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Discrete diffraction and Bloch oscillations in non-Hermitian frequency lattices induced
by complex photonic gauge fields
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Non-Hermitian lattice systems with unconventional transport phenomena and topological effects have
attracted intensive attention recently. Non-Hermiticity is generally introduced by engineering on-site gain/loss
distribution or inducing asymmetric couplings by applying an imaginary gauge field. Here, we extend the
concept of non-Hermitian lattices from spatial to frequency dimension and emulate various non-Hermitian
transport phenomena arising from asymmetric coupling in synthetic dimension. The non-Hermitian frequency
lattice is created by introducing complex gauge potentials through appropriate complex modulations in a slab
waveguide. This complex gauge potential can induce asymmetric couplings among spectral modes and give rise
to various non-Hermitian transport phenomena such as amplified and decayed frequency diffraction, refraction
and non-Hermitian Bloch oscillations. The latter manifest themselves as both power oscillation and asymmetric
oscillation patterns, and can be exploited to probe in the bulk the non-Hermitian skin effect. Frequency-domain
Bloch oscillations with both exponentially growing oscillation amplitude and energy are also predicted. Our
results pave the way towards emulating non-Hermitian transport phenomena and topological effects in synthetic
dimension on a photonic platform, with potential applications to spectral manipulation of optical signals and

energy harvesting.
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I. INTRODUCTION

Photonic lattice systems, such as photonic crystals, meta-
materials, and coupled waveguide arrays, provide ideal plat-
forms to emulate wave transport dynamics of electrons in
solid-state systems [1-5]. Typical transport phenomena in-
clude the force-free discrete diffraction and force-driven
Bloch oscillations [6—11]. In recent years, the idea of non-
Hermiticity has emerged as a paradigm to mold the flow of
light in photonic lattices. Examples include the control of
light spreading from ballistic to diffusive in non-Hermitian
waveguide arrays [12] and nonreciprocal Bloch oscillations
in parity-time (PT) symmetric lattice potentials [13,14]. From
a practical perspective, the presence of non-Hermiticity also
offers functionalities to control light energy dynamics, such
as realizing selective light amplification and/or absorption as
well as energy harvesting purposes [15-20].

Basically, there are two approaches to introduce non-
Hermiticity into photonic lattices: the first one is to apply
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on-site gain/loss distribution, as typically exploited in tra-
ditional PT7-symmetric systems [21-23]. The second one is
to introduce asymmetric couplings between adjacent lattice
sites. The concept of asymmetric coupling dates back to the
Hatano-Nelson model in the 1990s [24,25], where a non-
Hermitian delocalization transition in the Anderson model
was predicted to occur by application of an imaginary gauge
field inducing asymmetric left/right hopping on the lattice.
More recently, non-Hermitian lattices with asymmetric cou-
plings are attracting a rapidly growing attention for their
unusual spectral and topological properties when subjected to
open boundary conditions. A peculiar feature of such systems
is to show so-called non-Hermitian skin effect (NHSE), i.e.,
the squeezing of bulk states to the edges, breakdown of
bulk-boundary correspondence based on Bloch topological in-
variants, and non-Bloch symmetry breaking phase transitions
[26-44]. Asymmetric coupling is also of special interest in
laser design, for example for the realization of topological
lasers [45] and robust phase locking in laser arrays [46].
Hence, the implementation of asymmetric hopping in photon-
ics is becoming a quest of great relevance. Despite the facility
in introducing non-Hermiticity in optics, the realization of
asymmetric couplings, or equivalently imaginary gauge fields
requires rather complex auxiliary coupling elements [47,48],
which remains technically a quite challenging task.

©2020 American Physical Society
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In this work, we extend the concept of non-Hermitian
lattice to frequency dimension and achieve various non-
Hermitian transport phenomena, suggesting also a method to
probe the NHSE by means of frequency Bloch oscillations.
Synthetic dimension refers to an artificial lattice formed by
coupling a set of modes with equally spaced parameters like
frequency, time or momentum [49-58], making it possible
to emulate higher-dimensional physics in lower-dimensional
physical structures. Here we apply complex index modulation
to introduce photonic transitions in a slab waveguide and
create a frequency lattice. Then the complex gauge potential
can be introduced by choosing appropriate amplitudes and
phases for the real and imaginary modulation parts, through
which we realize amplified and decayed frequency diffraction
and refraction. By introducing an effective force through
a wave number mismatch, we also achieve non-Hermitian
Bloch oscillations [59] in the frequency lattice, showing
both energy oscillation and asymmetric oscillation patterns.
Remarkably, the non-Hermitian Bloch oscillation dynamics
can reveal the existence or not the NHSE [26—44], i.e., they
provide a bulk probing method to detect squeezing of bulk
modes at the edges in lattices with open boundary conditions
(OBCs). Moreover, we generalize the effective force itself to
the complex regime and realize amplified Bloch oscillations
with both exponentially growing oscillation amplitude and en-
ergy. Finally, a concrete modulator structure with judiciously
designed modulation profiles is proposed to realize both the
complex gauge potential and effective force.

II. RESULTS AND DISCUSSIONS

A. Model and discrete diffraction in non-Hermitian
frequency lattice

In this section we describe our basic photonic system
to implement a non-Hermitian frequency lattice, in which
asymmetric hopping between adjacent sites is realized by
a synthetic gauge field via combined phase and ampli-
tude modulations. As shown in Fig. 1(a), we consider a
LiNbO; slab waveguide subject to a traveling-wave complex
index modulation n(z, t) = ng + Anj cos(t — gz + ¢1) +
iAny cos(2t — gz + ¢2) [Fig. 1(b)], where ny is the back-
ground refractive index, €2 and ¢,, denote the common mod-
ulation frequency and wave number, Any, ¢;, and Any, ¢,
are modulation amplitudes and phases for the real and imag-
inary parts, respectively. In practice, the simultaneous real
and imaginary index modulation can be realized by using
combined phase (or frequency) and amplitude modulators
[60-62]. As shown in Fig. 1(c), the modulation of refractive
index can induce photonic intraband transitions among a dis-
crete set of optical slab modes with frequency w, = wy + n2
and wave number B, = By +nq(n =0, £1,+2,...), form-
ing a synthetic frequency lattice, where n is lattice site index,
wy is the central frequency, and ¢ is the wave number spacing
between adjacent sites. The mode amplitudes a,(z) at nth site
of the synthetic lattice is governed by the following coupled-
mode equation (see Appendix A):
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FIG. 1. (a) Schematic of a LiNbO; waveguide modulator subject
to a complex index modulation. The slab waveguide has a back-
ground refractive index ny = 2.14 and thickness d = 0.5a, where
a=1pum. (b) The blue solid and red dashed curves denote the
real n;(t) and imaginary n,(t) part of refraction index at z = 0.
(c) Dispersion curves of optical modes and schematic of photonic
transitions, where the black and blue curves denote TE, and TE;
bands and the grad region denotes the light cone. €2, g,, are the modu-
lation frequency and wave number and g is the wave number spacing
between adjacent modes, such that the wave number mismatch is
Ag = q— qy. €®e ™ (e7®e") is the complex hopping phase during
upward and downward transitions. (d) Complex band structure with
the blue and red curves denoting the real and imaginary parts.
Here the imaginary gauge potential is chosen as k = 0.1. The solid
black arrows denote the group velocities of Bloch wave packet with
¢o — ¢ = —m /2,0 and 7 /2, respectively.

where C) = Anjky/2, C; = Anyky/2 are the mode coupling
strengths between adjacent sites induced by the real and
imaginary modulations, respectively, and Ag = g — g, is the
wave number mismatch of the transition.

