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Hubbard-corrected density functional perturbation theory with ultrasoft pseudopotentials

A. Floris ,1,* I. Timrov ,2 B. Himmetoglu,3 N. Marzari,2 S. de Gironcoli ,4,5 and M. Cococcioni6,†

1School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, United Kingdom
2Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL),

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
3Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE,

Minneapolis, Minnesota 55455, USA
4Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy

5CRS Democritos, CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
6Department of Physics, University of Pavia, Via A. Bassi 6, I-27100 Pavia, Italy

(Received 14 October 2019; revised manuscript received 16 January 2020; accepted 27 January 2020;
published 19 February 2020)

We present in full detail a newly developed formalism enabling density functional perturbation theory (DFPT)
calculations from a DFT + U ground state. The implementation includes ultrasoft pseudopotentials and is valid
for both insulating and metallic systems. It aims at fully exploiting the versatility of DFPT combined with the
low-cost DFT + U functional. This allows us to avoid computationally intensive frozen-phonon calculations
when DFT + U is used to eliminate the residual electronic self-interaction from approximate functionals and
to capture the localization of valence electrons, e.g., on d or f states. In this way, the effects of electronic
localization (possibly due to correlations) are consistently taken into account in the calculation of specific
phonon modes, Born effective charges, dielectric tensors, and in quantities requiring well converged sums over
many phonon frequencies, as phonon density of states and free energies. The new computational tool is applied
to two representative systems, namely CoO, a prototypical transition metal monoxide and LiCoO2, a material
employed for the cathode of Li-ion batteries. The results show the effectiveness of our formalism to capture in a
quantitatively reliable way the vibrational properties of systems with localized valence electrons.
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I. INTRODUCTION

Systems characterized by a pronounced localization of
valence electrons (typically d or f ) still represent a significant
challenge for current implementations of density functional
theory (DFT) [1,2], and most of the available approximations
to the exact exchange-correlation (xc) functional fail quite
spectacularly in describing their physical properties. Several
methodologies have been developed to avoid (or at least
alleviate) the over-delocalization of valence electrons and its
catastrophic consequences on the quality of the predicted
ground state. Some of these techniques aim at the direct
elimination of the residual self-interaction, either through a
self-interaction corrected (SIC) functional [3–5] or through
the addition of various amounts of Fock exact exchange, as in
hybrid functionals [6–9]. Some others (often outside the DFT
theoretical framework) target instead a better representation
of electronic correlations, e.g., through the mapping of the
electronic problem onto a suitable local model solved with
many-body techniques, as in dynamical mean-field theory
(DMFT) [10–13], or using an extended formulation in case
delocalization is the result of degeneracy, as in ensemble
DFT [14–16], or employing a more structured variable as in
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reduced density-matrix functional theory (RDMFT) [17–19].
Almost invariably, however, all these approaches have com-
putational costs significantly higher than those of standard,
approximate DFT functionals.

Among the corrective schemes defined to alleviate the
consequences of the residual self-interaction, the DFT + U
method [20–23] is one of the most widely used. Its popu-
larity is mostly due to a very simple formulation and a low
computational cost, two factors that make its implementation
straightforward and offer the unique possibility to study sys-
tems whose size and complexity would be prohibitive with
more sophisticated methods. A very distinctive advantage
brought about by the DFT + U formulation is the possibility
to analytically derive and easily implement the derivatives of
the total energy (forces, stresses, dynamical matrices, etc.) and
calculate them accurately and efficiently. These quantities are
necessary to identify the equilibrium structure of materials,
their elastic properties, their vibrational spectrum and to ac-
count for finite-temperature effects on properties of interest.

In Ref. [24], a formalism was introduced to compute the
vibrational properties of strongly correlated systems, based
on the extension of density functional perturbation theory
(DFPT) [25–29] to the DFT + U functional. The resulting
approach was acronymed DFPT + U . MnO and NiO phonon
dispersions calculated with DFPT + U [24] demonstrated that
a better representation of electronic localization can improve
significantly the agreement with available experimental data,
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with respect to uncorrected DFT functionals as, e.g., those
based on the generalized gradient approximation (GGA). In
fact, not only the values of vibrational frequencies were
improved, but also the width of the splitting between the
longitudinal and transverse optical phonon frequencies, due to
the peculiar antiferromagnetic order that characterizes these
systems [30]. DFPT + U has also been used to compute
phonon-related properties of various Earth’s minerals, overall
improving their vibrational spectra [31–35]. Improvements
in Raman spectra of strongly correlated materials have been
discussed also in a recent (independent) implementation of
DFPT + U [36].

In this work we extend the DFPT + U formalism to ultra-
soft (US) pseudopotentials (PPs) [37], discussing in full detail
the additional contributions needed with respect to the norm-
conserving (NC) PPs formalism [24]. In addition, we gen-
eralize the DFPT + U formulation to metallic ground states,
characterized by a finite smearing in the Fermi-Dirac distribu-
tion function. This generalization is useful to study metallic
materials [38] where some properties depend critically on
the localization of valence d electrons as, for example, the
magnetic properties and the phase stability of transition-
metal compounds (e.g., Heusler alloys [39] or oxides) or for
systems whose degenerate ground state results in partially
filled Kohn-Sham (KS) orbitals, as FeO [40]. Moreover, the
metallic formalism is crucial to explore possible effects of the
Hubbard U on the electron-phonon coupling. The extension
of DFPT + U to US PPs and metallic ground states presented
in this work is based on the one introduced in Ref. [41]
for DFPT, whose formalism is adopted here. An analogous
independent adaptation of DFPT + U to US PPs was recently
derived in Ref. [36] which, however, does not develop the
metallic case. In addition, while Ref. [36] uses the formulation
of DFT + U introduced in Ref. [42] that depends explicitly on
the on-site Hubbard interaction U and the exchange coupling
J , the present work is based on the simplified formulation
of DFT + U introduced in Ref. [23] that depends only on
the “effective U” (broadly corresponding to U − J). More
importantly, while Ref. [36] is based on the projection of KS
states on the projector functions (see Eq. (6) of Ref. [37])
in the augmentation spheres this work uses projections on
atomic orbitals, thus achieving a straight generalization of the
implementation for NC PPs [24].

The DFPT + U formulation including US PPs combines
the efficiency of both DFPT and US PPs, making the calcu-
lation of DFT + U linear-response quantities straightforward
and accurate. In phonon calculations (the main focus of this
paper), DFPT + U is used to capture the effects of electronic
localization on vibrational frequencies, modes, Born effective
charges, and dielectric tensors, and will provide full access to
all quantities requiring well converged sums over the entire vi-
brational spectrum, as phonon density of states, free energies,
electron-phonon coupling, and thermal transport.

We demonstrate the effectiveness of DFPT + U by com-
puting the phonon dispersions of two Co compounds, namely
CoO (one of the prototypical transition-metal monoxides),
and LiCoO2 (a layered oxide used as cathode of Li-ion
batteries [43,44]). These quite different systems, where Co
appears in the 2+ and 3+ oxidation states, respectively, will
illustrate the importance of the Hubbard correction to capture

the localization of 3d electrons and its effects on ground-state
and vibrational properties. In LiCoO2 the Hubbard correction
improves sensibly the agreement with experimental data for
both the equilibrium crystal structure and the band gap and
imposes a nonuniform blueshift of the highest part of the
vibrational spectrum. Overall, this improves the quantitative
agreement with the measured frequencies at the � point. The
effect of the Hubbard correction on the properties of CoO is
far more radical. Here the Hubbard U eliminates the fictitious
metallic ground state achieved with the GGA functional,
stabilizing an insulating ground state with a finite band gap.
This not only improves dramatically the equilibrium crystal
structure compared to experiments but resolves all the dy-
namical instabilities obtained from GGA and accounts for the
splittings between the TO modes (due to the antiferromagnetic
order), which is qualitatively consistent with those previously
obtained for MnO and NiO [24].

The paper is organized as follows. In Sec. II we summarize
the DFT + U formalism in the US PPs context; in Sec. III we
present the first derivatives of the total energy, with particular
emphasis to the Hubbard forces; in Sec. IV we discuss the
DFPT + U formalism, namely the DFPT extension to the
Hubbard functional (whose adaptation to metals is developed
in the Appendix); in Sec. V we present the technical details
of our calculations; in Sec. VI our formalism is employed to
study the vibrational properties of CoO and LiCoO2; finally, in
Sec. VII we give our conclusive remarks. Benchmarks of our
implementation are presented in the Supplemental Material
(SM) [45] (see also references [46–49]). We use Hartree
atomic units throughout the paper.

II. DFT + U

In DFT + U , the DFT total energy EDFT is augmented by a
corrective term, namely the Hubbard energy EU :

EDFT+U = EDFT + EU . (1)

The EU expression is shaped on the Hubbard model. We adopt
here the simplest rotationally invariant formulation intro-
duced in Ref. [23] and constructed within the so-called fully-
localized limit (FLL) of the double-counting term. Within this
approximation the corrective energy EU reads:

EU = 1

2

∑
Iσm1m2

U I
(
δm1m2 − nIσ

m1m2

)
nIσ

m2m1
, (2)

where I is the atomic site index, σ is the spin index, m1 and
m2 are magnetic quantum numbers associated with a specific
angular momentum; U I is the effective Hubbard parameter of
the I-th atom. Other formulations of the EU functional are
also popular in literature, including different recipes for the
double-counting term [50,51] and various formulations of the
Hubbard part, most notably the one introduced in Ref. [42],
featuring a Hartree-Fock-like interaction term with screened
Coulomb and exchange couplings. The results obtained in this
work can be easily extended to these formulations, once the
various terms of the derivatives are recast accordingly.

