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Towards an ab initio theory for the temperature dependence of electric field gradients in solids:
Application to hexagonal lattices of Zn and Cd
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Based on ab initio band-structure calculations we formulate a general theoretical method for description of
the temperature dependence of an electric-field gradient in solids. The method employs a procedure of averaging
multipole electron-density component (l �= 0) inside a sphere vibrating with the nucleus at its center. As a result
of averaging, each Fourier component (K �= 0) on the sphere is effectively reduced by the square root of the
Debye-Waller factor [exp(−W )]. The electric-field gradient related to a sum of K components most frequently
decreases with temperature (T ), but under certain conditions because of the interplay between terms of opposite
signs, it can also increase with T . The method is applied to calculations of the temperature evolution of the
electric-field gradients of pristine zinc and cadmium crystallized in the hexagonal lattice. For calculations within
our model, of crucial importance is the temperature dependence of mean-square displacements which can be
taken from experiment or obtained from the phonon modes in the harmonic approximation. For the case of Zn,
we have used data obtained from single-crystal x-ray diffraction. In addition, for Zn and Cd, we have calculated
mean-square displacements with the density-functional perturbation treatment of the QUANTUM ESPRESSO

package. With the experimental data for displacements in Zn, our calculations reproduce the temperature
dependence of the electric-field gradient very accurately. Within the harmonic approximation of the QUANTUM

ESPRESSO package, the decrease in electric-field gradients in Zn and Cd with temperature is overestimated. Our
calculations indicate that the anharmonic effects are of considerable importance in the temperature dependence
of electric-field gradients.
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I. INTRODUCTION

The electric-field gradient (EFG) is a very sensitive char-
acteristic of electron structure [1–4]. It is directly measured
by the family of methods experiencing quadrupole hyperfine
interactions, such as nuclear quadrupole resonance, Möss-
bauer spectroscopy, and perturbed angular correlation (PAC)
spectroscopy [4–6]. Nuclear probes in these techniques are ex-
posed to the local electronic and molecular structures via the
electric interaction between the nuclear quadrupole moment
and the surrounding electronic charge distribution providing a
spectroscopic fingerprint of the electron environment.

The methods are utilized in a wide range of applica-
tions. The time-differential perturbed γ -γ angular correlation

(TDPAC) spectroscopy [5,6], for example, can be used in
biochemistry characterizing interactions between metal ions
and proteins [7], point defects in metals, and, recently, in
semiconductors [8] and surface and interface properties, de-
tecting charge-density wave formations and structural phase
transitions [9] in various materials. Although the TDPAC
spectroscopy has been known for more than 40 years, it still
has a rich potential for solid-state physics and novel materials
[6–8].

On the other hand, the EFGs measured by these techniques
can be confronted with theoretical values obtained from
ab initio calculations [10–12] which should give a thorough
picture of microscopic properties of the investigated material.
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Recently, such a comparison has led to an improved value
of the nuclear quadrupole moment of cadmium [13,14]. The
problem is, however, that, in many cases, there is a strong
temperature (T ) dependence of the EFGs [1–3,15], discussed
in detail in Sec. II A below, which is often not taken into
account. In contrast to ab initio calculations of the EFGs,
first-principles studies of the T dependence of theEFGs are
very rare [2,16]. Several models put forward in the past (see
Sec. II A) rely heavily on phenomenological parameters [1,3].

In the present paper, following the ab initio path, we
formulate a theoretical approach to this problem, which on the
basis of crucial band-structure parameters [17] can describe
the T evolution (i.e., decrease or increase) of the EFG in
detail. We demonstrate our method by applying it to the
hexagonal-close-packed (hcp) structure of zinc and cadmium
both of which show the characteristic temperature decrease in
the EFG [1,18].

The paper is written as follows: in Sec. II, we give details
of our approach, in Sec. III, we describe our results for the T
reduction of the EFG in hcp zinc and cadmium, discussing
separately the possibility of the increasing EFG with T in
Sec. III C. Our conclusions are summarized in Sec. IV.

II. THEORETICAL MODEL

A. Theoretical background and models of the T dependence

The EFG tensor Vi j is defined as the second partial spa-
tial derivatives of an electric self-consistent-field potential V
evaluated at the nuclear site, i.e.,

Vi j = ∂2V

∂i ∂ j
, (1)

where i = x, y, z. Since Vi j is a symmetric (traceless) second
rank tensor, it can be further diagonalized by transforming co-
ordinates to the principal system of axes where |Vzz| � |Vyy| �
|Vxx|. (Thus, the number of independent parameters for the
EFG in the principal axis system is reduced to two.) The
principal component (Vzz) is called the electric-field gradient,
and the second independent parameter is the asymmetry η

defined as η = (Vxx − Vyy)/Vzz (0 � η � 1).
Very often, EFGs demonstrate a strong temperature (T )

dependence which can be described by a equation of this form

Vzz(T ) = Vzz(T = 0)(1 − BT α ), (2)

where the coefficient B > 0 implying a smaller EFG with
increasing T and the coefficient α is usually 3/2 [18,19].
Later, however, this “universal” form of the T dependence
was corrected [20]: It was attributed to normal (sp) metals,
whereas for transition metals, deviations from the T 3/2 law
were notable (down to α ≈ 1). In some cases, the quadratic
approximation, also gave good quality fits [20]. Even in
classical systems, such as 67Zn in zinc metal or 111Cd probes
in cadmium metal, there were found deviations from the T 3/2

law at low temperatures [20].
Since the discovery of strong T dependence of the EFG,

the problem has been considered theoretically [16,22–26].
Two main approaches have been put forward in the past: One
is based on electron band-structure methods [22,23,25,26],
whereas the other used screened charged potential formalism

[24]. A starting point for both methods is, in fact, the phe-
nomenological expression for Vzz [27],

Vzz = (1 − γ∞)V latt
zz + (1 − R)V el

zz , (3)

where V latt
zz is the field gradient due to the noncubic ar-

rangement of ions in the lattice (excluding the central site),
corrected by the antishielding factor γ∞ and V el

zz is due to
the conduction electrons corrected by the shielding factor R
[1]. The screened charged method works with V latt

zz calculating
lattice sums over vibrating ions, whereas the first approach
works with the electron contribution (V el

zz ) and considers V latt
zz

as virtually temperature independent. Nowadays, however, we
do not analyze the EFG in terms of V latt

zz , V el
zz , γ∞, and R.

