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Navigating the landscape of nonlinear mechanical metamaterials for advanced programmability
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We consider a flexible mechanical metamaterial comprising an elastomeric matrix with an embedded square
array of circular holes. First, we use the deflated continuation technique of bifurcation analysis to explore its
complex energy landscape, characterized by multiple bifurcations from which stable and unstable branches
emanate. We then investigate how this landscape can be used to design materials with advanced programmability.
We find that the response of the system can be constantly reprogrammed through local manipulation, moving
it from one stable branch to another, and that small targeted imperfections can be harnessed to enhance such

programmability.
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I. INTRODUCTION

Mechanical metamaterials—man-made structures with
mechanical properties governed by their geometry rather than
composition—are receiving increasing interest [1-3] not only
because of their rich physics, but also for their unique mechan-
ical properties, including negative Poisson’s ratio [4], negative
thermal expansion [5], and negative dynamic moduli [6,7].
Intriguingly, it has been also shown that nonlinearities and
instabilities can be exploited to further enhance their function-
alities [3] and enable the design of systems with switchable
properties [8—10] and programmable responses [11-14]. It is
no surprise that such flexible systems usually have an intricate
energy landscape with a plethora of energy minima [15,16].
However, their behavior is typically studied using analyses
that capture only a single solution [8-10,13], thus limiting the
range of achievable deformation-induced functionalities.

In parallel, continuation and bifurcation analysis tech-
niques, such as simplicial continuation [17], pseudo-arclength
continuation [18,19], and branch switching [20], have
emerged as powerful tools to obtain insight into the energy
landscapes of physical systems. By numerically following
the equilibrium equations as a function of a control pa-
rameter (e.g., a mechanical or geometrical variable of the
problem), these methods enable the computation of additional
equilibrium solution branches. While such techniques have
been widely used to get a better understanding of numerous
physical systems [21-24], their adoption in the design of
mechanical metamaterials has been limited [15,16,25].

Here we demonstrate how a novel bifurcation analysis
technique in conjunction with the rich energy landscape
of flexible mechanical metamaterials can facilitate the re-
alization of systems with advanced programmability. We
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consider a flexible and porous metamaterial, and we start by
making use of a deflated continuation algorithm to identify
solutions, taking advantage of the ability of this algorithm to
automatically find disconnected solution branches. Then, we
investigate the implications of these numerical analyses on the
responses of physical samples. Remarkably, we find that the
information encoded in the bifurcation diagrams can be har-
nessed to realize mechanical metamaterials whose responses
can be reconfigured by identifying nearby stable branches and
to develop a deeper understanding of the interplay between
small targeted imperfections and the evolution of branch
connectivity, which can enable advanced programmability.

II. NUMERICAL METHODS

We use the open-source finite-element solver FEniCS [26]
to numerically investigate the nonlinear response of flexible
porous structures made of an elastomeric material whose
response is captured using a Neo-Hookean model with a strain
energy density function
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where w is the initial shear modulus, and v is Poisson’s ratio.
Moreover, F =14 Vu is the deformation gradient tensor
(with u being the displacement field to be computed and I
denoting the identity matrix), and I, = tr F'F and J = detF.
In all of our analysis, we use plane strain conditions and dis-
cretize the models with piecewise quadratic triangular finite
elements. This results in a parametrized nonlinear system of
equations

R(u, g,) =0, (2)

which we solve using the Newton-Raphson method to obtain a
displacement field, u, at a given applied strain, ¢,. Numerical
continuation is employed to trace out the full branch as a
function of the applied strain.
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A. Deflated continuation

Standard finite-element analysis and continuation tech-
niques are only capable of capturing a single solution, reduc-
ing the opportunity for programmability. To overcome this
limitation, we couple FEniCS with a deflated continuation
package DEFCON [27], which enables the identification of
additional branches. The key idea of deflation is to modify
Eq. (2) to remove known solutions such that the Newton-
Raphson method is able to converge to a previously unknown
solution. This is analogous to removing a root x =r of a
polynomial p(x) by constructing g(x) = p(x)/(x — r). In this
work, the deflated problem is constructed as

1
G eiu’)=|—F +1|Rue)=0, (3)
llu — |,

where |- || denotes the H' norm [|- |7, = [(-)*dQ2+
f (V-)?dS2] and u* is an additional solution. We solve this
deflated problem using the same computational techniques as
for the undeflated one. Since the deflation operator removes
the original solution u from R [28], if the Newton-Raphson
method converges it will converge to a different solution. We
iteratively apply this procedure to obtain as many solutions
u* as possible at a given &, through premultiplication on the
augmented systems [27].