In Eq. (2), nIσ
m1m2

are the occupation matrices (real and
symmetric) of the atomic orbitals ϕI

m(r) that form the local-
ized basis set used in the Hubbard corrective Hamiltonian.
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Their generalized US PPs expression imposes reviewing the
most important features of the US pseudization [37] (in the
following we will refer to pseudowave functions simply as
“wave functions”).

In the US formalism, the wave functions are obtained from
their all-electron counterparts, by smoothing the fastest oscil-
lations that they exhibit in the atomic core region. Crucially,
during this procedure the normalization of the wave functions
is lost. Quantities like the electronic charge density or the
scalar products between wave functions need to be corrected
to compensate for the missing parts. Their “augmentation” is
realized through suitably defined projectors onto the atomic
core regions, where the smoothing of the wave functions
occurs. The electronic charge density is thus computed as
follows:

ρ(r) =
∑

iσ

⎡⎣|ψiσ (r)|2 +
∑
Iμν

QI
μν (r − RI )

〈
ψiσ

∣∣βI
μ

〉〈
βI

ν

∣∣ψiσ
〉⎤⎦

=
∑

iσ

〈ψiσ |K̂ (r)|ψiσ 〉, (3)

where ψiσ (r) are the KS wave functions labeled by index i;
βI

μ and βI
ν , labeled by an atomic (I) and a state (greek letter)

index, are localized projector functions that are nonzero only
within the augmentation sphere of the atom I; QI

μν (r − RI )
are the augmentation functions, which contain the difference
between the all-electron and pseudo charge densities around
the atom at RI . The second equality in Eq. (3) defines a more
compact notation by introducing the “augmentation” kernel
K̂ (r), which in the full coordinate representation is a function
of three spatial coordinates [41]

K (r; r1, r2) = δ(r − r1)δ(r − r2) +
∑
Iμν

QI
μν (r − RI )

×βI
μ(r1 − RI ) β∗I

ν (r2 − RI ) (4)

and carries a dependence on the atomic coordinates RI ’s.
Scalar products between wave functions in the US PPs scheme
are corrected as:

〈ψiσ |Ŝ|ψ jσ 〉 = 〈ψiσ |ψ jσ 〉 +
∑
Iμν

qI
μν

〈
ψiσ

∣∣βI
μ

〉〈
βI

ν

∣∣ψ jσ
〉
, (5)

where the coefficients qI
μν are integrals (over the volume of the

crystal) of the augmentation functions: qI
μν ≡ ∫

QI
μν (r) dr.

The orthonormalization condition between KS states is then
generalized as follows:

〈ψiσ |Ŝ|ψ jσ ′ 〉 = δi jδσσ ′ . (6)

The operator Ŝ, implicitly defined via Eq. (5), acts as an
“overlap kernel” and has the explicit expression [37]:

Ŝ = 1 +
∑
Iμν

qI
μν

∣∣βI
μ

〉〈
βI

ν

∣∣. (7)

The occupation matrices in Eq. (2) are obtained from the
projection of the occupied KS wave functions on the atomic
orbitals ϕI

m(r) of the DFT + U localized basis set, and, based
on the generalization of the scalar products outlined above,

take the expression:

nIσ
m1m2

=
∑

i

〈ψiσ |P̂I
m2m1

|ψiσ 〉, (8)

where P̂I
m2m1

is the generalized projector on the manifold of
localized (atomic) orbitals:

P̂I
m2m1

= Ŝ
∣∣ϕI

m2

〉〈
ϕI

m1

∣∣Ŝ. (9)

In the presence of a finite overlap between wave functions
[Eq. (6)] the KS equations are generalized as follows:

Ĥσ |ψiσ 〉 = εiσ Ŝ|ψiσ 〉, (10)

where Ĥσ is the Hamiltonian of the system

Ĥσ ≡ − 1
2∇2 + V̂ σ , (11)

and εiσ are the KS eigenvalues. Following the notation of
Ref. [41], the single-particle total potential in Eq. (11), can
be written as:

V̂ σ = V̂ σ
KS + V̂ σ

Hub, (12)

where

V̂ σ
KS = V̂NL +

∫
K̂ (r)V σ

eff (r) dr, (13)

is the KS potential. This includes the nonlocal part of the US
PP, V̂NL, and the local effective potential V̂ σ

eff [37], which reads:

V σ
eff (r) = Vloc(r) + V σ

Hxc(r). (14)

Here, Vloc(r) is the local part of the PP, and V σ
Hxc(r) = VH(r) +

V σ
xc(r) is the sum of Hartree and xc potentials. Finally, V̂ σ

Hub is
the nonlocal Hubbard potential which reads:

V̂ σ
Hub =

∑
Im1m2

V Iσ
U,m1m2

P̂I
m1m2

≡ V σ
U P̂, (15)

where V Iσ
U,m1m2

is defined as follows

V Iσ
U,m1m2

= U I

(
δm1m2

2
− nIσ

m1m2

)
, (16)

and the projector P̂I
m1m2

was defined in Eq. (9). The last
equality in Eq. (15) introduces a notation that will be useful in
the following. In the next section we will see how the above
formalism can be used to derive the Hubbard forces, needed
not only for a structural optimization in the framework of
DFT + U but also to derive various quantities of the DFPT +
U formalism.

III. HUBBARD FORCES

The evaluation of the first-order derivatives of the total
energy, i.e., the atomic forces, is the necessary first step for
the calculation of all higher order derivatives. Starting from
the expression of EDFT+U , Eq. (1), it can be shown that the
force Fλ acting on the Ith atom in the direction α (λ ≡ {Iα})
can be computed using the following expression [52,53]:

Fλ = −dEDFT+U

dλ

= −
∑

iσ

〈ψiσ |
[
∂V̂ σ

KS

∂λ
− εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉 − ∂EU

∂λ
. (17)
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The use of US PPs thus introduces an extra term to the
forces, namely the derivative

∑
iσ 〈ψiσ |εiσ

∂ Ŝ
∂λ

|ψiσ 〉, due to the
generalized orthonormality condition of KS wave functions,
Eq. (6). Following Ref. [41], ∂

∂λ
indicates a bare derivative

that does not involve the response of the KS wave functions
ψiσ ; d

dλ
indicates instead a total derivative which contains also

the response of KS wave functions. Bare derivatives, based on
the explicit dependence on atomic positions {RI} only require
the knowledge of the unperturbed KS wave functions. Total
derivatives require instead to evaluate the response of the KS
wave functions and need to be re-computed at each DFPT
iteration, as shown in Sec. IV and in the Appendix; for this
reason they are also called self-consistent-field (SCF) deriva-
tives. Although defined as total derivatives of the energy, the
calculation of the forces only involves bare derivatives, as a
result of the Hellmann-Feynman theorem and its generaliza-
tion to US PPs [52], given in Eq. (17).

The bare derivative of the KS potential in Eq. (17) reads
[41,54]:

∂V̂ σ
KS

∂λ
= ∂V̂NL

∂λ
+
∫

K̂ (r)
∂Vloc(r)

∂λ
dr

+
∫

∂K̂ (r)

∂λ
V σ

eff (r) dr. (18)

The last piece of Eq. (17) is the so-called Hubbard force and
contains the Pulay’s terms originating from the shift of the
centers of the atomic orbitals. This term was also discussed in
Refs. [40,55]. Using Eq. (2), it can be expressed in terms of
the bare derivative of the occupation matrices:

∂EU

∂λ
=

∑
Iσm1m2

U I

(
δm1m2

2
− nIσ

m1m2

)
∂nIσ

m2m1

∂λ
, (19)

where, based on Eqs. (8) and (9), we have:

∂nIσ
m2m1

∂λ
=
∑

i

〈ψiσ |∂P̂I
m1m2

∂λ
|ψiσ 〉, (20)

with

∂P̂I
m1m2

∂λ
=
∣∣∣∣∂
(
ŜϕI

m1

)
∂λ

〉〈
ϕI

m2

∣∣Ŝ + Ŝ
∣∣ϕI

m1

〉〈∂(ŜϕI
m2

)
∂λ

∣∣∣∣. (21)

By virtue of Eqs. (16), (19), (20), and (21) the Hubbard force
can be rewritten as:

∂EU

∂λ
=
∑

iσ

〈ψiσ |V σ
U

∂P̂

∂λ
|ψiσ 〉, (22)

where the same short-hand notation of Eq. (15) is used:

V σ
U

∂P̂

∂λ
≡
∑

Im1m2

V Iσ
U,m1m2

∂P̂I
m1m2

∂λ
. (23)

Equation (17) is then recast in the form

Fλ = −
∑

iσ

〈ψiσ |
[
∂V̂ σ

KS

∂λ
+ V σ

U

∂P̂

∂λ
− εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉, (24)

which represents the final expression of the force.