With the success of ab initio all-electron methods for the
electronic structure of solids [10–12] capable of treating the
electron potential of general shape, the electric-field gradient
Vzz at zero temperature can be found directly from the obtained
self-consistent potential. Equation (3) then should be rewritten
in a general form as

Vzz = V out
zz + V in

zz , (4)

where V in
zz is the local contribution due to the EFG, for

example, from the charges inside a muffin-tin (MT) sphere,
whereas V out

zz is from the charges outside the MT sphere [more
details on Eq. (4) are given below in Sec. II C]. Moreover,
V in

zz and V out
zz can be calculated, and we know that, by far, the

leading term is V in
zz [16]. In our case, V out

zz /Vzz amounts only to
−2.7% for Zn and −1.1% for Cd. (The minus sign of V out

zz is
discussed in Ref. [3].)

In Ref. [22], Jena started with V in
zz and used reduced matrix

elements M ′ = M exp(−W ) of the pseudopotential which
appeared as a result of averaging M over the lattice vibrations
[28]. Note that exp(−W ) is a square root of the Debye-Waller
factor (SRDWF) exp(−2W ). Keeping in exp(−W ) ≈ 1 − W
only the first-order term in W � 1, he finally arrived at

Vzz = Vzz(0)[1 − βϕ(T/TD)]. (5)

Here, TD is an effective Debye temperature, the function ϕ is
the Debye integral [29], and β is an adjustable constant. Since
at low T, ϕ(T/TD) approaches the zero-point value as T 2,
and at high T , increases linearly with T , in the region of 0 <

T/TD < 2, a T 3/2 behavior is approximately followed. The
concept of Ref. [22] continued in a number of publications on
the T dependence of the EFG [23,25,26]. These studies cannot
be attributed to a true ab initio approach, although elements of
it are present in Refs. [26,28]. Although the T curves for Vzz

can be reproduced in some cases, one should be aware that,
in Eq. (5), TD and especially β are fitting parameters of the
model. Explicit EFG computation in these models has been
avoided in favor of finding expected trends with temperature.

Nowadays, although we can successfully obtain the T = 0
value of Vzz by performing ab initio band-structure calcu-
lations, the problem of finding its T dependence from first
principles remains. It is a difficult and laborious problem
because it requires an accurate calculation of both electronic
and phonon properties. Probably, the first attempt was per-
formed by Torumba et al. in Ref. [16], who used molecular
dynamics and a supercell calculation of pristine cadmium. For
the T dependence of Vzz atoms in the supercell were displaced
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according to the values of mean-square displacements at this
temperature after which the value of Vzz(T ) was obtained by
averaging over various displacive configurations. The authors
have observed the decrease in the EFG with T in the supercell
approach, although their data deviate from the experimental
curve at T > 500 K.

Surprisingly, in some studies, an increase in Vzz with T has
been reported. For example, in 5% Fe-doped In2O3 [30], in
the rutile modification of TiO2 [31,32] and in tetrahedrally
coordinated Fe sites in Bi2(FexGa1−x )4O9 [15]. In the rutile
structure, the situation is, in fact, probe dependent: Whereas
the EFG measured at 47,49Ti or substitutional 181Ta and 44Sc
increases with T , it changes in the opposite direction for
111Cd probes [31,32]. The increase in the EFG is in disagree-
ment with the classical treatment [33,34] of the evolution
of the EFG in ionic and molecular crystals based on small
rotations of the gradient tensor with respect to a fixed system
of axes, according to which

〈Vzz〉 = Vzz(0)

[
1 − 3

2

(〈
θ2

x

〉 + 〈
θ2

y

〉)]
. (6)

Here, θx and θy are small rotations about the x and y axes,
respectively, and 〈θx〉 = 〈θy〉 = 0. Note that Eq. (6) always
leads to a decrease in the EFG with T .

Below, we formulate a theoretical approach to this prob-
lem, which, depending on specific conditions, can result both
in temperature decrease or increase of the EFG with temper-
ature. It establishes a close relation between the values of the
mean-square displacements and the evolution of the EFG and
uses the square root of the Debye-Waller factor exp(−W )
which lies at the center of early phenomenological models
[1,22,24]. The method is applied to the temperature decrease
in Vzz in hcp zinc and cadmium [1,18].

B. Reduced quadrupole potential and density
on the displaced MT spheres

The temperature dependence of the EFG is clearly a
manifestation of both electron and phonon properties. To
evaluate correctly Vzz, we have to effectively average it over
atomic vibrations because a typical frequency of the lattice
vibrations (1 THz = 1012 Hz) is large compared to a typical
quadrupole frequency (100 MHz = 108 Hz) experienced by
nuclear probes in solids.

The electron density of a solid ρ( 	R) is a translationally
invariant quantity,

ρ( 	R + 	ai ) = ρ( 	R), (7)

where 	ai (i = 1–3) are the basis vectors of the Bravais lattice.
Therefore, ρ( 	R) can be expanded in Fourier series,

ρ( 	R) =
∑

	K
ρ( 	K )ei 	K · 	R, (8)

where the vectors 	K belong to the reciprocal lattice. Fourier
components ρ( 	K ) are usually found quite naturally from so-
lutions of the Schrödinger (or Dirac) equation for an electron
in a periodic mean-field potential of the solid. According to
the Bloch theorem, the solution for the electron band j has the

FIG. 1. Vibrations of MT-spheres n = 1–4 and the interstitial
region (I). The dashed lines: averaged surfaces positions in the ideal
structure; the full (red) lines: instantaneous positions; the arrows
indicate the sphere displacements un, n = 1–4. As a result of sphere
vibrations, the averaged quadrupole potential 〈VQ〉 on the sphere
surfaces is reduced, see the text for details.

form


	k, j ( 	R) =
∑

	K
c	k, j ( 	K )φ 	K+	k ( 	R), (9)

where the vector 	k lies in the first Brillouin zone, φ 	K+	k’s are

basis functions, and c	k, j ( 	K )’s are the coefficients of expansion
in the basis set. Almost in all computational methods, the basis
functions are modified plane waves, which, in the interstitial
region, are simply φ 	K+	k ( 	R) ∼ exp[i( 	K + 	k) · 	R]. Substituting
Eq. (9) in