Let us first consider the perfect phase-matching regime.
For Ag = 0, Eq. (1) reduces to

0a,(z)

= (C1e" +iCre")a,_1(2)
0z

i

+ (Cre™ +iCre™")a,11 (2). 2)

The Bloch modes of the frequency lattice are readily
obtained making the Ansatz a,(z) = exp(ink,2)exp(ik.z),
where k,, is the Bloch wave number along frequency dimen-
sion and k, the eigenpropagation constant along z direction,
and

k;(k,) = —2Cj cos(k,2 — ¢1) — 2iC; cos(k,2 — ¢2), (3)

is the dispersion curve of the tight-binding lattice band.
Note that, contrary to most common Hermitian lattices with
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purely real band structures [3-7], the frequency lattice here is
non-Hermitian with a complex band structure. In particular,
with appropriate choices of real and imaginary modulation
amplitudes and phases, an effective complex gauge potential
is obtained in the frequency lattice. Like in the Hatano-
Nelson model [24,25], a complex-valued gauge potential A =
Aj +iA, yields a complex phase factor e’ Jor®! Artidoder
eA18te=ASt — (9o~ accompanying frequency transitions, so
that the coupled-mode equation takes the following form:

iaa,, (2)
0z

where C is the real-valued coupling strength in the absence of
complex gauge potential. Clearly, a nonvanishing value of «
yields asymmetric hopping in the lattice. Note that, in terms
of C and «, the band structure can be written in the equivalent
form

=Cle?e ™ a,_1(z) + e e a,1(2)], “4)

k,(ky,) = — 2C cos(k,2 — ¢ — iK)
— 2C cosh(k) cos(k,2 — @)
— 2iC sinh(k) cos(k,2 — ¢ — 7 /2). (®)]

By comparing Egs. (5) and (3), we can obtain the con-
ditions to synthesize a complex gauge potential: C,/C; =
Any/Any = tanh(x) and ¢, — ¢; = /2, from which we
have « =In[(1 4+ Any/Any)/(1 — Any/Any)]/2. So the
imaginary gauge potential is controlled by the ratio between
the imaginary and real modulation amplitudes. As illustrated
in Fig. 2(a), to ensure that « has its physical meaning, the ratio
should be chosen in the regime 0 < An,/An; < 1, indicating
that the imaginary modulation amplitude cannot overcome
its real part. In particular, in the limit Any/An; — 0, we
have k — 0, the gauge potential becomes entirely real and
the usual Hermitian discrete diffraction of frequency modes,
with conserved energy and symmetric patterns, is observed
[52]. On the other hand, in the opposite limit Any/An; — 1,
we have k — oo, which means that the frequency transition
is permitted in one direction while completely inhibited in
the other. This limit corresponds to the non-Hermitian lat-
tices with unidirectional hoppling strengths [61]. It is worth
considering the asymptotic behavior of « in the small mod-
ulation limit An,/An; — 0, which is of main practical rele-
vance. In this limit one has k = Any/An; /(1 — Any/Any) =
Any/Any, i.e., the imaginary gauge potential is proportional
to the ratio of imaginary to real modulation amplitudes. This
feature can be clearly seen from Fig. 2(a) and in the inset
figure, where the blue solid analytic curve and red dashed
asymptotic line coincide well with each other. Throughout the
paper, we restrict our choice of « in this linear regime, such
that k = Any/Any.

Tailoring the complex gauge potential enables to con-
trol both the frequency shift and energy evolution of
the spectral modes. For a finite-width Bloch-wave packet
(i.e., an optical pulse train) incident into the system,
in terms of the band structure shown in Fig. 1(d), the
wave packet group velocity is vg, = —0Re[k;(k,)]/0k, =
—2CQ2 cosh(k) sin(¢pg — ¢), giving rise to a total frequency
shift Aw = vy ,L = —m,Q2 cosh(x) sin(¢p — @), where ¢y =
k.2 is the initial central Bloch momentum, m, = AnkoL =
2CL is the phase modulation depth and L is the modu-
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FIG. 2. (a) Imaginary gauge potential as a function of the ratio
between the imaginary and real index modulation amplitudes. We
choose ¥ = 0.1 in the calculations of this figure and Fig. 3, as de-
noted by the black circle in the inset figure of (a). (b)—(d) Frequency
discrete diffraction for the input Bloch-wave packet versus the phase
modulation depth m,, in a single modulator for Ag = 0. The phase
modulation depth is related to the propagation distance through
my,(z) = Ankoz. For a waveguide modulator with fixed length L,
the accumulated phase modulation depth is m, = AnkyL = 2CL. So
we can linearly increase the phase modulation depth to mimic the
spectrum evolution with the increase of coordinate z. The packet
initial Bloch momentum is (b) ¢g — ¢ = —7/2, (¢) po — P =7/2
and (d) ¢o — ¢ = 0. The inset figures in (b) and (c) denote the packet
energy evolutions. (e) Spectrum evolution for a single frequency
input in a single modulator, manifesting the asymmetric discrete
diffraction.

lator length. The wave packet energy evolves as I(z) =
la,(2)|? = Ipexp[—2Im(k,)z], which reaches the value I(L) =
Ipexp[2my,sinh(k )sin(¢g — ¢)] at the output end z = L, where
Iy is the initial intensity. So at the right-half part of Bril-
louin zone 0 < ¢pg — ¢ < w, we have Aw < 0, I(L) > Iy, the
packet experiences a red spectral shift accompanied by an
exponential energy growth. On the contrary, at the left-half
part —mr < ¢ — ¢ <0, Aw > 0, I(L) < Iy, the wave packet
exhibits a spectrum blue shift with an exponential energy
decay. At Brillouin zone center or edges ¢9 — ¢ = 0 or ,
Aw =0, I(L) = I, both frequency shift and energy do not
change.