In this work, we start from g, =0 and examine the
structure in compression, taking small negative steps in &,.
Once a solution has been successfully deflated at a given ¢,
additional branches are then further traced out. Let & and
¢, denote the previous and next values of g,, respectively.
After all known branches have been continued, all solutions
at ¢, are deflated, and each solution at &} is used as an
initial guess for the application of Newton-Raphson to the
deflated problem. This robustly discovers new solutions in-
troduced at connected bifurcations between (e, , ;). In addi-
tion, deflation can discover disconnected branches, provided
the distance between the known and disconnected branch is
not too large. Such disconnected branches typically arise from
symmetry-breaking perturbations that unfold connected bifur-
cations; they are important for understanding the behavior
of physical systems, but they are generally quite difficult to
discover numerically.

B. Stability

Having discovered a set of solution pairs (u, &,), we then
determine their stability by investigating the propagation of
small-amplitude oscillatory modes

Wi(xo, 1) = w(xg)e ™' “)

superimposed upon a given state of finite deformation defined
by u, w being the oscillation frequency and x, denoting the
position of a material point in the undeformed configuration.
More specifically, we consider the incremental version of the
equations of motion in the reference undeformed configura-
tion [29],

. D*W
DivS = p—— 5
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where p is the material density, Div denotes the div operator
in the reference configuration, and g is the Lagrangian time
derivative. Moreover, S is the increment of total first Piola-
Kirchhoff stress, which can be written as

S=L:F (6)
with
3y
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where V is the strain energy density and F is the deformation
gradient. Substitution of Eq. (4) into Egs. (6) and (5) yields

dW(X0) i
—e

S(xo, 1) =L : 9)
dXO
and
d
Div(]L : W(XO)) Fpww =0, (10)
dXo

which when discretized using the finite-element approach
becomes

[K(u) + o*M]w = 0, (11)

where K is the tangent stiffness matrix and M is the standard
mass matrix. We introduce a normalization parameter,
2
A= iwz, (12)
"

with L being the length of the structure. A positive A cor-
responds to a vibration of finite amplitude, and a negative
A identifies a perturbation growing exponentially with time.
Therefore, the deformed configuration defined by u is stable
for Amin = min(A) > 0 and unstable for A,;, < O.

III. RESULTS

We focus on structures consisting of an elastomeric matrix
with an embedded square array of circular holes, a relatively
simple architecture that is capable of giving rise to a rich
complex energy landscape [8,16,25,30,31]. The holes have
radius r and center-to-center distance a, chosen so that the
initial porosity is ¥y = 7r?/a* = 0.6. Two different finite-
size structures are considered: one with a 2 x 2 array of holes
and another with a 3 x 3 array of holes. All structures have
the two vertical edges flanked by a column of semicircles and
the horizontal ones ending with a strip of solid material of
width a. They are made of an elastomeric material, whose
response is captured by a quasi-incompressible neo-Hookean
model with initial shear modulus © = 49 kPa and Poisson’s
ratio v = 0.48.