ρ( 	R) = 2
∑

	k, j: E (	k, j)�EF

|
	k, j ( 	R)|2, (10)

where EF is the Fermi energy, we obtain Eq. (8) with the
Fourier coefficients ρ( 	K ) given by

ρ( 	K ) =
∑

	k, j: E (	k, j)�EF

∑
	K ′

c∗
	k, j

( 	K ′)c	k, j ( 	K ′ + 	K ). (11)

The electron density in the interstitial region is only weakly
dependent on the amplitudes of the vibrations since the band
electron on average experiences a periodic potential from
the regular arrangement of the ions. On the other hand, the
electron density around a nucleus being attached to it by
the Coulomb interaction is expected to follow adiabatically
the vibrating ion. To reconcile these apparently contradictory
viewpoints, we consider a model of vibrating spheres [called
below muffin-tin or MT spheres], Fig. 1, which are immersed
in the crystal. We keep the values of ρ( 	K ), Eq. (11) in the
interstitial region unchanged whereas the electron density on
the vibrating sphere will be calculated taking into account
the nuclear displacements. It turns out that, at a finite and
even zero temperature T , the quantities ρ( 	K ) on vibrating MT
spheres are effectively reduced (see below). In the language of
the linearized augmented plane-wave (LAPW) method, this
implies a modification of boundary conditions for the solu-
tions inside the MT sphere [35], which, in turn, changes the

064310-3



A. V. NIKOLAEV et al. PHYSICAL REVIEW B 101, 064310 (2020)

EFG. Therefore, our main goal is to calculate the temperature
dependence of the electron density on the vibrating sphere,
which later (Sec. II D) will be used for the calculation of
the EFG. In the following, we consider a simple case of a
single atom in the primitive unit cell. (This avoids unnecessary
technical complications, whereas the generalization for the
case of few atoms is straightforward.)

The electron density on a MT sphere of the radius RMT

centered at a site n and displaced from the equilibrium po-
sition 	X (n) = {Xx(n), Xy(n), Xz(n)} by the vector 	un can be
expanded in the multipole series,

ρ(	un, r = RMT, θ, φ) =
∑
�

ρ�(	un)S�(θ, φ), (12)

where � ≡ (l, τ ) stands for A1g irreducible representations of
the crystal point group, S�(θ, φ)’s are corresponding sym-
metry adapted functions (SAFs), l is the multipole orbital
index, and τ counts functions with the same l (if there
are few such functions). The polar angles � = (θ, φ) are
specified by the vector 	r from the nuclear position ( 	X +
	u). S�(θ, φ)’s are linear combinations of real spherical har-
monics (Y m,c

l ∼ cos mφ and Y m,s
l ∼ sin mφ) defined by the

crystal site symmetry and tabulated in Ref. [36]. The first
function with � = 0 (l = 0, τ = 1) is the spherically sym-
metric (monopole) contribution S0 = Y m=0

l=0 = 1/
√

4π . For
the hexagonal close-packed structure defined by the basis
vectors specified in Ref. [36], the other multipole functions are
as follows: Y m=0

l=2 , Y 3,c
l=3, Y m=0

l=4 , Y 3,c
l=5, Y m=0

l=6 , Y 6,c
l=6, etc. The

index � runs over (0, 1) ≡ 0, (2, 1) ≡ Q, (3,1), (4,1), (5,1),
(6,1), (6,2), etc. Thus, we have only one quadrupolar function
SQ ≡ Sl=2 = Y m=0

l=2 , which explicitly reads as

SQ(z) = 1

4

√
5

π
(3z2 − 1), (13)

where z = cos θ . Then, the general equation (12) can be
written as

ρ(	u, θ, φ) = ρ0(	u)√
4π

+ ρQ(	u) SQ(θ, φ)

+ ρ(3,1)(	u)Y 3,c
l=3(θ, φ) + · · · . (14)

Rewriting the plane-wave expansion in spherical harmon-
ics (e.g., Eq. (34.3) of Ref. [37]) in the complete basis
set of symmetry adapted spherical harmonics (Eq. (2.4) of
Ref. [38]), one can obtain the expansion in terms of SAFs
centered at the displaced nucleus of the site n given by
	X (n) + 	un,

ei 	K · 	R = ei 	K ( 	X (n)+	un )4π

×
∑
�

il jl [Kr(n)]S�(K̂ )S�[θ (n), φ(n)]. (15)

Here, jl ’s are spherical Bessel functions and K̂ specifies the
direction of 	K , i.e., K̂ ≡ (θ 	K , φ 	K ). From Eq. (8), then, we
obtain for the coefficients ρ�, Eqs. (12) and (14), at any
chosen site n,

ρ�(	u) = 4π il
∑

	K
jl (KRMT)S�(K̂ )ρ	u( 	K ), (16)

where 	u ≡ 	un and

ρ	u( 	K ) = ei 	K ·	uρ( 	K ). (17)

Here, we have taken into account that for vectors 	K and 	X (n)
belonging to the reciprocal and direct lattice, respectively,
ei 	K 	X = 1. In the case of 	u = 0 (i.e., at the equilibrium position
	X ), we get ρ	u( 	K ) = ρ( 	K ), where ρ( 	K ) is defined by Eq. (11).
Averaging over the displacements at the chosen site n, we
arrive at

〈ρ�〉 = 〈ρ�(	u)〉 = 4π il
∑

	K
jl (KRMT)S�(K̂ )〈ρ( 	K )〉, (18)

where

〈ρ( 	K )〉 = 〈ei 	K ·	u〉ρ( 	K ). (19)

Note that Eqs. (18) and (19) are independent of n because
the thermal averages 〈ρ( 	K )〉 ≡ 〈ρ	un ( 	K )〉 and 〈exp(i 	K · 	un)〉
are the same for all equivalent atoms. As has been proved by
Glauber [39], the thermal average on the right-hand side of
Eq. (19) can be transformed to

