scheme in Ref. [58],
where the RG dimension yz = −ωz calculated from a certain
scaling operator of the cubic model is yz = 1.16(6), and the
crossover exponent is φz = 0.79(4). Surprisingly our two-
loop estimates of these universal quantities are very close to
those obtained within the six-loop approximation. Such high
values of crossover exponents mean that the presence of even
a very small z contribution in (7) leads to high instability of
the FP XIII.

The analysis of the two-loop β functions calculated using
two different renormalization schemes gives a solid evidence
of the fact that there are no FPs that are simultaneously
stable and reachable from physical initial conditions for the
Hamiltonian (7).

V. CONCLUSIONS

We have studied the effect of generic structural disorder
on the critical properties of magnets. To that end we have
applied a field-theoretical RG to the RAM with a trimodal
distribution of random-anisotropy axes which combines the
isotropic and cubic distributions. We have derived the RG
functions for the model (7) with arbitrary m and n to two-loop
order. We have used two different regularization schemes, the
MS scheme and the massive scheme, in order to check the
validity of our results. We have verified that the RG functions
reproduce the results known for the limiting cases of the
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TABLE V. FPs for m = 2 computed in the MS scheme to two-
loop order.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 1.1415 0 0 0

III 1.5281 0 0 0 0

IV 0 0 1.5281 0 0

V 0 0 0 1.3146 0

VI 0.1429 0.9923 0 0 0

VII 2.5382 0 −2.5382 0 0

VIII α 0 −0.6347 0 2.1354 0

β 0 1.9719 0 −1.1346 0

IX α −0.2506 2.4494 0 −1.6330 0

β −0.2273 0.0544 0 1.5335 0

X α −0.0328 0 −0.2134 1.6275 0

β 0.7311 0 −0.7311 1.3146 0

XI α −0.1940 0.0306 −0.0400 1.5737 0

β −0.0228 −0.0003 −0.2247 1.6294 0

γ 0.2670 −0.1330 −0.4058 1.6247 0

δ 0.5580 0.6121 0.9464 −0.6988 0

ε 0.5580 1.5704 1.2423 −2.7081 0

ζ 2.3469 −2.1042 −2.8990 2.3216 0

XII −0.2506 0 0 1.6330 0

XIII 0 0 −0.2506 1.6330 0

XIV α 0.7060 0 0 0 0.6578

β 1.6637 0 0 0 −1.8212

XV α 0.4515 2.2913 0 0 −1.2002

β 1.0126 0.9058 0 0 −0.6522

XVI α 0.7641 0 −1.5281 0 1.5281

β 1.2691 0 2.5382 0 −2.5382

XVII α −0.1253 2.4494 0.2506 −1.6330 −0.2506

β 0.1053 2.2733 0.4659 −1.6032 −0.4659

γ 0.3656 1.9719 0.7311 −1.3146 −0.7311

δ 0.6551 1.5440 3.1917 −2.6796 −2.7467

ε 0.8821 1.2846 2.6931 −2.1470 −2.6931

ζ 1.0333 −0.4429 −0.9614 0.7097 0.9614

isotropic and cubic distributions. Applying the Padé-Borel
resummation technique we have identified all FPs of the RG
flow and studied their stability. This reveals no stable FP in
both schemes except for the FP III, which is unaccessible from
physical initial conditions. This indicates the absence of a con-
tinuous phase transition at variance with the claim of Ref. [60]
about the existence of a continuous phase transition of a new
universality class. However, as we shown the conclusion of
Ref. [60] was based on erroneous two-loop β functions which
neither possess the required symmetry properties nor match
with the known results.

Our results show that the magnetic materials with general
distribution of random-anisotropy axes do not undergo a
continuous phase transition. Although the RG analysis of the
type presented here is not able to make a solid conclusion
about the origin of the low-temperature phase, our result in
combination with other theoretical and numerical data (see

TABLE VI. FPs for m = 3 computed in the MS scheme to two-
loop order.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 1.0016 0 0 0