IV. DFPT + U

We now present the calculation of the second order deriva-
tives of the total energy and, in particular, the matrix of
force constants. Consistently with the aim of the paper, the
discussion is focused on the generalization of the DFPT + U
formalism introduced in Ref. [24] to US PPs. However, it
is important to remark that the formalism developed here
can be also used, with no extra terms, with projector aug-
mented wave (PAW) PPs [56], once US PPs quantities are
properly substituted by PAW ones [57,58]. A validation for
PAW PPs is contained in the Supplemental Material [45],
Sec. S1. It is important to remark that our implementation
is different from most implementations for US and PAW PPs
(see, e.g., Refs. [36,59–61]), because it is based on projections
on atomic orbitals ϕI rather than on projector functions βI

(localized inside the augmentation spheres).

A. Response Hubbard potential and occupation matrix

The matrix of atomic force constants is defined as the
second derivative of the total energy with respect to the atomic
displacement or, equivalently, as the (negative) first derivative
of the atomic forces. From the expression of forces in Eq. (24)
it is easy to realize that the calculation of second deriva-
tives implies computing, besides other terms, the derivative
(response) of the KS wave functions with respect to atomic
displacements dψiσ (r)

dμ
. These quantities can be obtained by

solving the Sternheimer equation stemming from a first-order
expansion of the KS equations (10):[

−1

2
∇2 + V̂ σ − εiσ Ŝ

]∣∣∣dψiσ

dμ

〉
= −

[
dV̂ σ

dμ
− εiσ

∂ Ŝ

∂μ
− dεiσ

dμ
Ŝ

]
|ψiσ 〉. (25)

Since the variation of the total potential dV̂ σ

dμ
depends, by

virtue of the Hohenberg-Kohn theorem [1], on the charge
density response (which in turn depends on the wave functions
response), Eq. (25) needs to be solved self-consistently in
dψiσ (r)

dμ
. Note that Hubbard corrections enter both V̂ σ [Eq. (12)]

and dV̂ σ

dμ
and, through the SCF solution of Eq. (25), affect both

dψiσ (r)
dμ

and dρ(r)
dμ

.
Due to the invariance of the energy functional with re-

spect to unitary transformations in the occupied manifold, for
improved stability the Sternheimer equation (25) is typically
solved for the conduction component of dψiσ (r)

dμ

|�̃μψiσ 〉 ≡ P̂c,σ

∣∣∣∣dψiσ

dμ

〉
, (26)

where P̂c,σ is the projector operator on the conduction mani-
fold. In practice, |�̃μψiσ 〉 is obtained by applying P̂†

c,σ to both
sides of Eq. (25) and solving the equation [62]:[

−1

2
∇2 + V̂ σ − εiσ Ŝ

]
|�̃μψiσ 〉

= −P̂†
c,σ

[
dV̂ σ

dμ
− εiσ

∂ Ŝ

∂μ

]
|ψiσ 〉. (27)
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P̂c,σ is conveniently computed exploiting the identity

P̂c,σ = 1 − P̂v,σ = 1 −
occ∑

j

|ψ jσ 〉〈ψ jσ |Ŝ, (28)

where P̂v,σ is the projector operator on the valence manifold.
Crucially, the above identity allows to avoid slowly converg-
ing sums over conduction states [63].

While within the NC PP formalism only |�̃μψiσ 〉 con-
tributes to the total variation of the charge density dρ(r)

dμ
[29], in

the US PP case, due to the generalized orthogonality condition
[Eq. (6)], also the component of dψiσ (r)

dμ
on the valence mani-

fold contributes, but only with bare terms [41], as illustrated
below. The total variation of the single-particle potential in
Eq. (27) reads:

dV̂ σ

dμ
= dV̂ σ

KS

dμ
+ dV̂ σ

Hub

dμ
, (29)

where dV̂ σ
KS

dμ
is the derivative of the KS potential present in

“standard” DFPT implementations [29,41]. dV̂ σ
Hub

dμ
is the re-

sponse of the Hubbard potential: This is the first extra term
needed in DFPT + U . From Eq. (15) this total derivative is
the sum of two contributions:

dV̂ σ
Hub

dμ
= V σ

U

∂P̂

∂μ
+ dV σ

U

dμ
P̂. (30)

The first term contains the bare derivative of the kernel P̂
[Eq. (21)]; the second, the total derivative of the occupation
matrices:

dV σ
U

dμ
P̂ = −

∑
Im1m2

U I dnIσ
m1m2

dμ
P̂I

m1m2
. (31)

Based on the definition of these matrices in Eq. (8), their total
derivative will be also the sum of a bare and a response term:

dnIσ
m1m2

dμ
= ∂nIσ

m1m2

∂μ

+
∑

i

[〈
dψiσ

dμ

∣∣∣∣P̂I
m2m1

|ψiσ 〉 + 〈ψiσ |P̂I
m2m1

∣∣∣∣dψiσ

dμ

〉]
.

(32)

Similarly to the density response, both conduction and valence
components of dψiσ (r)

dμ
contribute to the derivative of the oc-

cupation matrices, Eq. (32). To see this, it is convenient to
rewrite the SCF response term in Eq. (32) multiplying dψiσ

dμ
by

the identity P̂c,σ + P̂v,σ = 1:

dnIσ
m1m2

dμ
= ∂nIσ

m1m2

∂μ
+
∑

i

〈
dψiσ

dμ

∣∣∣∣(P̂†
c,σ + P̂†

v,σ )P̂I
m2m1

|ψiσ 〉

+
∑

i

〈ψiσ |P̂I
m2m1

(P̂c,σ + P̂v,σ )

∣∣∣∣dψiσ

dμ

〉

≡ ∂nIσ
m1m2

∂μ
+ �̃μnIσ

m1m2
+ δμnIσ

m1m2
. (33)

The projections on the conduction manifold in Eq. (33)
are conveniently rewritten using the definition in

Eq. (26):

�̃μnIσ
m1m2

≡
∑

i

[〈�̃μψiσ |P̂I
m2m1

|ψiσ 〉 + 〈ψiσ |P̂I
m2m1

|�̃μψiσ 〉],
(34)

and contain terms directly accessible from |�̃μψiσ 〉, the solu-
tions of Eq. (27). The projections on the valence state man-
ifold, instead, contain only bare derivatives. To understand
this, it is useful to start from the derivative of Eq. (6):〈

dψiσ

dμ

∣∣∣∣Ŝ|ψ jσ 〉 + 〈ψiσ |Ŝ
∣∣∣∣dψ jσ

dμ

〉
= −〈ψiσ | ∂ Ŝ

∂μ
|ψ jσ 〉. (35)

Using this equation and the definition of P̂v,σ [Eq. (28)] in
Eq. (33), the valence component δμnIσ

m1m2
of the response

occupation matrix [last term in Eq. (33)] remains determined
as:

δμnIσ
m1m2

= −
∑

i

〈ψiσ |P̂I
m2m1

|δμψiσ 〉, (36)

where the valence component of the response KS wave
functions |δμψiσ 〉 is a short-hand notation for the following
quantity:

|δμψiσ 〉 =
occ∑

j

|ψ jσ 〉〈ψ jσ | ∂ Ŝ

∂μ
|ψiσ 〉. (37)

Again, it is worth noting that the bare derivative δμnIσ
m1m2

stems
from the use of US PPs and has no corresponding counterpart
in the NC PPs scheme.

B. Hubbard contributions to the matrix of force constants

The matrix of interatomic force constants is defined as
[29]:

Cμλ = d2EDFT+U

dμdλ
= −dFλ

dμ
. (38)

The expressions of the total energy EDFT+U and of the force
Fλ are given in Eqs. (1) and (24), respectively. Taking the total
SCF derivative of Fλ we obtain:

Cμλ =
∑

iσ

〈ψiσ | d

dμ

[
∂V̂ σ

KS

∂λ
+V σ

U

∂P̂

∂λ
−εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉

+
∑

iσ

{〈
dψiσ

dμ

∣∣∣∣[∂V̂ σ
KS

∂λ
+V σ

U

∂P̂

∂λ
−εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉+c.c.

}
,

(39)

where c.c. indicates the complex conjugate.
In the following we will derive only contributions stem-

ming from the Hubbard correction; other terms are discussed
in detail in Refs. [41,64]. The first Hubbard term comes
from the first line of Eq. (39) (second term inside the square
brackets) and can be expressed as:

C(a)
U,μλ =

∑
iσ

〈ψiσ | d

dμ

[
V σ

U

∂P̂

∂λ

]
|ψiσ 〉

=
∑

iσ

[
〈ψiσ |V σ

U

∂2P̂

∂μ∂λ
|ψiσ 〉 + 〈ψiσ |dV σ

U

dμ

∂P̂

∂λ
|ψiσ 〉

]
,

(40)
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where we note the presence of a second order bare derivative
of the projector P̂ and a “mixed” term containing the product
of a first order total derivative of V σ

U and a first order bare
derivative of P̂.