〈ei 	K ·	u〉 = e−W ( 	K,T ), (20)

where

W ( 	K, T ) = 1
2 〈( 	K · u)2〉. (21)

Since the usual Debye-Waller factor is exp(−2W ) [29], the
temperature function exp(−W ), Eq. (20), is the SRDWF. Such
a function has been used by Kasowski for the description of
the temperature-dependent Knight shift in cadmium [28]. The
function W can also be written in k space [29] in the familiar
form

W ( 	K, T ) = 1

2N

∑
	k,s

〈[ 	K · us(	k)]2〉, (22)

where the summation runs over all vectors 	k in the first
Brillouin zone and the phonon branches s, whereas us(	k)
stands for the corresponding phonon amplitudes. From space
symmetry considerations, it follows that the function W ( 	K )
is the same for a set of (nonequivalent) vectors (rays) 	Ki

obtained from 	K1 = 	K by the application to 	K1 all rotational
or mirror symmetry elements of the crystal point group (i.e.,
for the vectors 	Ki belonging to the same star). In the harmonic
approximation, W implicitly depends on the temperature
through the number of thermally excited phonons n 	K,s. In
the Debye approximation at high temperatures, (T � TD)
W ∼ T .

For the calculation of the EFG, we need the quadrupole
component � = (2, 1)] of the electron density and potential,
the Appendix. For that purpose, with the final expressions
(18)–(21), we obtain for the average quadrupole component
〈ρQ〉 of density on the MT sphere in Eq. (14),

〈ρQ〉 = −4π
∑

	K
j2(KRMT)SQ(K̂ )e−W ( 	K,T )ρ( 	K ). (23)

This expression will be used later in Sec. II D.
Since for all 	K �= 0, we have W ( 	K ) > 0 even for zero

temperature, the corresponding averaged Fourier components
〈ρ( 	K )〉 in Eqs. (18) and (19) are effectively reduced. The
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reduction means that, as a rule, the quadrupole component
[〈ρQ〉 in Eq. (14)] and the other components with �′ > 0 (i.e.,
〈ρ(3,1)〉, etc.) on the MT-sphere surface are decreased in abso-
lute value in comparison with their static values: |〈ρ�′ (	u)〉| <

|ρ�′ (	u = 0)|. As will be discussed below in Sec. II D, the
effective decrease in 〈ρQ〉 occurs also in the interior of the MT-
sphere r � RMT and finally leads to a reduction of the EFG. In
some rare cases as a result of the interplay between terms of
opposite signs in Eq. (23), an increase in 〈ρQ〉 can occur. Such
a situation is discussed in detail below in Sec. III C.

The reduction or increase in 〈ρQ〉, however, does not affect
the total charge of the sphere because the integral over the
polar angles for SAFs SQ, Y 3,c

3 , and the others with l �= 0 are
zero. The total charge of the sphere is due to the monopole
term (l = 0), which is closely related to the 	K = 0 term in the
Fourier expansion of density, Eq. (8). Note that the ρ(K = 0)
component is independent of T , Eq. (19), keeping the total
charge inside the sphere approximately constant. A very small
decrease in the average value of 〈ρ0〉 in Eq. (14) (implying a
small increase in the charge in the interstitial region) can be
accounted for by a small increase in the ρ(K = 0) component
of the Fourier expansion (8). In our calculations, the effect is
found small and has been neglected.

In the following, we will apply our approach to the case of
the hexagonal-close-packed structure, although, in principle,
the consideration is general and can be used for other noncu-
bic lattices.

C. The EFG and quadrupole (L = 2) expansion of
the electron potential around the nucleus

In this section, we demonstrate that the reduction (or
increase) in 〈ρQ〉 inside the MT sphere results in a correspond-
ing change in the quadrupole component of the potential and
the electric-field gradient.

Similar to the density expansion Eq. (12), the electron
self-consistent-field Coulomb potential of the general form
around a nucleus, employed, for example, in the full potential
linearized augmented plane-wave (FLAPW) method [35,40],
also can be expanded in multipolar series,

V (r, θ, φ) =
∑
�

V�(r)S�(θ, φ). (24)

Note that the coefficients V�(r) for the potential and ρ�(r)
for electron-density Eq. (12) can be obtained from ab initio
electron band-structure calculations. In Figs. 2 and 3, we
reproduce such dependencies for the quadrupole component
l = 2.

From a scrupulous analysis of the multipolar components
of the potential (see the Appendix and Ref. [38]), it follows
that, in the neighborhood of the nucleus (when r � 1), the
radial dependence of the function Vl,τ reads as

V�(r) = v�rl , (25)

where v� is a constant. This, in particular, implies that,
for quadrupolar component [� = (2, 1)], we have VQ ≡
V(2,1)(r) = vQr2 for the component � = (4, 1) V(4,1)(r) =
v(4,1)r4, etc. This dependence of VQ(r) is illustrated in
Fig. 3. It is worth noting that the quadrupolar electron-density

FIG. 2. Density functional theory (DFT) calculation of the
quadrupole (l = 2) component ρQ(r) of electron density (top panel)
and the corresponding Coulomb potential VQ(r) (bottom panel)
inside the MT sphere of the hcp structure of Zn (a = 2.659, c =
4.851, RMT = 1.33 Å, or 2.51 a.u.).

component also follows the same law close to the nucleus, i.e.,
ρQ(r) ∝ r2, Fig. 3.

Taking Eq. (25) into account, we obtain for the electric-
field gradient,

Vzz = ∂2VQ

∂z2
=

√
5

π
vQ. (26)

Details are given in the Appendix. Note that Eq. (26) gives a
temperature-independent EFG.