To check the validity of the theoretical analysis, we sim-
ulate spectrum dynamics by numerically solving Eq. (2).
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Throughout the paper, we choose ny =2.14 and waveg-
uide width d =0.5um. The central frequency is wy =
0.6451(2mc/a) witha = 1 um, corresponding to the telecom-
munication wavelength 1y = 1.55 um. The modulation fre-
quency is /2w = 10GHz and the modulation wave num-
ber is g, = ¢ =0.93mm™! at wy. The dielectric modula-
tion amplitude is Ae = 2ngAn =2 x 1073, such that the
real and imaginary parts are Ag; = Aecosh(k) and Ag, =
Aecosh(k), respectively. Figures 2(b)-2(d) show the spec-
trum evolution for an input Bloch-wave packet a,(0) =
apexp[—(n2/W)?]exp(ingy), where W = 5% is the width of
Gaussian envelope and ¢y is the initial Bloch momentum. The
simulated intensity evolutions are shown in the inset figures,
which are obtained through 7 =", la,|?. In Fig. 2(b), we
choose ¢9 — ¢ = —m /2 and « = 0.1, the packet manifests a
directional frequency blue shift accompanied by an exponen-
tial energy decay. On the contrary, for ¢y — ¢ = /2 shown
in Fig. 2(c), the packet exhibits a maximum spectrum red
shift with an exponential intensity growth. For ¢9 — ¢ =0
in Fig. 2(d), the wave packet center exhibits no spectral shift
and the energy is also conversed. Note that the spectrum
envelope exhibits an appreciable red shift, which is attributed
to the nonvanishing momentum distribution around ¢g — ¢ =
0 due to the finite width of the packet envelope. In Fig. 2(e),
we excite the central-frequency mode in the modulator with
a,(0) = apé, o, the spectrum of which manifests the charac-
teristic cone-like discrete diffraction but with an asymmetric
diffraction pattern |a,| = ao|J,(m,)|e™" [see Eq. (B2) in Ap-
pendix B]. So compared to the traditional discrete diffraction
without gauge potential or with a purely real gauge potential
where the diffraction pattern is symmetric |a,| = aolJ,(my,)|
[52], the presence of imaginary gauge potential imprints an
amplified or decayed exponent on each order, giving rise to
the asymmetric diffraction pattern.

Furthermore, if we cascade two modulators with differ-
ent complex gauge potentials ¢ + ix and ¢’ + ik’, a fre-
quency analog of refraction will also occur, where both of
the frequency shift and energy evolution can be altered at
the boundary. With all combinations of complex gauge po-
tentials taken into account, there are totally four kinds of
refraction scenarios: (1) ¢ = ¢’ and k = «’; (2) ¢ = ¢’ and
k#k';3) dp#£¢ and k =«'; (4) ¢ £ ¢ and k Z«'. In
all scenarios, the refraction for a Bloch-wave packet can be
analyzed from band structure perspective. Suppose the packet
carries an initial Bloch momentum ¢ = k€2, we can readily
define an effective relative refractive index between the two
modulators

k; 1 (ko) _ cos(¢pg — ¢ — k)
k.o(ky) — cos(po — ¢ — k')

So under different combinations of complex gauge poten-
tials, we can achieve versatile refraction phenomena, includ-
ing both positive and negative spectrum or energy refractions.
Additionally, when we consider a single frequency input, the
band structure analysis is invalid: an input single frequency
contains all Bloch-mode components in the Brillouin zone,
making the definition of effective relative refractive index
invalid. Instead, the refraction can be described by the refrac-
tion patterns calculated from optical phase modulation. The
detailed theoretical analysis is provided in Appendix B.

(6)

Nyeff =

We start from case (1) by choosing ¢g — ¢ = ¢g — ¢’ =
/2 and k = k' = 0.1. The two modulators share the same
band structures shown in Fig. 3(a). The relative refractive
index is thus n,e¢ = 1, indicating that the refraction will
vanish and degrade into the diffraction in a single modulator.
In Figs. 3(b) and 3(c), we input at a Bloch-wave packet and
a single frequency into the system, both of which share the
same diffraction patterns with those in Figs. 2(b) and 2(e).
Specifically, the refraction pattern in Fig. 3(c) is theoretically
described by |a,| = ag|J,(m, +m'y)|le™™ [see Eq. (BS) in
Appendix B], where m,,, m;, are phase modulation depths in
the two modulators.

Then, we consider case (2) by choosing ¢g — ¢ = ¢o —
¢ =m/2and k = —k’ = 0.1. As shown in Fig. 3(d), the real
part of band structure in the second modulator is the same with
that of the first one, while the imaginary part is flipped, giving
rise to a negative relative refractive index n,.¢ = —1. As a
result, the refraction direction keeps unchanged but the energy
evolution will be reversed, which can be referred to as the
“energy negative refraction”. This process can be visualized in
Fig. 3(e), where the packet exhibits a directional spectral blue
shift all through the way accompanied by the energy decay
in first modulator and then growth in the second, ultimately
restoring to its input intensity at the output end. For a single
frequency input shown in Fig. 3(f), due to the reverse of «, the
refraction pattern is biased in lower frequency modes in first
modulator and then biased in higher frequency modes in the
second, ultimately giving rise a symmetric output spectrum
lax| = aolJu[2mycosh(k)]|. [See Eq. (B8) in Appendix B].
In this regard, the energy negative refraction can restore the
energy but cannot restore the spectrum distribution.

Next, we turn to case (3) for ¢pg — ¢ = —7 /2, o — ¢’ =
/2 and ¥k = k" = 0.1. The band structures are shown in
Fig. 3(g), where the phase shift ¢’ — ¢ = 7 gives rise to both
the real-part shift and imaginary-part flip of the band structure,
such that n,.x = —1. So the input packet will exhibit a
negative refraction where both the refraction direction and
energy evolution are flipped at the boundary, as shown in
Fig. 3(h). This situation is referred to as “frequency-energy
negative refraction”. For a single frequency input shown
in Fig. 3(i), it exhibits asymmetric diffraction in the first
modulator and then a time-reversal process in the second,
ultimately focusing perfectly onto a single frequency at the
output end. This process can be regarded as frequency-energy
perfect imaging with an asymmetric imaging pattern |a,| =
aglJy(my —m',)|e™™ [see Eq. (B5) in Appendix B]. This
frequency-energy negative refraction and perfect imaging are
reminiscent of spatial superlens made of n = —1 slab [63],
which can realize the perfect imaging of a point light source
by reversing all wave number components. In practice, the ca-
pability of simultaneous spectrum and energy restoration may
find applications in spectral imaging and reconstruction for
the purposes of signal processing and optical communications
[64-70].