A. Bifurcation analysis

In Figs. 1(a) and 1(b) we report the evolution of the normal-
ized nominal stress, § = S»,/, as a function of the applied
strain, g,, for the 2 x 2 and 3 x 3 structures, respectively. As
expected, we find that the response of both systems is char-
acterized by multiple branches, some of which are stable and
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FIG. 1. (a), (b) Computed bifurcation diagrams for structures
with an array of (a) 2 x 2 and (b) 3 x 3 holes. The color of the
branches corresponds to the minimal eigenvalue Ap;,, a measure of
stability. The inset gray diagrams show the undeformed structures.
The inset in panel (b) shows a zoomed-in region near the bifurcation.
(c) Solutions corresponding to the labeled branches h,5, h3x3, and
i-vii at &, = —0.07. Collections of branches are labeled based on
having an identical mechanical response, and they are sublabeled
with capital letters to differentiate between left and right symmetries.

some unstable. Moreover, as previously observed for porous
structures of small size [15,32], our results also indicate that
boundary effects present in finite-sized structures play an
important role, as the bifurcation diagrams of the 2 x 2 and
3 x 3 structures are significantly different. For the considered
range of applied strain, the response of the 2 x 2 structure
is characterized by two pitchfork bifurcations. The first one
at ¢, & —0.051 gives rise to a stable sheared post-buckled
solution with all holes sheared either leftwards or rightwards,
whereas from the second one at g, ~ —0.058 an unstable
branch emanates, corresponding to a polarized configuration
in which the holes alternately take horizontally and vertically
dominant shapes.

The bifurcation diagram of the 3 x 3 structure is more
intricate and, in addition to multiple unstable branches stem-
ming from bifurcations off the main branch, contains a bifur-
cation point at &, & —0.043 from which three stable branches
appear to emanate. Closer inspection shows that this bifur-
cation does not occur at a single point [Fig. 1(b), inset], but
consists of a series of disconnected transcritical bifurcations
similar to those previously observed in holey columns [15]
(for transcritical branch classification analysis, see Figs. S4—
S5 of the Supplemental Material [33]). Moreover, we find
that for the 3 x 3 structure, both the sheared and polarized
modes are stable. However, while the two symmetric sheared
solutions share the same stress-strain curve [i.e., branches vip
and vig in Fig. 1(b)], the two supported polarized solutions
are associated with two distinct branches: the one where the
central hole is vertically oriented with branch iv (which is
connected to the main branch, but is only marginally stable),
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FIG. 2. (a) Experimentally measured stress-strain curve for the
2 x 2 structure, overlaid on the numerical bifurcation diagram from
Fig. 1(a) (colored lines). The solid black line shows the average
response for four samples, and the gray envelope shows the standard
deviation. The inset shows a deformed sample at ¢, = —0.07, in the
sheared iis mode. (b) Experimentally measured stress-strain curves
for the 3 x 3 structure. In 10 samples tested, 7 follow branch vi
and 3 follow branch vii; the averages and standard deviations for
each set are plotted separately. The insets show deformed samples
in both deformation modes at £, = —0.07. (c) Stress-strain curve
for a single 2 x 2 structure that is manually switched from branch
iip to iig at &g = —0.072. The curve after the switch is shown in
green. Insets show the structure before (¢5) and after (g5 ) the switch.
(d,e) Stress-strain curves for two differing 3 x 3 structures that
are manually switched from one branch to another at g = —0.06.
(f) Images of the 3 x 3 structures before and after the switches.

and the one where the central hole is horizontally oriented
with branch vii. Having identified multiple solution branches
under uniaxial compression, in the remainder of this paper we
investigate how this energy landscape can be exploited.

B. Experiments

Next, we focus on the implications of the bifurcation
diagrams on the response of physical samples fabricated using
a molding approach out of a silicone rubber (Elite Double 8§,
Zhermack). We fabricate several 2 x 2 and 3 x 3 structures
using different molds and then characterize their response un-
der uniaxial compression. As shown in Fig. 2(a), we find that
for all 2 x 2 samples, the sheared mode emerges upon com-
pression beyond the buckling point. Differently, none of 3 x 3
structures deform according to the fully connected branch
(i.e., branch iv), which a standard finite-element simulation
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FIG. 3. Bifurcation diagrams for the perturbed structures using imperfection magnitudes of § =5 x 107 (top row) and § = 2 x 1073
(bottom row). The branches are colored according to the stability measure A,;,. The five columns correspond to perturbations based on the
structures from branches ia, ivc, v, iii, i in Fig. 1, which are plotted at the top of each column; the first four columns use perturbations based
on stable branches, and the last column uses a perturbation based on an unstable branch. The images in panels (i) and (j) show the deformed

structures at the end of two branches at ¢, = —0.07.