A second Hubbard term is obtained from the second and
third lines of Eq. (39) by projecting dψiσ

dμ
on the conduction

manifold. Resolving the unity as the sum of projectors on
valence and conduction states [as in Eq. (33)], this term,
present in both US and NC PPs implementations, can be
written as follows:

C(b)
U,μλ = 2 Re

{∑
iσ

〈�̃μψiσ |V σ
U

∂P̂

∂λ
|ψiσ 〉

}
. (41)

The remaining Hubbard contributions to the matrix of force
constants stem from the projection of the response wave func-
tion [second and third lines of Eq. (39)] on the valence mani-
fold and from the derivative of the energy eigenstate resulting
from the first line of Eq. (39). Since they are all related to
the generalized orthonormality of KS wave functions, Eq. (6),
(and thus specific to US PPs) these terms are conveniently
treated and lumped together to achieve a more compact final
expression. Let us start from the Hubbard contribution that
stems from the response of the KS eigenvalues [first line of
Eq. (39)]:

−
∑

iσ

dεiσ

dμ
〈ψiσ |∂ Ŝ

∂λ
|ψiσ 〉. (42)

The factor dεiσ
dμ

can be derived from Eq. (25) by projecting both
sides on 〈ψiσ | (cf. with Eq. (22) in Ref. [41]):

dεiσ

dμ
= 〈ψiσ |

[
dV̂ σ

KS

dμ
+ dV̂ σ

Hub

dμ
− εiσ

∂ Ŝ

∂μ

]
|ψiσ 〉. (43)

Using Eq. (30), the Hubbard contributions to Eq. (42) [from
the middle term within the parenthesis in Eq. (43)] can be
written as:

−
∑

iσ

〈ψiσ |
[

dV σ
U

dμ
P̂ + V σ

U

∂P̂

∂μ

]
|ψiσ 〉〈ψiσ |∂ Ŝ

∂λ
|ψiσ 〉. (44)

This contribution is to be summed to Hubbard terms in the
second and third lines of Eq. (39) coming from the projection
of the response wave function on the valence manifold. These
latter terms can be obtained by substituting | dψiσ

dμ
〉 in Eq. (39)

with the explicit expression of |δμψiσ 〉, Eq. (37), and by using
the following equation (valid for j �= i)

〈ψ jσ |Ŝ
∣∣∣∣dψiσ

dμ

〉
=

〈ψ jσ |[ dV̂ σ
KS

dμ
+ dV̂ σ

Hub
dμ

− εiσ
∂ Ŝ
∂μ

]|ψiσ 〉
εiσ − ε jσ

, (45)

(cf. with Eq. (23) in Ref. [41]), which can be obtained by
projecting both members of Eq. (25) on 〈ψ jσ |. Summing all
the response terms of Eq. (39) containing the derivative of
the Hubbard potential with those arising from Eq. (44) one
obtains the third and fourth Hubbard terms of the matrix of

force constants:

C(c)
U,μλ = −

∑
iσ

[
〈ψiσ |V σ

U

∂P̂

∂μ
|δλψiσ 〉 + 〈δμψiσ |V σ

U

∂P̂

∂λ
|ψiσ 〉

]
,

(46)

C(d )
U,μλ = −

∑
iσ

〈ψiσ |dV σ
U

dμ
P̂|δλψiσ 〉. (47)

These terms represent, respectively, a bare and a SCF contri-
bution to the matrix of force constants [65].

Using the definitions introduced in Eqs. (16), (20), (23),
(31), (33), and (36) it is now convenient to regroup the
Hubbard terms of the matrix of force constants (contained in
the expression of C(a)

U,μλ − C(d )
U,μλ) in three main contributions

which contain, respectively, bare derivatives, orthonormality
terms (specific to US PPs), and linear-response terms de-
pending on the readjustment of the wave functions. The first
piece comes entirely from Eq. (40) and contains the second
bare derivative and the product of first bare derivatives of the
occupation matrices:

C(1)
U,μλ =

∑
Iσm1m2

V Iσ
U,m1m2

∂2nIσ
m2m1

∂μ∂λ

−
∑

Iσm1m2

U I ∂nIσ
m1m2

∂μ

∂nIσ
m2m1

∂λ
. (48)

The second term results from the summation of Eq. (46)
and the bare terms of Eqs. (40) and (47):

C(2)
U,μλ = −

∑
Iσm1m2

V Iσ
U,m1m2

∑
i

[
〈ψiσ |∂P̂I

m1m2

∂μ
|δλψiσ 〉

+ 〈δμψiσ |∂P̂I
m1m2

∂λ
|ψiσ 〉

]

−
∑

Iσm1m2

U I

[
δμnIσ

m1m2

∂nIσ
m2m1

∂λ
+ δλnIσ

m1m2

∂nIσ
m2m1

∂μ

]

−
∑

Iσm1m2

U I δμnIσ
m1m2

δλnIσ
m2m1

. (49)

This term is also bare and contains all the pieces resulting
from the generalized orthonormality conditions, Eq. (6). Fi-
nally, from Eqs. (40), (41), and (47) one can collect in a
third SCF term all contributions that depend on the KS states
response:

C(3)
U,μλ = 2 Re

{ ∑
Iσm1m2

V Iσ
U,m1m2

∑
i

〈�̃μψiσ |∂P̂I
m1m2

∂λ
|ψiσ 〉

}

−
∑

Iσm1m2

U I �̃μnIσ
m1m2

(
∂nIσ

m2m1

∂λ
+ δλnIσ

m2m1

)
. (50)

It is important to note that the derivatives of any order of the
Hubbard U are neglected here (as in most works in literature).
This is obviously an approximation whose validity should be
tested carefully, case by case [66].
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C. Hubbard contribution to the nonanalytic part of the
dynamical matrix in polar insulators

Another important contribution from the Hubbard correc-
tion to the dynamical matrix (i.e., the Fourier transform of the
matrix of force constants, normalized by the square-root of
atomic masses), is in the dynamical matrix nonanalytic part
C̃μλ(q) [26,29]. This results from the coupling of longitudinal
vibrations with the macroscopic electric field generated by
the displacements of ions and is responsible for the splitting
in energy between the longitudinal and transverse optical
modes (LO-TO splitting) of ionic semiconductors and insu-
lators [67]. The correction to fully account for this coupling
needs to be computed and added separately only at q = 0
(the response at finite q vectors automatically accounts for
these effects). It can be shown that C̃μλ(q) is a function of
the Born effective charges tensor Z∗ and the high-frequency
(electronic) dielectric tensor ε∞ [67]:

C̃αβ
IJ (q) = 4π

�

(q · Z∗
I )α (q · Z∗

J )β
q · ε∞ · q

, (51)

where I and J are atomic indices, and α and β are Cartesian
components. The calculation of the ε∞ tensor is based on the
response of the electronic system to a macroscopic electric
field [26,68] and requires the expectation value of the corre-
sponding electrostatic potential (proportional to the position
operator r̂) between conduction and valence KS states. This is
evaluated via the expression [69]:

〈ψcσ |Ŝr̂|ψvσ 〉 = 〈ψcσ | [Ĥσ − εvσ Ŝ, r̂] |ψvσ 〉
εcσ − εvσ

, (52)

where c and v refer to the conduction- and valence-states man-
ifolds, respectively, and Ĥσ is the single-particle Hamiltonian
defined in Eq. (11). Besides the kinetic operator in Ĥσ , only
nonlocal components of the potential V̂ σ [Eq. (12)] contribute
to the commutator [Ĥσ , r̂]. Due to its nonlocal nature, the
Hubbard potential V̂ σ

Hub [Eq. (15)] contributes to this quantity
via the following term:

〈ψcσ | [V̂ σ
Hub, r̂

] |ψvσ 〉
=
∑

Im1m2

V Iσ
U,m1m2

〈ψcσ | [Ŝ∣∣ϕI
m1

〉〈
ϕI

m2

∣∣Ŝ, r̂
] |ψvσ 〉, (53)

where V Iσ
U,m1m2

is defined in Eq. (16). This quantity can be con-
veniently evaluated in reciprocal space, as shown in Ref. [41]
for analogous terms.

The Born effective charges tensor Z∗ can be evaluated as a
mixed second derivative of the total energy EDFT+U [70]:

Z∗
Jαβ = − d

dEα

(
dEDFT+U

duJβ

)
= dFJβ

dEα

, (54)

where Eα is the α component of the macroscopic electric field,
uJβ is the β component of the Jth atom displacement, and
FJβ is the corresponding force [Eq. (24)]. In the following, we
set λ = uJβ for notational consistency with previous sections.
Considering Eqs. (24) and (54), Z∗ takes the form:

Z∗
αλ = − d

dEα

(∑
iσ

〈ψiσ |
[
∂V̂ σ

KS

∂λ
+ V σ

U

∂P̂

∂λ
− εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉

)
,

(55)

where V σ
U

∂P̂
∂λ

is defined in Eq. (23). We will have then:

Z∗
αλ = −

∑
iσ

〈ψiσ | d

dEα

[
∂V̂ σ

KS

∂λ
+V σ

U

∂P̂

∂λ
−εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉

−
∑

iσ

{〈
dψiσ

dEα

∣∣∣∣[∂V̂ σ
KS

∂λ
+V σ

U

∂P̂

∂λ
−εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉+c.c.

}
.