Finally, we investigate case (4) with ¢pg — ¢ = —7 /2, g —
¢’ = /2 and k = —k’ = 0.1. The band structures are shown
in Fig. 3(j), where the real parts are opposite to each other
while the imaginary parts are the same, giving rise to also
a negative relative refractive index n, . = —1. As shown in
Fig. 3(k), the refraction direction is reversed at the boundary
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FIG. 3. (a),(d),(g),(i) Real and imaginary parts of the lattice band structures in the two modulators with (a) ¢ = ¢’ = 0 and x = «’ = 0.1,
Dop=¢ =0andc = —«'=0.1,(2) ¢ =0,¢' =mandx =k’ =0.1,(1) ¢ =0,¢" = 7w and x = —«’ = 0.1. The black dashes lines denote
the initial Bloch momentum carried by the input packet. The black and green arrows denote the group velocities in the frequency lattices of two

modulators. (b),(e),(h),(k) Frequency refraction for an input Bloch-wave packet versus the total modulation depth m,, + m,,, where m, and m

’
4

are the modulation depth in each modulator. The initial Bloch momentum is (b) ¢ — ¢ =y — ¢’ = —7w /2, (€) po — ¢ = o — ¢’ = —7 /2,
(h)¢o—¢p=—m/2and g — ¢ =7 /2,(kK) po — p = —7 /2, o — ¢’ = 7 /2. The red dashes lines in (b),(e),(h),(k) represent the packet-center
evolution trajectories, and the inset figures denote the packet energy evolutions. (c),(f),(i),(1) Spectrum evolutions for a single frequency input
with the parameters chosen with the same in (a),(d),(g),(i). The black dashed lines in (b),(e),(h),(k) and (c),(f),(i),(1) denote the boundaries of

the two modulators.

while the energy decay is kept, which can be referred to as
“frequency negative refraction”. In Fig. 3(1), we input a single
frequency into the system, where the refraction pattern is
given by Eq. (B11) in Appendix B. Due to the reverse of «,
it cannot be focused onto itself since the energy cannot be
focused, in stark contrast to the situation in Fig. 3(i). To sum
up, though cases (2)—(4) all give rise to a negative refractive
index n,e = —1, the results vary with one another: while
case (2) realizes only energy negative refraction and case (4)
achieves purely frequency negative refraction, case (3) can
realize both frequency and energy negative refraction and
imaging. All of these refraction effects could be useful for
both spectrum and energy control of light.

B. Non-Hermitian frequency-domain Bloch oscillations

Bloch oscillations in the non-Hermitian frequency lattice
can also arise when considering the phase-mismatching case
Agq # 0, which is equivalent to a gradient force applied in
the frequency space [12,59]. The z-dependent coupled-mode

equations for in the phase-mismatched regime read

iaagz(Z) = C[ 049, (7) 4 e 1AEHHg, (7)),
)
corresponding to the instantaneous band structure
k;lky(2)] = — 2Ccoslk,(2)2 — ¢ — ix]
= — 2C cosh(x) cos[k,(2)2 — ¢]
— 2iC sinh(k) cos[k,(2)2 — ¢ —m/2]. (8)

Comparing Egs. (8) and (5), one sees that the band struc-
ture remains functionally unchanged, however the Bloch wave
vector k varies linearly with z as k,(z) = k, — Aqz/Q2 as
if an effective electric force F; = —Agq is impressed to the
system. According to the well-known “acceleration theo-
rem,” for a Bloch-wave packet input excitation, the instanta-
neous group velocity is v, ,,(z) = —0Re{k; [k, (2)]}/0k,(2) =
—2CScosh(k)sin(¢py — ¢ — Agz), corresponding to a fre-
quency shift of Aw(z) = [ vgu(z)dz, so the frequency-
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o Numerical

Z/1Z,

FIG. 4. (a) Intensity oscillation trajectory of a Bloch-wave
packet versus the normalized propagation distance z/Zg during non-
Hermitian Bloch oscillations with ¢g — ¢ = 7 and k = 0.2. Here Zg
is the spatial period of Bloch oscillations. The red solid and blue
rectangular curves represent the theoretical and numerical trajecto-
ries with the green dashed curve denoting the exponential intensity
evolution. (b), (c) Packet spectrum evolutions |a,| with ¢y — ¢ =7
for (b) k = 0.2, (c) k = —0.2. (d), (e) Single frequency evolutions
for (d) « = 0.2, (e) k = —0.2.

domain oscillation trajectory is

2CS2 cosh(k)

Aw(z) = Aq

[cos(¢ — ¢o) — cos(Agz + ¢ — o).
©))

Meanwhile, the packet intensity evolves according to
dIn[l(z)]/0z = —2Im{k,[k,(z)]} [26], from which we have
1(z) = Ipexp(— [ 2Im{k,[k,(z)]}dz), which reads

4C sinh(x)
A—q[COS(AC]Z+¢ —¢o)—cos(¢—¢o)] }

(10)

1) = Iyexp {

As compared to traditional Bloch oscillations with constant
packet energy, the presence of imaginary gauge potential can
also induce the periodic oscillation of packet total energy
[59], which is a typical signature of the non-Hermitian Bloch
oscillations. Note that both the packet center-of-mass and total
energy share the same oscillation period of Zg = 27 /|F}| =
27 /|Aql.

To visualize the non-Hermitian Bloch oscillations with pe-
riodic intensity evolution, we perform numerical simulations
by solving Eq. (1). Figure 4(a) shows the intensity evolution
of a Bloch-wave packet with ¢g — ¢ = 7, k = 0.2, where
gm = 2q such that Aq = —q. The simulated intensity evolu-
tion (blue rectangular curve) agrees well with the theoretical
result /(z) = lpexp{4Csinh(x)[1 — cos(Aqz)]/Aq} (red solid
curve). The intensity reaches I,,x = Iy at integer periods z =

mZg and Iy, = lexp[4Csinh(k)/Aq] at half integer periods
z=(m+ 1/2)Zg, where m is an integer. The exponential
intensity evolution is also shown as the dashed green curve,
which manifests a cosine oscillation trajectory, also in good
agreement with theoretical prediction by Eq. (10). Figure 4(b)
shows the packet spectrum evolution, which exhibits both os-
cillatory frequency shift and energy distribution. In Fig. 4(c),
we flip «k = 0.2 to kx = —0.2, the spectrum oscillation tra-
jectory remains unchanged while the energy oscillation tra-
jectory is shifted by half a period. It is attributed to the
fact that the oscillation trajectory is independent of the sign
of imaginary gauge potential as the intensity evolution does
according to Eqgs. (9) and (10). In Figs. 4(d) and 4(e), we
input a single frequency wy instead of a wave-packet into the
system and choose x = 0.2 and k = —0.2. In both cases, the
single frequency manifests periodic “self-focusing” features,
showing asymmetric “breathing” patterns described by |a,| =
ap|J,[4Csin(Aqz/2)/ Aqlle™ [9]. The total energy is more
concentrated in low-frequency modes for x>0 and in high-
frequency modes for k < 0.