III 1.5281 0 0 0 0

IV 0 0 1.5281 0 0

V 0 0 0 1.3146 0

VI 0.3411 0.6965 0 0 0

VII 2.5382 0 −2.5382 0 0

VIII 0 0.8568 0 0.2270 0

IX α −0.2126 0.0341 0 1.5407 0

β 0.3405 0.7275 0 −0.0511 0

X. α 0.7311 0 −0.7311 1.3146 0

β −0.0328 0 −0.2134 1.6275 0

XI α −0.0225 −0.0003 −0.2250 1.6294 0

β −0.1787 0.0175 −0.0503 1.5838 0

γ 0.1822 −0.0744 −0.3824 1.6437 0

δ 0.5908 0.4827 0.8871 −0.6083 0

ε 0.6928 1.2393 1.3072 −2.5420 0

XII −0.2506 0 0 1.6330 0

XIII 0 0 −0.2506 1.6330 0

XIV 0.7126 0 0 0 0.5377

XV 1.0728 0.7310 0 0 −0.5483

XVI 0.7555 0 −0.5382 0 0.7820

XVII 1.1512 −0.4311 −1.0150 0.9279 0.6426

in particular the review of results in the introductory part of
this paper) gives one more argument in favor of an absence
of a low-temperature long-range ordered state [48]. This is in
contrast to the anisotropic distribution of random-anisotropy
axes where the ferromagnetic order persists in the presence of
structural disorder [85]. This does not exclude existence of a
QLRO phase similar to that in the case of isotropic distribution
of random anisotropies [37], which, however, is not accessible
within our method.

Beside the RAM with a generic random-anisotropy dis-
tribution, the RG functions (38), which we have obtained
for general m and n, can be also used to study the critical
properties of other models such as the dilute cubic model [80]
and the tetragonal model [1].
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APPENDIX A

Here we present the relations between our two-loop β

functions computed within MS scheme in the limit of n = 0
(βu, βv, βw, βy, βz) and the β functions computed in Ref. [64]
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TABLE VII. FPs to the first order in ε for m = 2 and n = 0.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.6 0 0 0

III 0.75 0 0 0 0

IV 0 0 0.75 0 0

V 0 0 0 0.6667 0

VI −0.75 1.5 0 0 0

VII 1.5 0 −1.5 0 0

VIII 0 1 0 −0.6667 0

X 0.5 0 −0.5 0.6667 0

XI 1.5 2.3028 3.4542 −8.1407 0

0.2295 0.3524 0.5285 −0.3987 0

0.3631 −0.3153 −0.4730 1.1148 0

1.5 −1.3028 −1.9542 1.4741 0

XIV 0.3170 0 0 0 0.3660

1.1830 0 0 0 −1.3660

XV 0.2592 −5.7784 0 0 4.3338

0.5208 0.4984 0 0 −0.3738

XVI 0.375 0 −0.75 0 0.75

0.75 0 1.5 0 −1.5

XVII 0.25 1 0.5 −0.6667 −0.5

0.1266 1.3568 0.4730 −1.1148 −0.4730

3.2262 −9.9050 −3.4530 8.1381 3.4530

0.5229 0.9083 1.9541 −1.4740 −1.9541

0.4938 −0.2457 −0.5285 0.3987 0.5285

TABLE VIII. FPs to the first order in ε for m = 3 and n = 0.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.5455 0 0 0

III 0.75 0 0 0 0

IV 0 0 0.75 0 0

V 0 0 0 0.6667 0

VI −0.1875 0.75 0 0 0

VII 1.5 0 −1.5 0 0

VIII 0 0.6667 0 −0.2222 0

IX −0.25 1. 0 −0.3333 0

X 0.5 0 −0.5 0.6667 0

XI 0.9313 1.1375 1.9906 −4.2749 0

0.2411 0.2945 0.5153 −0.3657 0

0.3691 −0.3453 −0.6043 1.2979 0

2.8187 −2.6375 −4.6156 3.2749 0

XIV 0.3158 0 0 0 0.3158

2.25 0 0 0 −3

XV 0.1423 −2.9716 0 0 2.3113

0.5488 0.4055 0 0 −0.3154

XVI 0.3462 0 −0.3462 0 0.4615

1.5 0 2.25 0 −3

XVII 0.3 0.8 0.5 −0.667 −0.4

0.2934 0.8369 0.4968 −0.7111 −0.4079

0.1644 1.2038 2.8826 −2.6746 −1.7597

0.5678 −0.2432 −0.5823 0.5403 0.3555

760.35 −3077.7 −1826.85 2615.25 1500

for the phase transition in the crystals with low-symmetry point defects at replica limit (βλ, βg, βũ, βṽ, βw̃). They read