The quadrupole potential on the MT-sphere V S
Q consists of

two contributions,

V S
Q = V S,out

Q + V S,in
Q . (27)

Here, V S,out
Q and V S,in

Q are the potentials due to all charges
outside the MT sphere and inside it, respectively. Corre-
spondingly, for the quadrupole potential VQ at any point 	r =
(r, θ, φ) inside the MT sphere, we have

VQ(	r) = V out
Q (	r) + V in

Q (	r), (28a)
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FIG. 3. DFT calculation of the quadrupole (l = 2) component
ρQ(r) of electron density (top panel) and the corresponding Coulomb
potential VQ(r) (bottom panel) of the hcp structure of Zn in the
vicinity of the nucleus. (Fig. 2 zoomed at r = 0.) Both the density
and the potential are proportional to r2. For comparison, the Zn
nuclear radius is 9.1 × 10−5 a.u.

where

V out
Q (r, θ, φ) = V S,out

Q

r2

R2
MT

SQ(θ, φ), (28b)

(for hcp lattices SQ = Y 0
2 ) and

V in
Q (r, θ, φ) = 4π

5

(
qQ(r)

r3
+ r2q′

Q(r)

)
SQ(θ, φ). (28c)

Here,

qQ(r) =
∫ r

0
ρQ(r′)r′3dr′, (29a)

q′
Q(r) =

∫ RMT

r

ρQ(r′)
r′ dr′. (29b)

Since q′
Q(RMT) = 0, we find V S,in

Q = 4πq(RMT)/R3
MT. Note

that V out
Q is explicitly proportional to r2, Eq. (28b). It can

be shown [38] that the same holds for V in
Q at r � 1. From

Eqs. (25) and (26), we then arrive at

Vzz =
√

5

π

(
vout

Q + vin
Q

)
. (30)

Here, vout
Q and vin

Q are obtained from V out
Q /r2 and V in

Q /r2

when r → 0. As a result of the reduction of 〈ρQ(r)〉 with
temperature, 〈vout

Q 〉 and 〈vin
Q 〉 also become reduced, and 〈Vzz〉

decreases with temperature.

D. Temperature dependence of the EFG

As shown in Sec. II B, the average quadrupole density
component 〈ρQ(RMT)〉 on the vibrating MT sphere as a rule
is reduced, Eq. (23). However, to calculate exactly the effect
of the reduction on EFG, we have to know 〈ρQ(r)〉 at all values
of r � RMT, see Sec. II C. In a straightforward approach,
we should perform a calculation for 〈ρQ(r)〉 inside the MT
sphere considering the new value of 〈ρQ(RMT)〉, Eq. (23) as
an input boundary condition. In practice, by changing RMT in
a range close to the maximal (contact) radius Rmax, we have
found that the reduction of the quadrupolar density component
ρQ(r, T )/ρQ(r, T = 0) is approximately constant. In Zn, for
example, the change in RMT from the Rmax value of 2.517 to
2.30 a.u. at 300 K results in a change in the ratio from 0.945
to 0.926 (2%). We, then, in a first approximation, assume that,
for all r � RMT,

ρQ(r, T )

ρQ(r, T = 0)
= ρQ(RMT, T )

ρQ(RMT, T = 0)
= Rin(T ). (31)

According to Eqs. (29a) and (29b), the reduced quadrupo-
lar density component 〈ρQ(r, T )〉 for all r � RMT changes
the quadrupole charges as qQ(r, T ) = Rin(T )qQ(r) and
q′

Q(r, T ) = Rin(T )q′
Q(r). This, in turn, leads to the reduc-

tion of V in
Q (T ) = Rin(T )V in

Q , Eq. (28c), and vin
(2,0)(T ) =

Rin(T )vin
(2,0). We, then, for the temperature evolution of the

EFG, have

Vzz(T ) =
√

5

π

[
Rout (T )vout

(2,0) + Rin(T )vin
(2,0)

]
(32)

[compare with Eq. (30)]. Here, the factor Rout (T ) accounts for
the change in the potential due to all charges outside the MT
sphere, whereas vout

(2,0) and vin
(2,0) are temperature independent

(calculated with an ab initio electron band-structure method).
In practice, vout

(2,0) is found to be small (1–3%) compared
to vin

(2,0). Since in addition, the difference between Rout and
Rin is not essential, in the following, for simplicity, we take
Rout ≈ Rin. Then, the temperature dependence of the EFG is
completely due to the change in ρQ inside the MT sphere and

Vzz(T ) ≈ Rin(T )Vzz. (33)

Equations (33) and (31) imply that we consider the change in
the quadrupole interaction as a perturbation causing a linear
effect inside the MT sphere.

E. Mean-square displacements

The SRDW factor, Eqs. (20) and (21), depends crucially
on the mean-square displacements 〈u2

x〉, 〈u2
y〉, and 〈u2

z 〉, which
are functions of temperature. For the hcp lattice 〈u2

x〉 = 〈u2
y〉,
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FIG. 4. Temperature evolution of U11 = 〈u2
x〉 and U33 = 〈u2

z 〉 for
hcp Zn found by various methods. The dark cyan dashed lines stand
for calculations in the harmonic approximation (density-functional
perturbation theory (DFPT) of QUANTUM ESPRESSO (QE) [41,42]),
the red diamonds are experimental data from the single-crystal
structural refinement of Zn at different T ’s [21], the olive triangles
are experimental data at T = 300 K [43], and the blue circles are
obtained from experimentally determined phonon density of states
[44].

and for calculations of SRDWF, we need to know only two
functions: U11(T ) = 〈u2

x〉 and U33(T ) = 〈u2
z 〉 (for the hcp lat-

tice U33 > U11),

W ( 	K, T ) = 1
2

[(
K2

x + K2
y

)
U11(T ) + K2

z U33(T )
]
. (34)

The functions U11(T ) and U33(T ) can be calculated within
the harmonic approximation or extracted experimentally as
illustrated in Fig. 4 for the hcp lattice of Zn.

In Fig. 5, we plot individual SRDW factors
exp[−W ( 	K, T )] for the hcp structure of Zn, which are
responsible for the temperature reduction of the quadrupole
density and potential, Sec. II B. With the increase in T , the
SRDW factors get shifted to lower values. A finite width of
SRDWF for reciprocal vectors with close values of | 	K| is due
to different orientations of 	K with respect to the ellipsoid of
mean-square displacements. The width becomes larger with
the increase in asymmetry between U11 and U33.

III. APPLICATION TO ZINC AND CADMIUM

In this section, we apply the method described earlier to
calculations of the temperature dependence of the electric-
field gradient of solid zinc and cadmium crystallized in the
hexagonal close-packed lattice.