would follow (Fig. S2). Instead, they all deform according to
either branches viap or vii [Fig. 2(b)]. We attribute this to
immeasurable small imperfections introduced during fabrica-
tion that cause changes to the symmetry group of the system
and, ultimately, to the branch connectivity [34]. However, it
is important to note that, though disconnected, other stable
branches should still exist under such small imperfections. To
probe their existence, we compress a sample up to a switching
strain gy past the critical buckling point, locally manipulate its
free boundary to move it onto another branch, and then further
compress it. As shown in Fig. 2(c), we find that the 2 x 2
samples can always be moved to the other symmetric sheared
mode. Such reconfiguration only leads to a change in geom-
etry, since the two branches are characterized by an identical
stress-strain curve. Differently, for the 3 x 3 structures we find
that not all initially predicted stable branches can be accessed
directly nor can they be accessed by locally manipulating the
samples at the chosen &;. Specifically, samples that deform
following branch vii can only be reconfigured to the polarized
mode associated to branch iv [Fig. 2(d)], whereas those that
follow branches vis g can only be reconfigured to branch vii
[Fig. 2(e)]. Since these three branches are characterized by
different stress-strain curves, branch switches are also accom-
panied by a change in stiffness and load-bearing capacity.
Note that, since the system is purely elastic, such branch
switches are reversible and repeatable (see Movie S2 in the
Supplemental Material [33]), suggesting that the response of
our mechanical metamaterial can be easily reprogrammed at
any time by taking it from one stable branch to another.

C. Imperfection analysis

The results of Fig. 2 indicate that the information encoded
in the bifurcation diagram can be used to program the re-
sponse of the metamaterials on the fly. However, they also

show that not all stable branches can be accessed, limiting
the available range of programmability. To gain a better un-
derstanding of the reasons behind this limitation, we proceed
by constructing the bifurcation diagrams for structures with
initial mode-derived perturbations. Toward this end, we apply
to the undeformed structures a perturbation field up. defined
as

Upranch — Wh;;

(13)

Hpert ’ ”ubranch — Uy, ”L2 ’
where § is the imperfection magnitude, and Wpranch and uy,
(with i = 2,3) are the displacement fields at ¢, = —0.07
associated with the branch of interest and the h;,; branch
(Fig. 1), respectively. In Fig. 3 we present the bifurcation
diagrams obtained for different mode-derived imperfections
for § =5 x 10~* (top row) and § = 2 x 10~ (bottom row).
To understand our experimental results better, we focus first
on Figs. 3(a), 3(c) and 3(e), where we consider small pertur-
bations with the form of the modes that emerge during our
experiments (i.e., the modes associated with branches iia, via,
and vii). For all three cases, we find that the complex energy
landscape of our structures is preserved, though modified.
More specifically, for the 2 x 2 structure the iia-perturbation
(i.e., an imperfection based on the iip branch) separates
the sheared modes, but preserves both of them [Fig. 3(a)],
allowing for the system to be easily reconfigured from one
to the other [Fig. 2(c)]. Differently, for the 3 x 3 structure
the considered imperfections not only alter the connectivity
of the branches, but also suppress some of them. In particular,
the via-perturbation eliminates the response associated with
branch iv [Fig. 3(c)], while the vii-perturbation suppresses that
associated with branch vi [Fig. 3(e)]. Note that these results
support the response observed in our experiments [compare
Figs. 2(d) and 2(e)] and suggest that the immeasurably small
imperfections introduced during fabrication have suppressed
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FIG. 4. (a) Experimental stress-strain curve (black) for the 3 x
3 structure with an iv perturbation. For any applied &, past the
bifurcation point, all three previously predicted stable branches
are realizable via manual switching. The stress-strain curves after
switching are shown in green and include the noise introduced during
the switching process (green vertical line). The inset images show the
sample in the three different stable branches. (b) Bifurcation diagram
for a 2 x 2 structure with its central point (red dot) constrained to
move vertically. Colored lines show the simulation results using the
same color scheme as in Fig. 1. The solid line shows the experimental
stress-strain curve, with the experimental snapshot showing the
resulting polarized mode. All experimental images are captured at
g, = —0.07.