βλ(λ, g, ũ, ṽ, w̃) = − 1
96

[
βy[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃] + βv[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃]

]
,

(A1)

βg(λ, g, ũ, ṽ, w̃) = − 1
96βv[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃], (A2)

βũ(λ, g, ũ, ṽ, w̃) = 1
96

[
βu[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃] + βw[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃]

+βz[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃]
]
, (A3)

βṽ (λ, g, ũ, ṽ, w̃) = 1
96βu[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃], (A4)

βw̃(λ, g, ũ, ṽ, w̃) = 1
96βz[−48ṽ, 48g, 48(ṽ+w̃−ũ), 48(λ−g),−48w̃]. (A5)

APPENDIX B

In this Appendix we give details on finding the FPs with
z∗ �= 0 to one-loop order. There are 16 such FPs which can be
found along the lines of Ref. [64]. Introducing variables

a = u/z, b = v/z, c = w/z, d = y/z, (B1)

we arrive at the system of nonlinear algebraic equations

(m + 4)b2 + (6d + m − n + 6)b + 6d = 0, (B2a)

(n + 4)c2 + (6d + n − m + 6)c + 6d = 0, (B2b)

9d2 + (8b + 8c − m − n + 2)d + 8bc = 0, (B2c)

(4 − mn)a2 − (2mb + 2nc + 6d + m + n − 2)

− (2bc + 2b + 2c + 3) = 0, (B2d)

ε − z[2a + 2b/3 + 2c/3 + (m + n + 4)/6] = 0. (B2e)
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TABLE IX. FPs to the first order in ε for m = 2 and n = 1.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.6 0 0 0

III 0.6 0 0 0 0

IV 0 0 0.6667 0 0

V 0 0 0 0.6667 0

VI 3 −3 0 0 0

VII 1 0 −0.6667 0 0

VIII 0 1 0 −0.6667 0

IX 1 −1 0 0.6667 0

X 0.6 0 −0.4 0.4 0

XI 0.5455 0.4545 0.5455 −1.2121 0

0.3273 0.2727 0.3273 −0.3273 0

0.4545 −0.4545 −0.5455 1.2121 0

1.3636 −1.3636 −1.6364 1.6364 0

XII 1 0 0 −0.6667 0

XIII 0 0 2. −2 0

XIV 0.36 0 0 0 0.24

1.2 0 0 0 −1.2

XV 0.2308 −1.6154 0 0 1.3846

0.5538 0.3231 0 0 −0.2769

XVI 0.3333 0 −0.6667 0 0.6667

0.6667 0 0.6667 0 −0.6667

XVII 0.1818 1.3637 0.5455 −1.2122 −0.5455

0.8182 −1.3636 −0.5455 1.2121 0.5455

0.5454 1.0910 1.6365 −1.6365 −1.6365

0.4909 −0.2182 −0.3273 0.3273 0.3273

0.4 0.6 0.4 −0.4 −0.4

1 −3 −2 2 2

Solving the system of the first three equations (B2a)–(B2c)
with respect to b, c, and d , we obtain for the case n �= 0
eight sets of roots. Substituting each set (b, c, d) into the
quadratic equation (B2d) we find two values of a leading to
16 sets (a, b, c, d). The corresponding value of z for each
set is found from the linear equation (B2e). Subsequently,
variables u, v,w, y can be found using (B1). Out of all 16
solutions, only six can be expressed in the analytic form.
These are related to three solutions of the system of equations
(B2a)–(B2c):

b = c = d = 0,

b = −m − n + 6

m + 4
, c = d = 0,

b = 0, c = −n − m + 6

n + 4
, d = 0. (B3)

These FPs are denoted by XIV–XVI in Table II. Their coor-
dinates in the limit n → 0 reproduce the results obtained in
Refs. [55,64]. The coordinates of the rest of the ten FPs can
be found only numerically. Let us note that the coordinates of

TABLE X. FPs to the first order in ε for m = 3 and n = 1.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.5455 0 0 0