The above asymmetric behavior of the breathing dynamics
for a single frequency excitation is a clear bulk signature of
the NHSE associated to the single-band non-Hermitian lattice
with an imaginary gauge potential, i.e., with asymmetric hop-
ping rates. We will show in the following that the breathing
dynamics is always symmetric in the absence of the NHSE,
where the frequency center is locked to the input frequency,
while it becomes asymmetric when the system shows the
NHSE. This means that non-Hermitian Bloch oscillations can
provide a probing method in the bulk to detect the existence
(or not) of the NHSE in the lattice with OBCs [26-44].
Without loss of generality, let us consider the generalized
coupled-mode equation for a non-Hermitian lattice with long-
range couplings and a gradient force

0a,(z)
0z

i

= Y (G ay 1) + Cian ()] + Fra,z), (11)
1

where C; = Cl,oe"ld’e_l" and C_; = Cl,()e_ilqjeh{ (l1=12,..)
are [th-order long-range coupling coefficients for the up and
downward transitions between lattice sites with frequency
spacing [2. Cj is the coupling coefficient without gauge
potentials. F is the gradient force applied to generate Bloch
oscillations. As the force term vanishes F = 0, the lattice band
structure reads

ko(ky) ==Y Croexpl—il(k,Q — ¢ —ik)l.  (12)
!

So in the absence of complex gauge potential ¢ = x =
0, the coupling coefficients satisfy the symmetric condition
C; = C_; = Cj, the curve k,(k,) will describe an open arc in
the complex energy plane without any interior. In this case,
the NHSE will not be observed [26—44], the bulk energy
spectrum is thus independent of the boundary conditions and
the bulk states are extended over the entire lattice. Note that
the symmetric condition corresponds to k,(k,) = k.(—ky),
which in the Hermitian limit states the time-reversal symmetry
of the lattice. On the contrary, in the presence of gauge poten-
tial ¢, k # 0, the coupling coefficients become asymmetric
C; # C_;. The curve k,(k,) will trace out a closed loop in
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FIG. 5. (a)(b) Energy spectra in the complex plane defined by Eq. (12) with C;,0 = Cy g exp(im/4)/4 and C, o = C for (a) ¢ =k = 0, (b)
¢ =0,k = 0.2. (c),(d) Spectrum evolutions for a single frequency excitation corresponding the situations of (a) and (b). The red solid curves
denote the frequency center-of-mass calculated using Eq. (15). The magnitude of the force is chosen as F = |Agq]|.

the complex energy plane with finite interior, i.e., enclosing
a nonvanishing area. In this case, the lattice can manifest
the NHSE where the bulk states are squeezed toward the
edges when considering OBCs. Examples of complex energy
spectra corresponding to open arc and closed loop are shown
in Figs. 5(a) and 5(b), where only the nearest-neighbor [ = 1
and next-to-nearest neighbor couplings / = 2 are included. In
Fig. 5(a), we choose ¢ =k = 0, Cy,9 = C oexp(inr /4)/4 and
C1,0 = C, the energy spectrum in the complex plane describes
an open arc. In contrast, with a nonvanishing imaginary gauge
potential k = 0.2 in Fig. 5(b), the energy spectrum traces out
a closed loop in the complex plane. In this regard, the com-
plex gauge potential can be engineered to control the energy
spectrum shape and hence the emergence or not the NHSE.
Let us then consider the case of nonvanishing external force
F. As shown in previous works [59], the energy spectrum
is entirely real and given by the Wannier-Stark ladder E; =
IF(l =0,%1,4£2,...). Hence, the dynamics are oscillatory
with period 27t /| F |, whether the system does or does not show
the NHSE. To probe the NHSE in the bulk, let us consider the
Bloch oscillation breathing dynamics that arises from a single
cite excitation a,(0) = ayd, o, corresponding in our model of
single frequency excitation. The exact analytical solution to
Eq. (11) can be determined and reads [59]

exp(—iFnz) (™%

an(Z) = exp {lkan - lG(ka), Z)}dkan
2 —/Q
(13)
where we have set
Z
Gky, 2) = / k. (k,Q2 — F7)dz . (14)
0

The asymmetry of the breathing dynamics can thus be
revealed by computing the center-of-mass of the spectral
pattern (Aw(z)/2) versus z, which is given by

2]

Remarkably, as the coupling coefficients are symmetric,
i.e., when the system does not show the NHSE, one has
(Aw(z)/2) = 0. The mean frequency thus remains locked at
the excitation frequency, as clearly shown by the red solid
curve in Fig. 5(c). Such a property readily follows from the
fact that, provided that k,(—k,) = k.(k,), one has G(—k,) =
G(k,) as well, which gives rise to |a_,(z)| = |a,(z)|. On
the other hand, for the asymmetric coupling coefficients, the
breathing dynamics become asymmetric |a_,(z)| # |a,(z),
where (Aw(z)/<2) deviates from zero and undergoes an os-
cillatory motion shown by the red curve in Fig. 5(d). So the
symmetry of the breathing pattern or center-of-mass trajectory
can be used as a probing signature in the bulk to predict the
presence or not the NHSE.

Aw(z)
Q

>, nla, ()

Y la@P

s5)

C. Amplified non-Hermitian frequency-domain
Bloch oscillations

The above discussions focus on imaginary gauge potential
while the electric force itself is real. A question naturally
arises: What if the force itself is complex? To answer this
question, we generalize F| = —Aq to F = F; +iF;, and
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rewrite the lattice band structure from Eq. (8) as
k.lko(z)] = — 2C cos[k,2 — ¢ — (F] + iF>)z]
= — 2C cosh(Fz) cos(k,2 — ¢ — F12)
— 12C sinh(F>z) cos(k,2 — ¢ — Fiz — 1 /2),
(16)

where the gauge potential here is assumed to be real
(k =0) for simplicity. The group velocity is v,,(z) =
—2Ccosh(Fz)sin(¢g — ¢ — Fiz), leading to the frequency
shift (See Appendix C)

Aw(z) = [Fi cos(¢p — ¢o) — Fi cosh(F»z) cos(¢dp—ao

2CQ
F + F}
+ Fi2) + B sinh(F2)sin(¢p — ¢o + F12)]. (17)

Similarly, the intensity evolution is 1(z) = Iexp[a(z)],
with «(z) being (See Appendix C)

a(z) = [F1 sinh(F3z) cos(¢po — ¢ — Fiz)

F]Z + F22
+ F> cosh(Fyz) sin(¢g — ¢ — Fiz) — Fa sin(¢p — ¢)].
(18)

Usually for weak imaginary force F, < Fj, Egs. (17) and
(18) can reduce to
2CQ
F

1) = Iyexp (

Aw(z) =

[cos(¢ — ¢o) — cosh(F2z) cos(¢p — ¢o+F12)],

4C sinh(F>z)
F

cos(¢o — ¢ — F1Z)>~ 19)