(56)

From now on, we will consider only Hubbard contributions to
Z∗ in Eq. (56). The first term comes from the first line (second
term inside the square brackets) which, using Eqs. (16), (20),
and (23), can be expressed as:

Z∗(a)
U,αλ = −

∑
iσ

〈ψiσ | d

dEα

[
V σ

U

∂P̂

∂λ

]
|ψiσ 〉

=
∑

Iσm1m2

U I dnIσ
m1m2

dEα

∂nIσ
m2m1

∂λ
, (57)

where the bare term
∂nIσ

m2m1
∂λ

is defined in Eq. (20). The second
Hubbard term is obtained from the last term of the first line in
Eq. (56): ∑

iσ

dεiσ

dEα

〈ψiσ |∂ Ŝ

∂λ
|ψiσ 〉, (58)

which is similar to the one in Eq. (42), the difference being
that here the KS eigenvalues respond to the macroscopic
electric field rather than to atomic displacements. Similarly
to Eq. (44), this term reads

Z∗(b)
U,αλ =

∑
iσ

〈ψiσ |dV σ
U

dEα

P̂|ψiσ 〉〈ψiσ |∂ Ŝ

∂λ
|ψiσ 〉

= −
∑

Im1m2iσ

U I dnIσ
m1m2

dEα

〈ψiσ |P̂I
m1m2

|ψiσ 〉〈ψiσ |∂ Ŝ

∂λ
|ψiσ 〉,

(59)

where we have used Eq. (16). Note that in the derivation of
Eqs. (57) and (59) we used the fact that only the KS wave
functions respond to the macroscopic electric field (nuclei are
clamped), therefore bare terms as d

dEα

∂P̂
∂λ

and d
dEα

∂ Ŝ
∂λ

are zero.

The derivative
dnIσ

m1m2
dEα

, appearing in Eqs. (57) and (59), is a
pure SCF response term and it is computed as:

dnIσ
m1m2

dEα

=
∑

i

[〈
dψiσ

dEα

∣∣∣∣P̂I
m2m1

|ψiσ 〉 + 〈ψiσ |P̂I
m2m1

∣∣∣∣dψiσ

dEα

〉]
.

(60)

Similarly to Eq. (33), we can insert an identity in the equation
above and obtain the conduction and valence components

of the response occupation matrix
dnIσ

m1m2
dEα

. The conduction
component is computed as:

�̃α
E nIσ

m1m2
≡
∑

i

[〈�̃α
Eψiσ |P̂I

m2m1
|ψiσ 〉

+ 〈ψiσ |P̂I
m2m1

|�̃α
Eψiσ 〉], (61)
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where �̃α
Eψiσ is the conduction component of the response

KS wave functions. It is computed by solving a Sternheimer
equation analog to Eq. (27) [29,69] but including an elec-
trostatic perturbing potential, calculated using Eqs. (52) and
(53). Note that, as electric field perturbations involve pure
SCF derivatives, bare terms analog to the ones in Eqs. (20),
(36), and (37) are zero, and hence the valence component of
dnIσ

m1m2
dEα

is zero.
The third Hubbard term comes from the second and third

lines in Eq. (56):

Z∗(c)
U,αλ = −

∑
iσ

{〈
dψiσ

dEα

∣∣∣∣V σ
U

∂P̂

∂λ
|ψiσ 〉 + c.c.

}

= −
∑

Im1m2iσ

U I

(
δm1m2

2
− nIσ

m1m2

)

×
{〈

dψiσ

dEα

∣∣∣∣∂P̂I
m1m2

∂λ
|ψiσ 〉 + c.c.

}
, (62)

where we have used Eq. (16). Therefore, the three Hubbard
contributions to the Z∗ Born effective charges are given by
Eqs. (57), (59), and (62). It is possible to rewrite Z∗(a)

U,αλ and

Z∗(c)
U,αλ as one compact term, by performing manipulations

on Eq. (57) using Eqs. (20) and (60). By doing so, and by
including Z∗(b)

U,αλ, we can write the final expression for all
Hubbard contributions to Z∗ as:

Z∗
U,αλ = −

∑
iσ

{〈
dψiσ

dEα

∣∣∣∣∂V̂ σ
Hub

∂λ
|ψiσ 〉 + c.c.

}

+
∑

iσ

〈ψiσ |dV σ
U

dEα

P̂|ψiσ 〉〈ψiσ |∂ Ŝ

∂λ
|ψiσ

〉
, (63)

where

∂V̂ σ
Hub

∂λ
= V σ

U

∂P̂

∂λ
+ ∂V σ

U

∂λ
P̂ (64)

is the bare derivative of the Hubbard potential [Eq. (15)].
An alternative (but equivalent) way to compute Z∗

U,αλ can
be defined by changing the order of derivatives in Eq. (54).
This alternative procedure was also implemented and has been
proved to give identical results to the one derived above from
Eq. (54). Further benchmarks of the nonanalytic terms of the
dynamical matrix are contained in the SM [45], Sec. S2.

V. TECHNICAL DETAILS

The DFPT + U approach has been implemented in the
Quantum ESPRESSO distribution [71,72] and it is publicly
available. Calculations are performed using the plane-wave
(PW) pseudopotential method and the generalized-gradient
approximation (GGA) for the xc functional constructed with
the PBEsol prescription [73]. US PPs were taken from the
GBRV library [74,75]. Kohn-Sham wave functions and charge
density were expanded in PWs up to a kinetic-energy cutoff of
60 Ry and 720 Ry, respectively.

Electronic ground states were computed by sampling the
Brillouin zones (BZ) with uniform, �-centered 6 × 6 × 6 and
4 × 4 × 4 k-point meshes for CoO and LiCoO2, respectively.

The CoO GGA metallic ground state required instead a 18 ×
18 × 18 k-point grid. For phonon calculations the LiCoO2 k-
point grid was refined to 8 × 8 × 8. Given the nonmagnetic
nature of its ground state, the KS states occupations were held
fixed for LiCoO2. For CoO, instead, a gaussian smearing was
used, except for GGA calculations that, owing to the metallic
character of the ground state, was better treated by a Marzari-
Vanderbilt smearing [76]. In all cases a broadening width of
0.01 Ry was adopted.

The effective Hubbard U was determined from first princi-
ples using the DFPT approach of Ref. [77], with uniform 4 ×
4 × 4 and 3 × 3 × 3 q-point meshes for CoO and LiCoO2,
respectively. The Hubbard U was computed (typically with
a precision of about 0.01 eV) in a self-consistent way, i.e.,
cycling linear-response calculations of U [77] and structural
optimizations until convergence, as explained in Refs. [40,78].
For the Co 3d states of CoO and LiCoO2 we obtained,
respectively, Uscf = 4.55 eV and Uscf = 6.91 eV. DFPT and
DFPT + U phonon calculations were performed using opti-
mized crystal structures, with a uniform, �-centered 4 × 4 ×
4 q-point mesh.

The projectors of Eq. (9) are constructed using atomic
orbitals present in the pseudopotentials. The linear-response
KS equations (27) were solved using the conjugate-gradient
algorithm [79] and the mixing scheme of Ref. [80] for the
Hxc potential response to speed up convergence. The labeling
of the BZ high-symmetry points and directions for the phonon
dispersion were determined using SeeK-path [81]. Phonon
analysis was made with the help of the Materials Cloud
Interactive Phonon visualizer [82]. The data used to produce
the results of this work are available on the Materials Cloud
Archive [83].

VI. RESULTS

We now showcase the importance of the Hubbard correc-
tion for the calculation of the vibrational spectrum of two
paradigmatic transition-metal oxides, CoO and LiCoO2. We
briefly discuss also their equilibrium crystal structures and
electronic band gaps.

A. CoO

Prototypical representative of correlated transition-metal
monoxides (TMO), CoO is investigated for a number of tech-
nological applications including spintronics [84], gas-sensing
[85], photocatalysis [86], and energy storage [87,88]. As other
TMOs, in its high-temperature paramagnetic phase CoO has
a rock-salt type structure (space group Fm3m) with a lattice
parameter of 4.26 Å [89]. A phase transition to a type II
antiferromagnetic (AFII) ground state takes place below the
Néel temperature TN ≈ 291 K. In this phase the material
presents ferromagnetic (111) planes stacked antiferromag-
netically along the [111] direction [90,91]. This magnetic
order is compatible with rhombohedral symmetry. However,
at variance with other TMOs, CoO does not exhibit a simple
rhombohedral deformation, but it rather adopts a monoclinic
symmetry (space group C2/m) [89]. The latter can be seen
as resulting from a rhombohedral distortion of a tetragonal
unit cell characterized by a slightly contracted cubic c-axis
(c/a = 0.988) [89,92–94].
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TABLE I. CoO experimental and theoretical lattice parameters
(a, b, c, and β) of the monoclinic crystal, and energy differences from
the most stable structure (�E = 0), as obtained from calculations in
the rhombohedral (R) and monoclinic (M ) unit cells for both GGA
and GGA+U . The calculated and experimental band gaps (Eg) are
also shown. Experimental lattice parameters are from Ref. [89], the
band gap from Ref. [95].

a (Å) b (Å) c (Å) β (◦) �E (meV/f.u.) Eg (eV)

GGAR 5.577 2.748 3.109 132.78 0 0
GGAM 5.575 2.749 3.108 132.74 2.0 0
GGA+U R 5.206 3.019 3.009 125.05 0.4 2.32
GGA+U M 5.209 3.018 3.010 125.08 0 2.32
Expt. 5.182 3.018 3.019 125.58 2.5 ± 0.3

Notwithstanding this rather complex structural behavior, in
order to simplify the material’s description (avoiding the ef-
fects of the rather small monoclinic deformation) and contain
computational costs, our phonon calculations were performed
on a four-atoms AFII rhombohedral unit cell rather than on
the larger, eight-atoms monoclinic one. This choice is justified
by a comparative analysis of the energies and equilibrium
crystal structures obtained from the monoclinic and the rhom-
bohedral cells. Table I shows that the two structures are
practically indistinguishable (0.05% difference in the lattice
parameters) and that their energies are within 2.0 and 0.4 meV
per formula unit in GGA and GGA + U , respectively, which
are comparable with the precision of our calculations. A
clear evidence emerging from Table I is, instead, the net
improvement the Hubbard correction brings to the crystal
structure (with respect to GGA), in excellent agreement with
low-temperature experimental data [89]. This includes also a
marginal stabilization of the monoclinic structure (less stable
in GGA). The looser agreement with the experiment that
GGA’s structure shows is probably related to the metallic
character of its ground state (in contradiction with the ob-
served insulating behavior of the material) that pulls Co ions
closer to each other along the monoclinic b direction in order
to increase bands dispersion. In fact, the GGA functional fails
to localize the Co 3d electrons as a consequence of a large
self-interaction error. By reducing this error and favoring the
electronic localization, the Hubbard correction stabilizes an
insulating ground state, whose improved electronic structure
refines the equilibrium geometry of the crystal.