III 0.5455 0 0 0 0

IV 0 0 0.6667 0 0

V 0 0 0 0.6667 0

VI 6 −6 0 0 0

VII 0.6667 0 −0.2222 0 0

VIII 0 0.6667 0 −0.2222 0

IX 2 −2 0 0.6667 0

X 0.5455 0 −0.1818 0.1818 0

XI 0.4912 0.1754 0.2456 −0.4678 0

0.4019 0.1435 0.2010 −0.2010 0

0.5263 −0.5263 −0.7368 1.4035 0

1.5790 −1.5790 −2.2105 2.2105 0

XII 0.6667 0 0 −0.2222 0

XIII 0 0 2 −2 0

XIV 0.4091 0 0 0 0.1364

1.5 0 0 0 −1.5

XV 0.1667 −1.3333 0 0 1.1667

0.5303 0.1212 0 0 −0.1061

XVI 0.3889 0 −0.2222 0 0.2778

0.8333 0 0.6667 0 −0.8333

XVII 0.4091 0.2727 0.2727 −0.2727 −0.1364

1.5 −3 −3 3 1.5

0.3889 0.5556 0.3333 −0.5556 −0.2778

0.8333 −1.6667 −1 1.6667 0.8333

0.1667 0.9998 2.3332 −2.3332 −1.1666

0.5303 −0.0909 −0.2121 0.2121 0.1061

these FPs for the considered values of m and n attain complex
values in general. Finally, we have to solve the fifth-order
equation for b. The solution of the system of Eqs. (B2a)–(B2c)
for nonvanishing n, reduces to the solution of the following
fifth-order equation for b:

(m + 4)(3m − 4)(3mn − 4m − 4n + 16)b5

+ [m3(39n − 68) + m2(−15n2 + 198n + 456)

+ 8m(n2 − 56n − 72) + 16(n2 + 6n + 24)]b4

+ [m3(67n − 148) + m2(−34n2 + 576n + 1536)

+ m(7n3 − 96n2 − 996n − 2960) − 4n3 + 96n2

+ 560n + 1728]b3 + [3m3(19n − 52) + m2(−19n2

+ 662n + 2056) − m(5n3 + 88n2 + 1060n + 4112)

− n4 + 30n3 + 60n2 + 744n + 2016]b2 + 4[m3(6n

− 20) + m2(n2 + 82n + 312) − 4m(n3 − 5n2

+ 28n + 164) + n4 − 10n3 + 20n2 + 8n + 352]b

+ 4(m + n − 2)[m2(n − 4) + 4m(5n + 16) − n3

− 4n2 − 28n − 48] = 0. (B4)
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TABLE XI. FPs to the first order in ε for m = 2 and n = 2.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0
II 0 0.6 0 0 0
III 0.5 0 0 0 0
IV 0 0 0.6 0 0
V 0 0 0 0.6667 0
VIII 0 1 0 −0.6667 0
XIII 0 0 1 −0.6667 0
XVII 0.9 −1.2 −1.2 1.2 0.6

0.3 0.6 1.2 −1.2 −0.6
0.3 1.2 0.6 −1.2 −0.6
0.5 1 1 −1.3333 −1
0.5 −1 1 0.6667 1

Then c and d can be found from

c = {b[(3m − 4)b + 5m − n − 2] + 2(m + n − 2)}
× [(m + 4)b + m − n + 6]

6(b + 1)[b(m − 2) + m − n]
, (B5)

d = −b
(m + 4)b + m − n + 6

6(b + 1)
. (B6)

Other parameters can be found using the procedure described
above.

The task is simplified in the case n = 0, since we can
extract separate set of roots b = −2, c = −(m + 2)/4, d =
(m + 2)/3 in addition to (B3). Therefore we can find the rest
of the four roots solving the fourth-order equation

(3m − 4)(m2 − 16)b4 + (m − 4)[m(11m + 2) − 8]b3

+{m[3m(5m − 36) + 196] − 112}b2

+ (m − 2)[m(9m − 88) + 76]b

+ 2(m − 2)[(m − 16)m + 12] = 0. (B7)
that can be done analytically [86].