So both frequency shift and light intensity exhibit os-
cillations with exponentially growing oscillation amplitudes,
which we refer to as amplified non-Hermitian frequency-
domain Bloch oscillations. The amplitudes of the oscillation
trajectory and exponential light intensity are given by

Ap(z) = 2CQ cosh(Fzz)’ A (2) = 4C smh(Fzz). 20)
£ |F1]

To validate the above theoretical analysis, we performed
numerical simulations by choosing F, = 0.05F]. Figures 6(a)
and 6(b) show the oscillatory trajectory and exponential in-
tensity evolution for a Bloch-wave packet. The numerical
results (blue circular and square curves) agree well with the
theoretical ones (red solid curves) predicted by Eq. (19).
Figure 6(c) depicts the wave packet spectrum evolution,
clearly showing an oscillatory motion with an exponentially
growing amplitude and huge energy amplification of the opti-
cal signal during propagation. In Fig. 6(d), we input the central
frequency wy into the modulator, which exhibits a breathing
oscillation pattern also accompanied by energy amplification.
Differing from either the symmetric “self-focusing” breathing
patterns in traditional Bloch oscillations [9,53] or the asym-
metric “self-focusing” patterns in above non-Hermitian Bloch
oscillations shown in Fig. 4, the pattern periodicity is broken
by the imaginary force, and the single frequency can no longer
be focused onto itself. Instead, the spectrum focusing position
is biased, for which the bandwidth is also expanded.

Finally, we propose a concrete modulator structure to
realize the complex force. Comparing Eqgs. (8) and (16),

(a) 150 — Theoretical o Numerical I ——————————
S of
< o [ decaton Jo—— SAVA Y
~10% 1 Y
) O cortcal & Numerat —
—~ 20 :
§ 0 temmm———
= [ ---- Oscillation Amplitude AV
_40 -
(c) 40 | I ‘ I |
201 |
S )/—\/\_/.\/.\A/’
2 -20f |
-40 . | | I
(d) 40 . , T I
o 20 M
3 of
< _pok _
_400 '1 | :1 | 0
2/Z,

FIG. 6. (a) Oscillation trajectory of a Bloch-wave packet with
¢o— ¢ = —m/2 and F, = 0.05F;. (b) The packet intensity oscilla-
tion trajectory. The red solid and blue circle (rectangular) curves
represent the theoretical and numerical trajectories, and the dashed
black curves denote the oscillation amplitudes. (c) The packet spec-
trum evolution, where the red solid curve represents the oscillation
trajectory. To better visualize the energy evolution, we plot here
la,(z)|"/* instead of |a,(z)|*. (d) Spectral evolution under initial
single frequency excitation for F, = 0.05F;.

the imaginary force can be created by replacing the imag-
inary gauge potential with a linear-varying exponent. So
the required complex index modulation should take the
following form n(z, t) = np + Any(z) cos(2t — gz + ¢1) +
iAny(z) cos( — gz + ¢2), where the modulation ampli-
tude itself also undergoes a spatial modulation

An;(z) = Ancosh(Fz),
Any(z) = Ansinh(Fz). 2D

where An is initial modulation amplitude at z = 0. Addi-
tionally Fi = ¢ — g, = —Aq and ¢, — ¢; = /2 should also
hold. So the real part of the force Fj is still determined by

Z1Z,

FIG. 7. (a) Schematic modulator structure with periodic elec-
trodes to achieve the complex effective force. (b) Spatial distribution
of complex index modulations at initial time ¢t = 0, where the blue
solid and red dashed curves denote the real and imaginary parts,
respectively.
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the wave number mismatch, while the imaginary part F; is
denoted by the spatial profile of modulation amplitude. As
shown in Fig. 7(a), by using periodic electrodes instead of
homogeneous electrodes, the modulation amplitudes can be
configured point by point so as to fulfill the required modula-
tion profiles. Figure 7(b) depicts the real and imaginary parts
of complex index distribution at initial time # = 0, the shapes
of which align with the oscillation trajectory and intensity
evolution function shown in Figs. 6(a) and 6(b), respectively.

III. CONCLUSIONS AND DISCUSSIONS

In summary, we exploit complex modulation to create non-
Hermitian frequency lattices and synthesize complex gauge
fields to achieve nonconservative frequency diffraction. By
using complex gauge potentials, we achieve amplified or
decayed discrete diffraction and refraction. In the presence of
effective electric force in the lattice, frequency Bloch oscilla-
tions can also emerge, where the mode energy also manifests a
periodic oscillation or can be exponentially amplified. Finally,
we show that Bloch oscillations can provide a bulk probing
method to detect the existence (or not) of the NHSE in the
lattice without open boundaries. We also provide concrete
modulator structures with judiciously designed modulation
profiles to achieve the complex photonic gauge fields.

The study provides a paradigm to achieve the effects of
non-Hermitian diffraction and Bloch oscillations in synthetic
dimension through temporal modulation approaches. This is
different from traditional non-Hermitian spatial diffraction
and Bloch oscillations in P7-symmetric waveguide arrays
[12—14] or silicon resonator chains with auxiliary asymmetric
coupling elements [47,48,71,72]. Compared to spatial non-
Hermitian lattices requiring precise designs of lattice geom-
etry and gain/loss distribution, our design based on a syn-
thetic lattice realized in an electro-optical controlled LiNbO3
slab waveguide can simplify the system complexity and is
dynamically reconfigurable on a fast time scale. Our results

J

also provide functionalities to control both the spectrum and
energy evolution of light. For example, the amplified and
decayed frequency diffraction and refraction can be applied to
the spectrum reshaping, filtering, and asymmetric frequency
conversion. This paves the way for applications of non-
Hermitian frequency Bloch oscillations to spectrum-temporal
imaging, optical communications, and signal processing. Fi-
nally, Bloch oscillations can probe in the bulk the skin ef-
fect arising from asymmetric hopping. The non-Hermitian
skin effect is a hallmark of many non-Hermitian topological
systems [26—44,73,74], which is attracting a huge attention
both from fundamental and applied viewpoints. From a fun-
damental perspective, the non-Hermitian skin effect charac-
terizes unique topological phases of non-Hermitian systems,
where the bulk-boundary correspondence based on Bloch
band invariants generally fails to correctly predict topological
edge states. From an applied viewpoint, the non-Hermitian
skin effect may have potential applications in photonics, for
example, for the design of stable topological lasers [45,46,73]
and for enhanced optical sensing [74]. The design of a re-
configurable synthetic photonic lattice in frequency domain
with asymmetric hopping, suggested in our work, thus pro-
vides an interesting route for the realization and probing of
topological non-Hermitian phases with tunable skin effect,
stimulating further theoretical and experimental investigations
in the rapidly growing field of non-Hermitian topological
physics.
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APPENDIX A: COUPLED-MODE EQUATIONS AND THE SOLVING METHOD