Our calculated GGA + U band gap is 2.32 eV, which
agrees well with photoemission experiments (2.5 ± 0.3 eV)
[95]. We stress that this overall very good agreement with
the experiments is obtained without any fitting parameter.
Our Hubbard U value (4.55 eV) was determined ab initio
and self-consistently using a recently-developed DFPT-based
linear-response technique [77].

Table II reports the computed high-frequency dielectric
tensor and Born effective charges, in comparison with the
experimental values. These quantities, obtained through the
response to a finite electric field (see Sec. IV C), are crucial
to evaluate the nonanalytic part of the dynamical matrix for
polar insulators and to capture the LO-TO splittings of phonon
frequencies at zone center. While the computed dielectric

TABLE II. CoO high-frequency dielectric tensor and Born ef-
fective charges as computed using DFPT + U and measured in
experiments. Both tensors are reported in the Cartesian framework.
Diagonal and off-diagonal elements are labeled as ii and i j. The
experimental values for Z∗ and ε∞ are from Refs. [96] and [97],
respectively.

DFPT + U Expt.

ε∞
ii 6.17 5.3

ε∞
i j −0.04

Z∗
Co,ii 2.25 2.06

Z∗
Co,i j 0.05

Z∗
O,ii −2.25 −2.06

Z∗
O,i j −0.05

tensor overestimates the experimental one by 16%, a very
good agreement is found for the Born effective charges (9%
difference between theory and experiment), with calculations
suggesting a slightly more ionic character than the experi-
ments. Note that the deviation from the cubic symmetry (due
to the rhombohedral cell adopted here) results in nonvanish-
ing off-diagonal elements of these tensors, also reported in
Table II.

The CoO phonon dispersion, the main result of this sec-
tion, is shown in Fig. 1, comparing the vibrational spectrum
and density of states (DOS) obtained with DFPT (GGA
functional) and DFPT + U (GGA + U functional). Unlike
in MnO and NiO [24], the difference between the two sets
of results is qualitative. The GGA functional, stabilizing a
metallic ground state, predicts the rhombohedral crystal to be
dynamically unstable, in agreement with what was reported in
other works [93,96]. This is evinced from the broad negative
branches (imaginary frequencies) along the S-F and F-�
directions, around M and along �-H, most of which appear

FIG. 1. CoO phonon dispersion in THz (left panel) and phonon
density of states in states/THz/cell (right panel) obtained from
DFPT (black dashed lines) and DFPT + U (red solid lines). “LO”
and “TO” label longitudinal and transverse optical modes respec-
tively, that split at zone center. The blue arrow indicates a further
splitting between TO modes due to the AFII order (see main text).
The distances along high-symmetry directions were rescaled in the
DFPT case to match the DFPT + U (different) Brillouin zone.
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to stem from optical modes. Remarkably, these instabilities
are completely removed by the Hubbard correction that yields
positive branches (real vibrational frequencies) across the
whole BZ. Thus, the GGA + U insulating crystal structure is
not only in much closer agreement with experiments (Table I)
but also dynamically stable. Looking at the phonon DOS, the
GGA + U frequencies are in general blueshifted relative to
GGA (although not for all modes and not uniformly). This is
true for both the low (Co-dominated) and high (O-dominated)
parts of the spectrum and also leads to a more uniform
distribution of the vibrational modes across the whole energy
spectrum. As a direct consequence of the insulating ground
state achieved with GGA + U and of the polar nature of the
crystal, we have the presence of LO-TO splittings around zone
center. These, in general, differ depending on the specific
direction along which the vibration wave vector approaches
�. Focussing, e.g., on the F-�-T section, the splitting is
between transverse modes (denoted TO1, TO2) at 9–11 THz
in Fig. 1 and the longitudinal ones (LO) at 16 THz. Along
F-� a splitting appears between TO modes, as indicated by
the blue arrow in the figure. This splitting originates from
the AFII magnetic order that breaks the equivalence between
the [111] direction (�-T), orthogonal to the ferromagnetic
(FM) planes and other cubic diagonals as, e.g., the [11̄1̄]
direction (F-�). The transverse optical modes TO1 and TO2
are degenerate along �-T, as they are both polarized along
the FM planes. However, along F-�, while TO2 vibrates
still on these planes (along the common orthogonal to both
directions) and maintains its frequency unchanged across �,
TO1 vibrates out of the FM planes and its frequency splits
downward from that of TO2 along F-�. Originally predicted
by Massidda and coworkers [30], these splittings between TO
modes were measured experimentally (e.g., in Ref. [98]) and
also confirmed to stem from the magnetic order in previous
works [24,99]. For MnO and NiO, the GGA + U resulted in a
contraction of the TO splittings with respect to GGA [24], due
to the reduction of the intersite magnetic couplings following
from the more pronounced localization of 3d electrons. The
width of the splitting we obtain for CoO is much larger than
for MnO and NiO, suggesting more robust magnetic couplings
between Co ions than between Mn or Ni.

Note that also the topmost LO modes (at 16 THz) exhibit
a discontinuity at �, although less pronounced. This small
jump is also a consequence of the AFII order (the two
directions �-T and �-F would otherwise be equivalent in a
perfectly cubic crystal). However, it only appears because of
the re-polarization of the phonons, LO along both directions,
imposed by the electric field associated with the vibrations.
We remark that the splitting of modes discussed above also
contains a structural component, due to the rhombohedral
distortion of the crystal and the departure from the cubic
symmetry (see discussion below).

From Fig. 1 it is evident that the splittings obtained with
GGA + U are far bigger than with GGA. In fact, the GGA
metallic ground state screens the macroscopic electric fields
associated with LO vibrations and all the nonanalytic terms of
the dynamical matrix vanish. The residual splittings surviving
in GGA among the three TO and LO modes (at around
10.8 THz, they are hardly visible in the figure as their am-
plitude is 0.13 THz) are actually a consequence of the AFII

FIG. 2. CoO phonon dispersion in an equivalent (distorted) two-
atoms rock-salt cell compared to the experiment [97]. The directions
refer to the rock-salt cell: [001] (�-X), [110] (�-K), and [111] (�-T).
This dispersion was obtained from calculations in the four-atom
rhombohedral cell of Fig. 1. Experimental data along the cubic �-L
direction were folded to account for the doubled periodicity of the
AFII cell along the [111] direction (see text). Circles (triangles)
indicate transverse (longitudinal) modes.

magnetic order and of crystal distortion. Their magnetic com-
ponent is greatly attenuated by the metallic state while their
distortion component is more pronounced than in GGA + U .
Separate GGA calculations on an undistorted (rock-salt) CoO
cell have shown that magnetic and distortion splittings have
opposite signs, thus further reducing the overall (net) effect.

Figure 2 shows a comparison between the phonon dis-
persions obtained with DFPT and DFPT + U and data from
inelastic neutron scattering (INS) experiments [97]. Although
the latter were performed below the Neél temperature, the
data were plotted along the high-symmetry paths of a cubic
rock-salt Brillouin zone, typical of the paramagnetic phase.
Thus, theoretical phonons of the AFII cell were recomputed
along these paths to facilitate the comparison, except for the
[111] (�-T) direction along which experimental points have
been folded to account for the doubled periodicity of the AFII
cell. Clearly, doubling the number of atoms in the cell implies,
for unfolded directions, six extra branches compared to the
experimental ones. Consistently with Ref. [97], the dispersion
along the [110] (�) direction is extended beyond the border
zone at K to reach X′, equivalent to X.

The agreement between DFPT + U and the experimental
data is remarkably good along all directions. The GGA results,
instead, miss the experimental frequencies (except for few
acoustic branches), even in regions of positive phonons. Note
that the LO-TO splittings in DFPT + U improve significantly
the agreement: The highest LO and TO modes at � are
matched quite well by DFPT + U , while DFPT is off by
non-negligible amounts (in fact more than 2 THz lower for
the topmost LO mode).

Overall, our DFPT + U phonon dispersion of CoO is in
good agreement also with other calculations [93,96]. We
remark, however, that the effects of the Hubbard correction
on the CoO vibrational properties have been previously in-
vestigated using a direct method (based on supercells) and
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TABLE III. LiCoO2 experimental and theoretical lattice param-
eters with a rhombohedral cell and space group R3̄m. a is the lattice
constant, α is the rhombohedral angle, z is the internal (dimension-
less) positional parameter of O atoms along the trigonal axis, and Eg

is the band gap. Experimental lattice parameters are from Ref. [102],
the band gap from Ref. [95].

a (Å) α (deg) z Eg (eV)

GGA 4.88 33.48 0.2391 1.14
GGA+U 4.93 33.10 0.2398 2.90
Expt. 4.96 32.99 0.2395 2.7 ± 0.3

an empirically determined value of U [93,96]. The results
presented here are instead obtained from our DFPT + U
implementation and are based on an ab initio, linear-response
evaluation of U and self-consistent optimization of the crystal
structure [40,77,100]. Further, unlike in Refs. [93,96] where
LO-TO splittings were partly obtained from experimental Z∗
and ε∞, our results are entirely from first principles. Finally,
Refs. [93,96] used a cubic rock-salt cell, while we adopted a
rhombohedral cell fully accounting for all geometrical defor-
mations consistent with this symmetry.