TABLE XII. FPs to the first order in ε for m = 3 and n = 2.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0
II 0 0.5455 0 0 0
III 0.4286 0 0 0 0
IV 0 0 0.6 0 0
V 0 0 0 0.6667 0
VI 0.1765 0.3529 0 0 0
VII 0.2727 0 0.2727 0 0
VIII 0 0.6667 0 −0.2222 0
IX 0.2 0.4 0 −0.1333 0
X 0.3333 0 0.3333 −0.2222 0
XII 0.3333 0 0 0.2222 0
XIII 0 0 1. −0.6667 0
XV 0.2727 −0.5455 0 0 0.5455

0.3529 −0.3529 0 0 0.3529
XVII 0.3333 −0.6667 −0.3333 0.2222 0.6667

0.4 −0.4 −0.2 0.1333 0.4

TABLE XIII. FPs to the first order in ε for m = 2 and n = 3.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.6 0 0 0

III 0.4286 0 0 0 0

IV 0 0 0.5455 0 0

V 0 0 0 0.6667 0

VI 0.2727 0.2727 0 0 0

VII 0.1765 0 0.3529 0 0

VIII 0 1 0 −0.6667 0

IX 0.3333 0.3333 0 −0.2222 0

X 0.2 0 0.4 −0.1333 0

XII 0.3333 0 0 0.2222 0

XIII 0 0 0.6667 −0.2222 0

XVI 0.2727 0 −0.5455 0 0.5455

0.3529 0 −0.3529 0 0.3529

XVII 0.3333 −0.3333 −0.6667 0.2222 0.6667

0.4 −0.2 −0.4 0.1333 0.4

The rest of the FPs which can be computed only numeri-
cally are shown in Tables VII–XIV for several values of m and
n. Analysis of these FPs indicates the absence of stable FPs for
m = 2, m = 3 in the cases n = 2 and n = 3 (Tables XI–XIV).
For other values of n (n = 0 and n = 1) for m = 2 and m = 3
only FP III is stable.

APPENDIX C

Here we present the resummation procedure used in our
study. The RG functions calculated within a field-theoretical
approach are represented by asymptotic series. They are
characterized by a factorial growth of the coefficients im-
plying a zero radius of convergence [51,52]. Extracting from
them a physical information requires application of resumma-
tion methods, such as the Borel resummation accompanied

TABLE XIV. FPs to the first order in ε for m = 3 and n = 3.

FP u∗ v∗ w∗ y∗ z∗

I 0 0 0 0 0

II 0 0.5455 0 0 0

III 0.3529 0 0 0 0

IV 0 0 0.5455 0 0

V 0 0 0 0.6667 0

VI 0.0896 0.4478 0 0 0

VII 0.0896 0 0.4478 0 0

VIII 0 0.6667 0 −0.2222 0

IX 0.1053 0.5263 0 −0.1754 0

X 0.1053 0 0.5263 −0.1754 0

XII 0.2222 0 0 0.3704 0

XIII 0 0 0.6667 −0.2222 0
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by certain additional procedures [87]. We use Padé-Borel
resummation technique [84] for “resolvent” series, where an
auxiliary variable is introduced and Borel image of this series
is extrapolated by a rational Padé approximant [K/L] [88] for
this new variable. First, for a given initial polynomial

β(u, v,w, y, z) =
∑

1�i+ j+k+l+p�5

ai, j,k,l,puiv jwkyl zp, (C1)

we build resolvent polynomial introducing an auxiliary vari-
able λ in the following way:

F (u, v,w, y, z; λ)

=
∑

1�i+ j+k+l+p�5

ai, j,k,l,puiv jwkyl zpλi+ j+k+l+p−1. (C2)

It satisfies the relation F (u, v,w, y, z; λ=1)=β(u, v,w, y).
The Borel image for this series reads

F B(u, v,w, y, z; λ)

=
∑

1�i+ j+k+l+p�5

ai, j,k,l,puiv jwkyl zp

(i+ j+k+l+p−1)!
λi+ j+k+l+p−1. (C3)

Subsequently series (C3) is approximated by the Padé-
approximant [K/L](λ), since we are in two-loop approxima-
tion we can use only two approximants [1/1](λ), [0/2](λ).
It is known that approximants from the main diagonal of
the Padé matrix [88] have the best convergence properties,
therefore in our calculations we use the [1/1](λ) approximant.
Finally, the resummed β function is found via inverse Borel
transform:

βres(u, v,w, y, z) =
∫ ∞

0
dt exp(−t )[1/1](t ). (C4)

Applying this procedure for the analysis of the RG func-
tions (37)–(38e) (at the fixed dimension d = 3) and solving
the corresponding system of nonlinear FP equations, we ob-
tain the sets of FPs for m = 2, m = 3 in the massive scheme
as well as the MS scheme. Their coordinates are given in
Tables III–VI.
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