For that, we need data on the Fourier expansion of the elec-
tron density in the interstitial region, quadrupole components
of electron density, and the potential obtained from the elec-
tron band-structure calculations. Electron density-functional
calculations have been performed with the MOSCOW-FLAPW

code [17]. The code explicitly takes into account the nuclear
size and the change in the potential and the wave function
inside the nuclear region to obtain the electric-field gradient
accurately. In addition, the number of radial points inside

FIG. 5. SRDWFs exp[−W ( 	K, T )] as functions of the modulus
of reciprocal vectors K = | 	K| of hcp Zn for various temperatures.
The dark cyan circles are data for T = 40 K; the blue squares: T =
300 K; and the red triangles: T = 500 K. Calculations are based on
experimental data for the mean-square displacements U11(T ) and
U33(T ), Ref. [21].

the MT region has been increased to 3000 (for some runs
3500). The typical LAPW basis set cutoff parameter was
RMTKmax = 9 (the number of basis functions was 221), the
number of k points was 704 (1331), and the maximal value
of the LAPW plane-wave expansion was lmax = 10. We have
used the tetrahedron method for the linear interpolation of
energy between k points [45]. For calculation of the exchange-
correlation potential and the exchange-correlation energy con-
tribution, we have used the Perdew-Burke-Ernzerhof (PBE)
variant [46] of the generalized-gradient approximation within
the DFT at experimental lattice constants at room tempera-
ture [a = 2.663, c = 4.944, RMT = 1.196 Å (Zn), and a =
2.996, c = 5.674, RMT = 1.429 Å (Cd)].

Also, the temperature evolution of the tensor of mean-
square displacements, U11(T ) and U33(T ), is required for
the calculation of the square root of the Debye-Waller fac-
tor, exp[−W ( 	K, T )] for vectors 	K of the reciprocal lattice,
Eqs. (34) and (20). The temperature evolution of the tensor of
mean-square displacements can be obtained by three different
ways: (1) from a direct experimental parametrization of the
displacements 〈u2

x (T )〉 and 〈u2
z (T )〉 as given in Ref. [21] for

Zn; (2) from calculations of the phonon frequencies and eigen-
vectors (for example, within the DF perturbation treatment
of lattice dynamics with QUANTUM ESPRESSO [41,42]); (3)
from effective Debye temperature TD(T ) which appears as
a result of experimental parametrization [44,47]. The strict
harmonic approximation is adopted only in (2), whereas, in
(1) and (3), anharmonic effects, such as thermal expansion of
solids and phonon softening are effectively taken into account.
Experimentally, the values of 〈u2

x (T )〉 and 〈u2
z (T )〉 (or directly

related to them temperature factors Bx(T ) and Bz(T ) [44]) are
found from the temperature evolution of the x-ray-diffraction
spectra.

For the phonon part (2) of the calculations, the first-
principles pseudopotential method as implemented in the QE
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FIG. 6. Temperature dependence of the electric-field gradient in
Zn, Vzz(T )/Vzz(T = 0). Calculations—solid black line—are based
on experimental data for the mean-square displacements U11(T ) and
U33(T ), Ref. [21]. DFPT-QE calculations [41,42]—dark cyan dashed
line—have been performed in the harmonic approximation. The red
circles [18] and blue diamonds [50] stand for experimental data on
the EFG ratios.

package [41,42] with the PBE exchange-correlation func-
tional [46] has been employed. The projected-augmented-
wave-type scalar-relativistic pseudopotentials have been taken
from the standard solid-state pseudopotential library [48,49].
The integration over the Brillouin zone for the electron density
of states has been performed on a 24 × 24 × 12 grid of
k points, and the plane-wave kinetic cutoff energy was 70
Ry. The lattice-dynamical calculations have been carried out
within the DFPT. Phonon dispersions have been computed
using the interatomic force constants based on a 6 × 6 × 4 k-
point grid with a 48 × 48 × 24 grid used to obtain the phonon
densities of states and U11(T ) and U33(T ).

A. Zinc

Mean-square displacements for the hcp structure of zinc
are shown in Fig. 4. First, we note that, in the DFPT-QE

harmonic approximation in the region of T from 60 to 500 K,
U11(T ) and U33(T ) are practically linear in T . Such behavior
is also expected in the Debye model for T > TD. Experimen-
tally, however, we observe that U11(T ) and U33(T ) deviate
from the linear law. As shown in Ref. [21], U11(T ) and U33(T )
are approximated by quadratic functions of T for all data in
the range from 40 to 500 K. In addition, in the harmonic
approximation values of U33 are slightly overestimated, Fig. 4,
which results in a considerable suppression of the SRDW
factors and the calculated temperature dependence of the
EFGs, Fig. 6. On the other hand, our calculations of the
temperature evolution of the EFG using experimental data
for U11(T ) and U33(T ) demonstrate a good correspondence
with the measured values of Vzz, Fig. 6. We have also found
that the T dependence of Vzz is extremely sensitive to the
ratio R = U33/U11. To demonstrate it, we have computed the
evolution of Vzz with T with reduced values of R, Fig. 7

FIG. 7. Evolution of the T dependence of Vzz with a reduction of
the mean-square displacement ratio R = U33/U11 whereas keeping
the averaged value of the displacements Uav , Eq. (35), unchanged.
The black solid line corresponds to the initial value of R0 =
U33/U11, the others—to reduced R. The blue dashed line: R = 1 +
(2/3)(R0 − 1); the purple dot-dashed line: R = 1 + (1/3)(R0 − 1);
the orange solid line: R = 1 or U33 = U11. Top panel: zinc and the
bottom panel: cadmium. A weak increase in Vzz with T (orange solid
line in Cd) is discussed in Sec. III C.

(upper panel). It turns out that, if R = 1 [i.e., U33(T ) =
U11(T )], there is virtually no temperature decrease in the
EFG, although we have kept the average value of mean-square
displacements,

Uav = (2U11 + U33)/3 (35)

growing with T according to experimental data [21]. It is
worth mentioning that the experimental behavior of U33/U11

in Zn is highly nonlinear in contrast to the simple linear
increase in the lattice constant ratio c/a [21]. On the other
hand, in the harmonic approximation, U33/U11 should be
almost independent of T , at least, for T > TD ∼ 200 K [43].
Therefore, in the T dependence of U33/U11 and, consequently,
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of the EFG, there is a substantial anharmonic contribution.
In particular, the anharmonic effect is responsible for the
negative curvature of Vzz in contrast to the approximate linear
dependence of the harmonic model, Fig. 6.