branches, which, therefore, cannot be attained through manual
reconfiguration at the specified switching strain eg. Finally,
we find that by slightly increasing § to 2 x 1073 (which
changes the hole areas by less than 1%), the intricate bifur-
cating structure completely vanishes and a single smoothly
varying curve emerges. As previously observed [35,36], these
results confirm that the introduction of sizable buckling mode-
derived imperfections causes the metamaterial to robustly fol-
low the targeted deformation path. However, by suppressing
all other branches, such imperfections limit the response of
the system to only one specific mode and prevent any type of
switchability.

Next, we analyze the effects of a perturbation based on
branch iv, a stable branch that is never followed in our
experimental tests. As shown in Fig. 3(g), we find that for
this perturbation, branch iv is stable and fully connected,
all other stable branches still exist, and the transcritical bi-
furcations remain, though their location is shifted above the
main connected branch [Fig. 3(g), inset]. As such, we expect
that a sample with an iv-perturbation will follow branch iv
upon loading and will offer the largest set of programmable
properties, since it can be switched to both branches vi and
vii. This is confirmed by the experimental results in Fig. 4(a)
for a sample realized using a mold designed to introduce
an iv-perturbation with § =5 x 107*. In all our tests, the
sample initially deforms following branch iv, and at strain
es = —0.06 it can be locally manipulated to switch to either
branch vi or vii, thus supporting three responses that can be
continuously accessed.

D. Branch stabilization

Lastly, we investigate the response of the 2 x 2 structure
with an imperfection based on the unstable branch 7 [Figs. 3(i)
and 3(j)]. In this case, we find that for § =5 x 10~* branch i

remains unstable and that the /,,, branch vanishes, hence the
system can only deform following the stable sheared mode.
To realize the desired polarized mode, the magnitude of the
imperfection has to be increased to § =2 x 1073, but this
changes the architecture of the structure and, therefore, signif-
icantly affects its stress-strain response, which loses the sharp
transition associated with the instability. As we are limited
in our ability to achieve the desired response of the unstable
modes through targeted imperfection and manual reconfigura-
tion, we therefore turn to imposing additional constraints on
our original system and explore their effects on the bifurcation
diagram. To suppress the stable sheared mode, we place a pin
in the center point of the sample [Fig. 4(b), inset, top left]
and guide it along a vertical trajectory. In Fig. 4(b) we show
both the bifurcation diagram for the constrained structure as
well as the experimentally measured stress-strain curve. Two
key features emerge. First, the sheared branch is suppressed,
and second, the polarized branch is stabilized. Moreover, the
constraint does not affect the mechanical properties of branch
i, preserving key features such as negative stiffness and a sharp
buckling transition.

IV. DISCUSSION AND CONCLUSION

In summary, we have shown that the deflated continua-
tion technique can be used to explore the complex energy
landscapes of flexible mechanical metamaterials and provide
insight into the design of multistable systems with advanced
functionalities. More specifically, we used the numerically
obtained bifurcation diagrams to design a metamaterial whose
mechanical properties can be switched on the fly by taking it
from one stable branch to another. In addition, we identified
the role played by imperfections and mechanical constraints
on the bifurcation diagrams and, ultimately, on the response
of the metamaterials.

To guide the design of programmable mechanical materi-
als, in this study we considered a two-dimensional structure
of relatively small size and simple geometry. We manually
perturbed and physically constrained it to move it between
different branches. While this enabled us to demonstrate the
power of our approach, real-world applications require sys-
tems of arbitrary size and shape and the ability to reprogram
the response using remote stimuli. Toward this end, it is
important to note that the proposed numerical approach can be
readily extended to systems of arbitrary size and shape, which
will likely be characterized by markedly different bifurcation
diagrams. Moreover, depending on the characteristic size of
the structures and on their stiffness, different and remote types
of stimuli can be used to move the structure between different
branches, including magnetic field [37], heat [38,39], and
swelling [40]. As such, we believe that our strategy enables
the design of a new class of reprogrammable mechanical
metamaterials.
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