In this appendix, we present the detailed derivation of coupled-mode Eq. (1) in the main text and provide a matrix algorithm
to solve it. Consider the complex index modulation as shown in the main text n(z,t) = ng + Anjcos(2t — quz + ¢1) +
iAnycos(Q2t — g,z + ¢2), the time-varying dielectric permittivity is

e(z, 1) = n(z,t)* = [no + Any cos(Q2 — gz + ¢1) + iAny cos(Q — gz + ¢2)1°
= ng + 2n9Any cos(Q — gz + ¢1) + i2n9Ana cos(Q — gz + ¢2)

+ Ancos*(Q — guz + ¢1) — Anjcos®(Q — gz + ¢2)

+ 2iAn; Any cos(2t — gz + ¢1) cos(2t — gz + ¢2), (A1)
for weak modulation amplitudes An;, Any < ng, the quadratic terms can be neglected, £(z, ¢) thus reads
e(z,1) = g9 + Agy cos(§2t — gz + ¢1) + iAg cos(2 — gz + ¢2), (A2)

where gy = ng?, Ae; = 2nyAny, Agy = 2ngAn,. The electric field is E(z, 1) = > an(z)expli(wpt — Bu2)], with w, = wy + ns2,
By = Po+ng(n=0,=x1,+£2,...), which obeys the time-dependent wave equation

2

) 19
V7E(z,t) —

C—zm[é‘(z,l)E(Z, t)] =0.

(A3)
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Substituting the electric-field distribution and (A2) into (A3), we can obtain

;—;E(z, 1) — i—‘;;—;m 1) = ;—2;—;{[&1 cos(Qt — gz + ¢1) + iAgs cos(§21 — gz + 2)1E (2, 1)} (A4)
By applying slowly varying amplitude approximation, the left side of Eq. (A4) is
-> 2iﬁnaa+z(z)ei(“’""ﬁ”1). (AS)
Denoting w, + Q2 = wu+1, B £ ¢ = Bu+1, the right side of Eq. (A4) is
%;_; [Aey (1m0 J o= —anzt0)) | Ay (X —nit) 4 o= H@=anztd0)] $7 g (2)efent =2

n

1 . _ . . B .
= _ﬁ Z a,(2)Ag) [w}%+lel(wn+lt Bui12) pi(Aqzt+o1) + wi_lel(wnql Bu-12) o z(qu+¢1)]
n

i , <A ; _ —i(Ag=
-3 Za”(Z)Agz[a)5+1el(wn+ll_ﬂn+lz)el(Aq«.+¢2) + a)iilel(a)n—]t Bi12) l(chHﬁz)]’ (A6)
c
n

where Ag = g—q,,. By substituting (n &= 1) by n, we have

Z an(z)wiilei(wﬁlt*ﬂnﬂz) — Z anﬂ(z)a)ﬁei(w"t*ﬁ”z). (A7)
By combining Eqgs. (A5)—(A7), we can obtain the coupled-mode Eq. (1) in the main text
day, ; (Agz i o _i(Agz
i aa @) = [C eltAazten) 4 iCzel(Aq"+¢2)]an_1 @)+ [Cie (Aqtd1) 4 iChe l(AQ«»+¢z)]an+] ), (A8)
z

where C; = Ag w,2/(4B,c?) = Aniky/2,Cy = Asrw,?/(4B,c*) = Ansky/2. To solve Eq. (A8), we can truncate the mode order
to a sufficient large value n = M, such that (A8) can be rewritten as a time-dependent Schrodinger equation

9| P(2))
i = H(2)|2(2)), (A9)
0z
where |®(2)) = [a1(2), a2(2), ..., ay(z)]T is the eigenstate with N = 2M + 1. H(z) is the eigenmatrix given by
0 Ciei(Baztd) 4, e i(Agz+d2) 0 e 0 0
Cy el Baz+1) i, ol Mgz td2) 0 C1e A+ 4 i) e—i(Agzten) .. 0 0
0 C e A0t 4T, el(A9z+62) 0 e 0 0
H(2)=
0 0 0 .. 0 Cre~i(Baztd1) 4 iC, e i(Agz+62)
0 0 0 e G BG4y oAzt 62) 0

(A10)

The spectrum evolutions can thus be obtained by numerically solving Eq. (A9).

APPENDIX B: THEORY OF SINGLE-FREQUENCY DIFFRACTION AND REFRACTION

In this appendix, we give theoretical analysis of the single-frequency diffraction and refraction patterns in Figs. 2(e), 3(c), 3(f),
3(i), and 3(1). For a single-frequency input, it is convenient to analyze the spectrum evolutions from optical phase-modulation
perspective, which is different from the band structure analysis for Bloch-wave packet input.

First, we consider the single-frequency diffraction in a single modulator with modulation depth m, and complex gauge
potential ¢ + ik. For the input electric-field distribution Ej, (1) = apexp(iwpt ), the complex modulation imposes a complex phase
factor on the field, giving rise to the output field

o0
Eout (t) — aoeiwol‘ eim¢ cos(Qt+¢+ik) — aoeiu)ot Z ann (m(p )ein(ﬂl+¢+il() = qy Z Jn (m(p )e—nK ein(¢+ﬁ/2)ei(w0+n§2)t , (B 1)

n=—00 n=—00
where we have applied Jacobi-Anger expansion. The output amplitude spectrum is thus

la,| = ag|[J,(my)|e™"™. (B2)
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So the presence of « imprints an amplified (n > 0 if k> 0) and decayed (n < 0) exponent to the traditional symmetric pattern
|ax| = aolJ,(my,)|, giving rise to an asymmetric pattern in Fig. 2(e).