B. LiCoO2

LixCoO2 is one of the most widely used cathode materials
for Li-ion batteries [101]. In its fully lithiated (x = 1) phase
it is a nonmagnetic semiconductor which crystallizes in the
rhombohedral cell (containing four atoms) with space group
R3̄m. Table III compares the equilibrium structural parameters
and band gaps computed with GGA and GGA + U with
their experimental values. As for CoO, the GGA + U results
are obtained by a procedure where the crystal structure is
reoptimized at each calculation of the Hubbard U , until the
variations of both are within given thresholds. It is immediate
to realize that the self-consistent U correction improves sig-
nificantly the agreement with experiments compared to GGA.

Regarding the band gap, the GGA value, 1.14 eV, is greatly
improved by GGA + U giving 2.90 eV, in excellent agree-
ment with the experimental measurement, 2.7 ± 0.3 eV [95].
This improvement is also consistent with a previous study
on LiCoO2 [36] where similar values for the band gap were
reported for both GGA and GGA + U .

Similar to what we have done for CoO, we first present the
high-frequency dielectric and Born effective charges tensors
computed from DFPT and DFPT + U . Since the material is a
polar insulator also without the Hubbard correction, a finite
value of these quantities can be obtained also from GGA.
Table IV compares the two sets of results reporting the xx
and zz components of both tensors (the yy are equal to xx
by symmetry) that are diagonal in the rhombohedral repre-
sentation. The comparison clearly shows that the Hubbard
U reduces the xx component of the dielectric tensor quite
significantly, while the variation of the zz component is less
pronounced. At the same time, the Born effective charges
are almost unaffected. Hence, differences in LO-TO splittings
with and without U correction are expected, as a consequence
of different nonanalytic contributions to the dynamical matrix

TABLE IV. LiCoO2 high-frequency dielectric tensor and Born
effective charges as computed using DFPT and DFPT + U . Both
tensors are reported in the Cartesian framework and are diagonal,
with equal xx and yy components.

DFPT DFPT + U

ε∞
xx 9.93 6.57

ε∞
zz 4.68 3.94

Z∗
Co,xx 2.73 2.87

Z∗
Co,zz 0.93 0.88

Z∗
O,xx −1.95 −2.01

Z∗
O,zz −1.32 −1.29

Z∗
Li,xx 1.18 1.15

Z∗
Li,zz 1.72 1.69

[see Eq. (51)]. To the best of our knowledge, no experimental
Z∗ and ε∞ data are available for this material.

Figure 3 shows the phonon dispersion of LiCoO2 and com-
pares the results of DFPT and DFPT + U calculations with
available Raman and infrared (IR) measurements at zone cen-
ter. The latter were performed on powder samples [103–109]
(we are not aware of any INS experiment performed on single
crystals of LiCoO2 to sample its vibrational spectrum across
the Brillouin zone) and at finite temperature, while our simu-
lations are done at 0 K. Unlike in CoO and other TMOs [24],
here GGA results are already in acceptable agreement with
the experiments. Interestingly, the Hubbard correction leaves
the acoustic and lower optical phonon branches (up to about
13 THz) almost unchanged, while it affects the upper part of
the spectrum more substantially. This subtle and highly selec-
tive action of the U on the phonon spectrum contrasts quite
sharply with the significant effects it has on the electronic
structure and, in particular, with the substantial widening of

FIG. 3. LiCoO2 phonon dispersion in THz (left panel) and
phonon density of states in states/THz/cell (right panel). DFPT
(black dashed lines) and DFPT + U (red solid lines). Experimental
data on Raman-active modes are from Ref. [103] (filled circles).
Infrared-active modes are from Ref. [103] (empty circles) and
Refs. [104,105] (empty squares). Other data from Refs. [106–109]
are redundant with the ones reported in the figure and are not
shown for the sake of clarity. Arrows indicate the LO-TO splittings
calculated with DFPT + U and discussed in the text.
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the band gap (see Table III). The explanation of this selectivity
resides in the fact that the low-frequency spectrum is domi-
nated by the vibrations of highly mobile Li ions, not involving
the stretching of the Co-O bonds. Above 13 THz instead, all
modes imply the deformation of these bonds and are thus di-
rectly affected by the action of the Hubbard U on Co 3d states:
the Raman active modes involving O vibrations (14.8 THz,
17.6 THz), the O-Co LO and TO modes (16.4–16.7 THz), and
the topmost LO modes (20.6–20.9 THz).

Concerning the comparison with the experiments, we note
an excellent agreement with the Raman active modes (Fig. 3,
filled circles at �), slightly improved by DFPT + U . The
computed Raman frequencies (14.80 and 17.63 THz) are also
in very good agreement with those obtained in Ref. [36]
(14.72 and 17.60 THz, for the Eg and A1g modes, respectively)
which provides a further validation of our implementation.
Raman-active modes are continuous along F-�-T since they
do not excite fluctuating dipoles and hence there is no macro-
scopic electric field associated with them. IR active modes,
instead, experience LO-TO splittings that cannot be resolved
by experiments on powder samples. This fact makes the direct
comparison with the available experimental data more prob-
lematic (one should perhaps understand experimental points
as average frequencies of split LO-TO couples along all the
possible directions to �). While it is difficult to assess the
quality of DFPT and DFPT + U results for IR modes, it is ev-
ident that DFPT + U frequencies are increasingly blueshifted
compared to GGA in the upper region of the spectrum, with a
particularly large difference for the topmost mode. This result
is probably related to the widening of the band gap produced
by the Hubbard correction, which is also reflected in the
strongly reduced value of the ε∞

xx entry of the dielectric tensor
compared to GGA (see Table IV), implying larger LO-TO
splittings [see Eq. (51)].

It is worth it at this point to discuss in some detail the nature
of these splittings. This is particularly important in view of
future INS experiments on LiCoO2 single crystals, which
we hope to stimulate with our calculations. Referring to the
DFPT + U spectrum and focusing for simplicity on the F-�-T
panels, the splittings are highlighted in Fig. 3 by blue arrows.
The first one involves the doublet of TO modes (along �-T)
at 7.2 THz that consist mostly of Li vibrations. One of these
modes maintains its transverse character also along F-� and is
continuous; the other acquires a LO component that shifts up
its energy by 1.3 THz, due to a coupling with the macroscopic
electric field. The TO mode along F-� (12.3 THz) moves Li
ions almost parallel to the [001] direction; therefore, it almost
coincides with the LO mode along �-T, whose energy has
shifted up by about 4.24 THz. The third TO �-T doublet at
16.8 THz moves the Co and O sublattices in counterphase. In
analogy with the first doublet discussed above, only one of
these modes remains TO along F-�, while the other acquires
a longitudinal component that shifts its energy up by almost
4 THz, becoming the highest frequency mode along the latter
direction. At the same time, the mostly TO mode along F-�
(second highest energy at 18.2 Thz) becomes the LO highest
energy branch along �-T.

The same analysis is qualitatively valid also for the GGA
phonon dispersion even if, as anticipated above, the entity of
the splittings and discontinuities differ. It is interesting to note

that the nature of the discontinuities (e.g., in the topmost LO
branch) is different in CoO and LiCoO2: In the first it is related
to the magnetic order and the rhombohedral distortion, in the
second it descends from the different coupling of different
vibrations with the electric fields (in fact F-� and �-T are not
crystallographically equivalent).

We close this section by mentioning previous computa-
tional studies on the vibrational properties of LiCoO2. In
Refs. [110,111], the authors computed the phonon disper-
sion using the Hubbard correction; their calculations were
based, however, on a frozen-phonon approach and did not
include LO-TO splittings, that are instead a key feature of the
dispersion. In Ref. [112] the vibrational spectra of LiCoO2

were used as a starting point to analyze its anharmonic lattice
dynamics and heat transport. This work also compared the
spectra obtained from LDA, LDA+U , and hybrid HSE06
functionals. In Ref. [36], the generalized DFPT approach
was also used with a Hubbard correction including U and J .
However, only Raman-active modes were presented and no
phonon dispersion was shown.

VII. CONCLUSIONS

We presented, within the ultrasoft pseudopotentials (US
PPs) formalism, a comprehensive theoretical derivation to
include the DFT + U functional in the framework of the
density functional perturbation theory (DFPT), used for the
calculation of phonons and related quantities. The approach,
denoted DFPT + U , represents a powerful tool for accurate
and efficient linear-response calculations in strongly corre-
lated materials. This formulation develops an important exten-
sion to US PPs of a previous implementation of DFPT + U
deviced for NC PPs [24]. A similar generalization was de-
veloped independently in Ref. [36]. Starting from the DFT +
U expressions of total energy and forces, we show how
Hubbard-related DFPT terms appear in the perturbed Hubbard
potential, in the matrix of force constants, and in the electronic
dielectric tensor and Born effective charges that determine the
nonanalytical part of the dynamical matrix of polar insulators.
The terms are classified on the basis of their self-consistent
or bare nature (depending on whether or not they require
the evaluation of the Kohn-Sham wave functions response)
and of their specificity to the US PPs formalism. This is
useful to reproduce the implementation in different codes
and to stimulate future developments using linear-response
theory on a DFT + U ground state. The formalism is also
extended to metallic systems, where a smeared Fermi distribu-
tion function is necessary. This paves the way to understand,
for example, the possible role of correlation in describing
phonon anomalies or the electron-phonon coupling in doped
insulators exhibiting a metallic behavior.