Note, that, even at zero temperature, the value of the
EFG is slightly reduced because of the zero-point vibra-
tions. The calculated reduction is 0.6% with the mean-square
displacements from Ref. [21] and 1% according to DFPT-
QE. The refined calculated absolute value of the EFG is
Vzz = 3.51 × 1021 V/m2, the corrected for the zero-point vi-
brations [21] – Vzz = 3.49 × 1021 V/m2. It corresponds to
the quadrupole frequency 10.53 MHz for Q(Zn) = 0.125 b
[14] and 12.64 MHz for Q(Zn) = 0.15 b, which compares
well with the experimental value of 12.34 MHz at 4.2 K
[51].

B. Cadmium

Results for cadmium are given in Figs. 8 and 9. As for the
zinc calculation, we observe that the mean-square displace-
ments U33 are overestimated by the DFPT-QE calculations.
In addition, DFPT-QE values of U11 are underestimated in
comparison with other models. Both effects lead to a fast
decrease in Vzz with temperature, although, in the region of
260–360 K, the DFPT-QE harmonic treatment gives the correct
slope for the Vzz decrease. As for zinc, our calculations of
the temperature evolution of Vzz in Cd have turned out to be
very sensitive to values of mean-square displacements U11 and
U33, especially to R = U33/U11. It is worth noting that, with
the mean-square values obtained by Torumba et al. [16] with
the PHONON program [52], we have obtained reduced EFGs
which compare well with the experimental results of Ref. [18]
at 280 and 430 K, Fig. 8. However, our calculations also show
that these values of U11 and U33 somewhat underestimate the
reduction of Vzz at 430 K and especially at 570 K (not shown
in Fig. 8). We believe that this is related to the softening
of the Cd lattice [43] and increase in the ratio of R with
temperature which lies beyond the harmonic approximation.
In fact, as we know from experimentally deduced values of
U11 and U33 [21], both effects are clearly present in the case
of the Zn lattice, Fig. 4. Since, at the moment, there are
no experimental data for the mean-square displacements of
cadmium, we have performed a number of model calcula-
tions, Fig. 9. The averaged mean-square displacement Uav =
(2U11 + U33)/3 has been calculated within the Debye lattice
model with a temperature-dependent Debye temperature TD.
The lattice softening has been modeled by a linear decrease
in TD from 140 K (at T = 0 K) to 115 K (at T = 500 K)
with the averaged value of T av

D = 127.5 K. [This value is
very close to TD = 131 ± 7 K given in Ref. [47] for Cd.]
In addition, we consider an anharmonic effect modeled by
a linear change in R from 1.5 (at T = 0 K) to 2.7 (at T =
500 K) with the averaged value of R = 2.1. Correspondingly,
we have performed four model calculations shown in Fig. 9:
(1) with the lattice softening and the temperature increase in
R (black curve in Fig. 9), (2) without softening and with
R fixed (yellow curve), (3) with the softening and R fixed
(blue dotted line), and (4) without softening and with R
increased (dashed green line). The results clearly demonstrate
that the best fit is achieved with the lattice softening and

FIG. 8. Temperature evolution of Vzz in Cd (upper panel) deter-
mined by the mean-square displacements U11 and U33 (lower panel).
The red circles stand for experimental measurements [18]; the black
line: for a present model calculation taking into account softening of
the lattice and an increase in U33/U11 with T (see the text for details);
the dark cyan dashed line: DFPT-QE calculations [41,42]. The purple
triangles are our calculations with mean-square displacements of
Table II of Ref. [16] (the PHONON code [52] within the harmonic
approximation).

the temperature increase in R with T , whereas other models
deviate from the experimental data at elevated temperatures.
Although these arguments cannot be considered as a solid
proof, the important finding is that both unharmonic effects
improve the comparison with the experiment.

The calculated absolute value of the EFG is Vzz = 7.82 ×
1021 V/m2. The zero-point vibration contribution to Vzz

amounts to 0.8% according to DFPT-QE and 0.4% in the
model (1). The corrected for the zero-point vibrations value
[model (1)] is Vzz = 7.79 × 1021 V/m2, which corresponds to
νQ = 120.7 MHz (adopting Q(Cd) = 0.641 b [14]) or νQ =
143.1 MHz (with Q(Cd) = 0.76 b [13]). Extrapolated to T =
0 quadrupole frequency in metallic cadmium is 136.9 MHz
[18].
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FIG. 9. Model mean-square displacements U11 and U33 in Cd
(lower panel) and corresponding temperature dependencies of Vzz

(upper panel). The red circles stand for experimental measurements
[18]; the black line: for a model calculation taking into account the
softening of the lattice and the increase in U33/U11 with T . The
yellow solid line: calculations without softening and the U33/U11

ratio fixed; the blue dotted line: with the softening and the U33/U11

ratio fixed; the green dashed line: without softening, the U33/U11

ratio increased, see the text for details. The purple triangles are our
calculations with mean-square displacements of Table II of Ref. [16].

C. Mechanism of increase in the EFG with T

The most important factor in the T dependence of the EFG
is R = U33/U11. As discussed in Secs. III A and III B and
shown in Fig. 7, the ratio R has a pronounced influence on
the shape of the Vzz(T ) curve. A reduction of R in cadmium
also has an immediate and sizable effect on Vzz(T ), Fig. 7.
Interestingly, for R = 1 [U11 = U33], we observe in cadmium
a rare effect of a weak increase in Vzz with T (orange plot in
Fig. 7). At first sight, this seems incompatible with the ap-
parent reduction of 〈ρQ〉, Eq. (23), caused by exp(−W ). Note,
however, that in the sum on the right-hand side of Eq. (23), in-
dividual contributions proportional to j2(KRMT)SQ(K̂ )〈ρ( 	K )〉
are of different signs. Two such principal groups of terms can

FIG. 10. Individual K-star contributions to electric-field gradi-
ent at T = 300 K [each term ∝− j2(KRMT)SQ(K̂ )(〈ρ( 	K )〉T =300 −
〈ρ( 	K )〉T =0 ), Eq. (23)]. The blue diamonds: negative contributions;
the red circles: positive contributions; the dashed purpled curve: sum
of all contributions up to the chosen K star. The final value of the sum
(at n � 120) is positive, which leads to an increase in Vzz at 300 K.

be schematically written as

Vzz(T ) ∝ 〈ρQ〉 =
∑

[c1W1ρ( 	K1) − c2W2ρ( 	K2)]. (36)

Here, the T -dependent SRDWFs are incorporated in the
weight factors Wi = exp[−W ( 	Ki, T )] and ci, ρ( 	Ki ) > 0 (i =
1, 2). Both W1 and W2 reduce with T , but if W ( 	K2, T ) drops
fast enough in comparison with W ( 	K1, T ), one can have a
resulting increase in the expression in the square brackets of
(36) and of the whole sum.