Then, we analyze the frequency-energy refraction in two cascade modulators with modulation depths m,, m; and complex
gauge potentials ¢ + ik, ¢’ + ix’. For cases (1) and (3) with ¢ = ¢’ (or ¢ # ¢’) and x = «’, the output field is uniformly
described by

Eou(t) = aoeiwoteimw cos(QtJrqbﬂ'K)eim;7 cos(Qu+¢ +ik) __ aoeiwgteiJm$+m$+2m¢m; cos(¢p’—¢) cos(Q+0-+ik)
ou - -

o0
= ape™" Y i"J, (\/ m2 +m'2 + 2mym', cos(¢' — p))e" HHIHO

n=—00
o0
= ay Z J, (\/mé +m' + 2mym’, cos(¢’ — ) A (B3)
n=—0oo

where 6 = arctan{[m,sin(¢) + m’,sin(¢")1/[m,cos(¢) + m’,cos(¢)]}. The output amplitude spectrum is

la,| = a0|Jn(\/m§20 + m’; + 2mym’, cos(¢’ — ¢)) |e_"". (B4)
Specifically, under the in-phase or out-of-phase modulations, we have

- {aolfn(mw+m;)|€"K, ¢ —¢p=0
a,| =

Iy — , . (BS)
aolJ,(my, —m¢)|e weod—¢p=m

Both of which exhibit asymmetric refraction patterns, as shown in the main text Figs. 3(c) and 3(i). Furthermore, if we choose
m', = my,, we have

aolJy(2my)le™™, ¢ —¢ =0
Jan| = v . (B6)
aoldpole™, ¢ —p=m
So the out-of-phase modulation can realize the spectrum perfect imaging, as shown in Fig. 3(i).
Next, we consider the case (2) with ¢ = ¢’ and x # «’, the output field distribution is
E t(t) _ aoeia)ot eim"7 cos(Ql‘JrilJvLik)eim’vJ cos(Q+p+ik') __ aoeiwot ei[mw cosh(k )+m', cosh(k")] cos(Qt+¢)e[m¢, sinh(k )+m', sinh(x")] sin(Q+¢)
oul - -
o0 o0
= qye'™’ Z Julm, cosh(k) + m',, cosh ()| +é+7/2) Z I[—m, sinh(ic) — m',, sinh(x") ] F+¢+7/2)
n=—0o0 n=—0o0
o0 o
=ay Y Y Julm,cosh(c) + m', cosh(c") [ —m, sinh(c) — m', sinh(k) e @7/ el tnr, (B6)

n=—00 m=—00

where [, is nth-order modified Bessel function. In above derivation, we have exploited the Cauchy product. The output amplitude
spectrum thus reads

[e.¢]
lan| = ao| Y Julm, cosh(ic) + m', cosh(k")l—ml—m, sinh(x) — m', sinh(x")]|. (B7)
m=—00
Specifically, if we choose k" = —« and m, = m’y,, as shown in the main text Fig. 3(f), the output spectrum reduces to a
symmetric function
oo
lanl = ao| D Jul2my cosh()Ih-m(0)| = aolu[2m, cosh(e)]]. (BS)

Finally, we consider case (4) with ¢ # ¢’ and & # «’, the output field is

Eoul ([) — aoetwgt L cos(Qt+¢+tl{)elm o cos(Q+¢"+iK") — aoetwot et[a cos(Q2t)—bsin(2)] et[c sin(§2r)+d cos(2t)]

— aoeia}ot ei«/a2+b2 cos(Qr+91)e«/cz+d2 sin(Q+6,)

o0 o0
= qpe™ Z T /a2+b2)ein(9t+91+n/2) Z I(— /Cz+d2)ein(s2t+92+rr/2)

n=-—00 n=-—00

[o¢] oo
ao Z ( Z Jm( /a2 +b2)ln—m(_ /C2 +d2)€im(0202))ein(92+n/2)€i(w0+ng)t, (B9)

n=—00

m=—00

064303-11



QIN, WANG, WONG, LONGHI, AND LU PHYSICAL REVIEW B 101, 064303 (2020)

where 0; = arctan(b/a), 6, = arctan(d/c), with
a = my, cosh(i) cos(¢) + mj, cosh(k”) cos(¢"),
b = my, cosh(k) sin(¢) + m;, cosh(x") sin(¢"),
¢ = my, sinh(k) cos(¢) + my, sinh(k") cos(¢),
d = my, sinh(x ) sin(¢) + m;, sinh(x") sin(¢"). (B10)

So the output amplitude spectrum reads

la,| = ag

o0
Z In(V @2 + b2, (—+/ 2 + d2)e™ 0|, (B11)

m=—00

The spectrum pattern is shown in Fig. 3(1).

APPENDIX C: DERIVATION OF AMPLIFIED BLOCH OSCILLATIONS

In this appendix, we derive the frequency shift and intensity evolution for the amplified non-Hermitian Bloch oscillations.
From Eq. (16) in the main text, the frequency shift is

z Z
Aw(z) = f Ve w(2)dZ = / —2CQ cosh(F7')sin(¢pg — ¢ — Fi17')dz
0 0

= CQ{cos((b — o) / €% sin(Fi7) + e P sin(Fi2)]dZ + sin(é — o) f [ cos(FiZ) 4+ e cos(Flz/)]dz/}
0 0

J

Z

e [y sin(FiZ) — F cos(Fi2)] N e P [—F sin(Fi 7)) — F cos(FiZ')]

=CQcos(¢p — ¢o){

F]Z + F22 . F12 + F22
+ CQsinté — do) P [Fy cos(FiZ) + Fr sin(Fi2)] | N e B[P cos(FiZ) + F sin(Fiz)] |
— Qo
F12 + F22 . F12 + F22 .
2CQ . .
Y [F, sinh(F>z) sin(¢y — ¢o + Fiz) — Fi cosh(F>z) cos(¢py — ¢o + Fiz) + Fi cos(¢y — ¢o)l, (C1)
1 2

in which we have applied the identities of integrals

e“lacos(bx) + bsin(bx)]
- bx)dx = ,
/e cos(bx)dx e
“lasin(bx) — bcos(b.

/ e sin(bw)dx = <% sm(af )+ > cosbol. (C2)

Similarly, we can also derivate the intensity evolution

2
I(z) = 1(0)exp <4C/ sinh(Fz) sin(k,Q2 — ¢ — qu/)dz/>, (C3)

0

where the integration is given by

Zz
/ sinh(F>z7) sin(¢g — ¢ — Fi7)d7Z
0

- %{Sin(% —¢) / [ cos(FiZ) — e cos(Fiz)ldz — cos(do — ¢) / [¢"7 sin(F7) — e P sin(ﬂz’)]dz/}
0 0
0}
0}

e " [—Fysin(Fi7) — F, cos(Fi7)]
1
= Flip2 [F> cosh(F2z) sin(¢o — ¢ — Fiz) + Fi sinh(F2z) cos(¢o — ¢ — Fiz) — Fasin(¢o — @)1 €
2

Z

e P [—F cos(Fi7) + Fy sin(FiZ')]
Ff + F}

e [Fy cos(FiZ) + Fy sin(Fi2)]
F]Z +F22

= % sin(¢o — ¢>){

0
z

e [Fy sin(Fi7') — Fy cos(Fi7)]
F12 +F22

— %COS(% - ¢>){

. F12 + F22
F? +
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So the intensity is given by 1(z) = Ipexp[a(z)], with a(z) given by

4
WTRR

[F> cosh(F22) sin(¢o — ¢ — Fiz) + Fi sinh(F2z) cos(¢po — ¢ — Fiz) — Fysin(¢o — ¢)]. (C5)

The results of Egs. (C4) and (C5) are given by Egs. (17) and (18) in the main text.
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