DFPT + U is applied here to study the vibrational spectra
of two insulating Co oxides, CoO and LiCoO2. In CoO the
Hubbard correction leads to a dramatic, qualitative improve-
ment over the GGA results, eliminating the dynamical insta-
bilities associated to the spurious metallic character predicted
by the noncorrected functional. Through the stabilization of
an insulating ground state, the Hubbard correction also re-
fines quantitatively the structural and vibrational properties
of the material, achieving an excellent agreement with the
experiments.
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For LiCoO2, the Hubbard correction improves substan-
tially the agreement with experimental results for the band
gap and the equilibrium lattice parameters. Regarding the
vibrational spectrum, its effect is more subtle and energy
dependent. While, importantly, it has marginal effects on
the acoustic and lower optical modes, where GGA already
performs well, it slightly improves Raman-active frequencies.
The comparison with IR-active modes measured from powder
samples is instead more problematic. In general the Hubbard-
corrected IR-active modes are blueshifted in the upper part
of the spectrum, where vibrations involve more significantly
Co ions. This result is consistent with a better localization
of Co 3d electrons that widens the band gap and attenuates
the electronic screening, but would require a comparison
with INS experiments on crystalline samples to be precisely
assessed.

Finally, we stress that our approach, at variance with other
works, is fully ab initio, with no input from experiments (e.g.,
on ε∞ or Z∗) nor adjustable parameters (e.g., the Hubbard U ).
The quantitative agreement of our results with experiments
is thus a further proof of the effectiveness of DFPT + U
and the self-consistent evaluation of the Hubbard interaction
parameters.
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APPENDIX: DFPT + U FOR METALS

In this Appendix we extend the DFPT + U formalism
with US PPs to metallic systems (see also Refs. [29,41,113]).
This extension improves the treatment of metals whenever
the localization of some of their valence electrons plays a
relevant role, e.g., in determining fine details of the Fermi
surface, phonon dispersions, and electron-phonon couplings.
Calculations for metallic systems and magnetic insulators
[38] require a smearing of the distribution function around
the Fermi level, useful to avoid numerical instabilities. We
indicate by θ̃F,iσ ≡ θ̃ [(εF − εiσ )/η] the occupation of the KS
state (iσ ). Here θ̃ represents a smooth generalization of the
Fermi-Dirac function centered at the Fermi energy εF , whose
shape is controlled by the specific definition adopted and by
the smearing width η (see Refs. [76,114] for notable exam-
ples). States within η from the Fermi level assume fractional
occupations.

In metals, the occupation matrices nIσ
m1m2

, Eq. (8), are
generalized in a similar way to the charge density to account
for the fractional occupation of KS states:

nIσ
m1m2

=
∑

i

θ̃F,iσ 〈ψiσ |P̂I
m2m1

|ψiσ 〉. (A1)

Hence, their SCF derivative [Eq. (32)] contains the extra con-
tribution stemming from the variation of the KS occupations

around the Fermi level:

�
μ
metn

Iσ
m1m2

=
∑

i

d θ̃F,iσ

dμ
〈ψiσ |P̂I

m2m1
|ψiσ 〉. (A2)

This can be computed as [41]:

d θ̃F,iσ

dμ
= 1

η
δ̃F,iσ

[
dεF

dμ
− dεiσ

dμ

]
, (A3)

where δ̃F,iσ ≡ δ̃[(εF − εiσ )/η] approximates the Dirac’s δ

function in the limit of vanishing η. As for the derivatives dεF
dμ

and dεiσ
dμ

[Eq. (43)], we refer the reader also to the discussion
in Sec. II C 4 of Ref. [29]. Since these derivatives depend
on the response of the KS and Hubbard potentials, Eq. (A2)
must be computed at every iteration during the solution of the
Sternheimer equation. Other terms of the response occupation

matrix, namely
∂nIσ

m1m2
∂λ

, �̃μnIσ
m1m2

, and δμnIσ
m1m2

[Eqs. (20), (34),
and (36)], also require reconsideration in the case of metals.
The bare term simply becomes:

∂nIσ
m1m2

∂λ
=
∑

i

θ̃F,iσ 〈ψiσ |∂P̂I
m2m1

∂λ
|ψiσ 〉. (A4)

In order to generalize the other two terms (SCF and US
PPs-specific), one has to extend the Sternheimer equation (27)
to fractional occupations. This is done in such a way that the
Sternheimer equation for metals can still be formally written
in the insulatorlike form of Eq. (27) [113]. The mathematical
details can be found in Ref. [41] and will not be addressed
here. We will focus, instead, on the generalization of the quan-
tities pertaining to the Hubbard functional. The generalized
solution of the Sternheimer equation (27) can be formally
written as (cf. with the second term in Eq. (26) in Ref. [41]):

|�̃μψiσ 〉 =
∑

j

θ̃F,iσ − θ̃F, jσ

εiσ − ε jσ
θ jσ,iσ |ψ jσ 〉

× 〈ψ jσ |
[

dV̂ σ
KS

dμ
+ dV̂ σ

Hub

dμ
− εiσ

∂ Ŝ

∂μ

]
|ψiσ 〉, (A5)

where θ jσ,iσ ≡ θ [(ε jσ − εiσ )/η], and θ (ε) = erfc(−ε)/2.
Equation (A5) is the metallic counterpart of Eq. (26) for
insulators. Based on this expression and using Eq. (A2), it can
be shown that the SCF term of the response occupation matrix
(34) is generalized as:

�μnIσ
m1m2

≡
∑

i

[〈�μψiσ |P̂I
m2m1

|ψiσ 〉

+ 〈ψiσ |P̂I
m2m1

|�μψiσ 〉], (A6)

where we defined [41]:

|�μψiσ 〉 = |�̃μψiσ 〉 + 1

2η
δ̃F,iσ

dεF

dμ
|ψiσ 〉. (A7)

Note that in the derivation of Eq. (A6) we used the fact that
the j = i term (which is singular) in Eq. (A5) corresponds to
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the second term in Eq. (A3) multiplied by 1
2 |ψiσ 〉. Finally, the

remaining term δμnIσ
m1m2

can still be written as in Eq. (36), as
long as |δμψiσ 〉 is generalized to account for the smearing of
the distribution function [41]:

|δμψiσ 〉 =
∑

j

|ψ jσ 〉〈ψ jσ | ∂ Ŝ

∂μ
|ψiσ 〉

× [θ̃F,iσ θiσ, jσ + θ̃F, jσ θ jσ,iσ ]. (A8)

To summarize, the total response occupation matrix in the case
of metals reads:

dnIσ
m1m2

dμ
= ∂nIσ

m1m2

∂μ
+ �μnIσ

m1m2
+ δμnIσ

m1m2
, (A9)

where
∂nIσ

m1m2
∂μ

is given by Eq. (A4), �μnIσ
m1m2

by Eqs. (A6) and

(A7), and δμnIσ
m1m2

by Eqs. (36) and (A8).
Finally, let us consider the matrix of interatomic force

constants. In the metallic case, the force Fλ [Eq. (24)] has the
prefactor θ̃F,iσ in the summation over i and σ . Consequently,
the matrix of force constants Cμλ [Eq. (39)] has an extra term
that accounts for the variation of the occupation of KS states

[Eq. (A3)]:

Cmet
μλ =

∑
iσ

d θ̃F,iσ

dμ
〈ψiσ |

[
∂V̂ σ

KS

∂λ
+ V σ

U

∂P̂

∂λ
− εiσ

∂ Ŝ

∂λ

]
|ψiσ 〉.

(A10)

Equations (40), (42), and (44) have also a prefactor θ̃F,iσ in the
summation over i and σ . Using Eqs. (43), (A3), and (A10),
it can be shown that the Hubbard terms (41), (46), and (47)
can still be written in the insulatorlike form illustrated in
Sec. IV B, but with |δμψiσ 〉 being generalized as in Eq. (A8),
and |�̃μψiσ 〉 [in Eq. (41)] being replaced by |�μψiσ 〉, defined
in Eqs. (A5) and (A7).

The regrouping of the Hubbard terms in the matrix of force
constants proposed at the end of Sec. IV B is still valid in

the metallic case. The difference is that now
∂nIσ

m1m2
∂μ

is defined
by Eq. (A4) (similar statement holds for the second bare
derivative of the occupation matrix), δμnIσ

m1m2
by Eqs. (36)

with δμψiσ defined as in Eq. (A8), and, finally, |�̃μψiσ 〉 and
�̃μnIσ

m1m2
in Eq. (50) are replaced by their metallic counter-

parts |�μψiσ 〉 and �μnIσ
m1m2

, defined in Eqs. (A7) and (A6),
respectively. The implementation of DFPT + U for metallic
systems, presented in this Appendix, is validated in Sec. S3
of the SM [45] by comparing its results with those from finite
differences.
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