Our detailed numerical analysis for the situation is illus-
trated further in Fig. 10. One can see that, at T = 300 K,
positive contributions to the gradient (red circles), although
appreciably suppressed by negative contributions (blue dia-
monds), finally prevail, which leads to a small positive net
contribution to the EFG (the n = 120 value of the dashed
purpled curve). At n � 120, the positive sum value is virtually
unchanged.

IV. CONCLUSIONS

We have presented a method which can describe the tem-
perature evolution of electric-field gradient Vzz in metals. The
consideration is based on the fact that the average value of
the quadrupole component 〈ρQ〉 of electron density on a
sphere vibrating with the nucleus Eq. (23) is changed
with T . The effective reduction of each Fourier component
ρ( 	K ) of density Eqs. (19)–(21) is given by the multiplier
exp[−W ( 	K, T )] which is the square root of the usual Debye-
Waller factor. The method relies on DFT calculations of
electron properties and the dependence of mean-square dis-
placements U11 and U33 on temperature. We have found that
the form and pace of the temperature change in Vzz is very
sensitive to the mean-square displacements U11(T ), U33(T ),
and, in particular, to their ratio U33(T )/U11(T ). The model
is capable of reproducing both a decrease or an increase in
the EFG with temperature. The unusual mechanism of the
increase in Vzz with T is discussed in Sec. III C.
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FIG. 11. Plots of the T dependence of electric-field gradient
Vzz(T )/Vzz(T = 0) for Zn and Cd as functions of T 3/2.

We have applied our method to hexagonal-close-packed
structures of pristine zinc and cadmium. In the case of zinc
where the mean-square displacements U11(T ) and U33(T ) are
known experimentally from single-crystal x-ray diffraction
[21], we obtain a very good description of the temperature
change in the EFG, Fig. 6. In the case of cadmium, the
behavior of Vzz(T ), Fig. 8, can be reproduced by assuming
two anharmonic effects: the lattice softening (modeled by a
decrease in the Debye temperature TD with T ), and an increase
in the ratio U33/U11 with T . It is worth noting that both
anharmonic effects are also present in zinc [21,43].

In addition, we have performed calculations of the mean-
square displacements in Zn and Cd in the harmonic approx-
imation by using the DF perturbation treatment of the QE

package [41,42]. For both metals, an approximately linear
dependence in T for U11(T ) and U33(T ) (at T > 40 K) and,
consequently, for the calculated Vzz curves has been found.
In the case of cadmium, the decrease in the EFG has been
exaggerated which can be accounted for by an uncertainty
related to its core pseudopotential [48,49]. Using the mean-
square displacements calculated at T = 280 and 430 K by
Torumba et al. [16] with the package PHONON [52], we have
obtained reduced values of the EFG which lie not far from the
experimental data.

In our studies, we have not found an intrinsic mechanism
for the T 3/2 dependence of the EFG, Eq. (2). Nevertheless, the
T 3/2 plots, Fig. 11, indicate that an approximate T 3/2 law for
Zn and Cd holds. For Cd, the dependence is almost perfect,
for Zn, it deviates from T 3/2 at low temperatures which can
be partially explained by the fact that the experimental data
for mean-square displacements [21] are available only for
T > 40 K. In any case, even experimental data for the EFG
of Zn and Cd deviate from the T 3/2 law at low tempera-
tures [20]. We, therefore, conclude that the mechanism of
the temperature dependence of Vzz in Zn and Cd is complex

with a substantial contribution from anharmonic effects. An
approximate correspondence with the T 3/2 dependence is
probably due to the T behavior of SRDW factors exp(−W )
[22].

Finally, we mention that, even at zero temperature, the
measured EFGs are smaller than Vzz calculated by ab initio
methods. The zero-temperature reduction, however, is small:
0.6% in Zn and 0.4% in Cd.
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APPENDIX: QUADRUPOLAR POTENTIAL
AND THE TENSOR OF THE EFG

The asymptotic behavior of the potential close to the
nucleus, Eq. (25), can be understood from the two-center
expansion of the Coulomb potential in double multipolar
series,

1

| 	R(	n) − 	R′(	n′)| =
∑
��′

v��′ (	n, 	n′; r, r′)S�[r̂(	n)]S�′[r̂′(	n′)],

(A1)
where the interaction strength v��′ is given by [56]

v��′ (	n, 	n′; r, r′) ∼ (r)l (r′)l ′

| 	X (	n) − 	X (	n′)|l+l ′+1
. (A2)

Here, 	R(	n) = 	X (	n) + 	r(	n) is the radius vector close to the
crystal site 	n. For r � 1, we arrive at Eq. (25) which holds
both for the contributions from the electron density around
the site 	n and the contributions from the densities on the other
sites 	n′ �= 	n.

As follows from Eqs. (24) and (25), the quadrupolar com-
ponent of the potential for the hexagonal lattice can be written
as

VQ(r, θ, φ) = vQr2Y m=0
l=2 (θ, φ) = vQ

1

4

√
5

π
(3z2 − r2). (A3)

[We recall that, here, vQ = v(2,1) is a constant.] From this
relation, we obtain that the tensor of the EFG is diagonal in
the Cartesian system of axis and

Vzz = ∂2VQ

∂z2
=

√
5

π
vQ, (A4)

Vxx = ∂2VQ

∂x2
= ∂2VQ

∂y2
= −1

2

√
5

π
vQ. (A5)
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